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Abstract—The use of Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) in computer vision opened up
new tracks in this area. However, a significant drawback of these
models is the large amount of data required to obtain competitive
results. This critical issue limits their application in domains
where large labeled data collections are unavailable. Some
strategies have been proposed to use relatively limited labeled
data sets to train CNN-based models. Curriculum learning is one
of the currently available strategies to train deep learning models
faster and with less data. However, to our knowledge, curriculum
learning techniques have never been used at the model level to
support ViT training for semantic segmentation. We propose a
new curriculum learning technique tailored to ViT models to
fill this gap. The results show the effectiveness of the proposed
strategy in training ViT models from scratch to solve the semantic
segmentation task.

Index Terms—Deep learning, Curriculum learning, Semantic
segmentation, and Computer vision

I. INTRODUCTION

In the last decade, deep learning models and Big data
collections have revolutionized the field of computer vision.
First, through Convolutional Neural Networks (CNNs) and
later through Vision Transformers (ViTs), the performance of
image processing tasks (e.g., image classification and semantic
segmentation) has been greatly enhanced. However, training
these models requires vast collections of labeled data, which
are limited in some domains (e.g., satellite imagery for emer-
gency management [1] and medical applications). To address
this problem, researchers have proposed methods to train deep
learning models more effectively using the limited amount of
available labeled data.

In this paper, we focus on the task of semantic segmentation
and propose a new curriculum learning strategy to support the
training of ViT models.

Semantic segmentation is a computer vision task that plays
an important role in various application domains such as
medical imaging [2], autonomous driving [3], urban plan-
ning [4], and emergency management [1]. It differs from image
classification, as it focuses on predicting the category of each
individual pixel rather than providing a prediction at the image
level.

Over the years, several Convolutional Neural Networks
(CNNs), such as VGG [5], DeepLab-V3 [6], and U-Net [7],

have been introduced and proven effective for semantic seg-
mentation. Recently, Vision Transformers [8] have demon-
strated their capabilities in various computer vision tasks,
including semantic segmentation. However, training these deep
learning models requires a large amount of labeled data,
which is not feasible in some domains. Intelligent training
methods have been proposed to solve this problem. For ex-
ample, techniques inspired by human learning (the curriculum
learning methods) have been proposed to effectively guide the
training of CNNs. These techniques can either improve the
quality of results by considering all available data or produce
high-quality results with less data. The curriculum learning
techniques can be categorized based on the training phase they
target. Precisely, curriculum learning strategies can target (i)
the architecture of the trained model, (ii) how the data are
used, or (iii) the complexity of the subtasks used to teach the
model to solve increasingly complex problems.

To our knowledge, some studies on curriculum learning
applied to CNNs for semantic segmentation have been pro-
posed (e.g., [9], [10]). Still, they are based on something other
than curriculum learning strategies working at the model level.
Moreover, nobody attempted to use curriculum learning at
the model/architecture level for training ViT models to solve
the semantic segmentation task. Only one previous work [11]
focused on a curriculum learning approach that, similarly to
ours, increases step-by-step the deep learning model complex-
ity. However, it has been applied to a CNN-based generative
adversarial network that generates high-quality images, i.e., a
different network architecture and task.

Our contribution can be summarized as follows.

• We propose a novel curriculum learning strategy that
works at the model level and gradually increases the com-
plexity of the network. Increasing the complexity of the
model gradually usually allows faster training of models
with less labeled data. The proposed approach is tailored
to a (non-symmetric) ViT model. No previous work
has proposed model-level curriculum learning strategies
that deal with non-symmetric deep learning networks.
Previous works targeted CNN-based architectures.

• We have thoroughly evaluated the effectiveness of the
proposed curriculum learning strategy in solving the



semantic segmentation task using ViT models. No one
has yet attempted to solve this task using ViT models
trained with a model-level curriculum learning strategy.

• A publicly available version of the code for reproducibil-
ity at https://github.com/DarthReca/curriculum-segformer
to favor new research in this area.

The rest of the paper is organized as follows. Section II
summarizes the related work. Section III formally introduces
the addressed task, while Section IV describes the proposed
methodology. The experimental evaluation is reported in Sec-
tion V. Finally, Section VI draws conclusions and discusses
future work.

II. RELATED WORKS

A. Vision Transformers

In recent years, the introduction of Vision Transformers has
demonstrated their effectiveness in various computer vision
tasks. However, training Vision Transformers can be more
resource intensive than other deep learning models because
self-attention scales quadratically with image resolution. In
addition, transformers have difficulty capturing spatial invari-
ance [8] compared to CNNs. Many models leverage pre-
training on large datasets such as ImageNet [12] to mit-
igate this problem. However, pre-training on ImageNet or
other well-known datasets cannot be used when dealing with
non-RGB data (e.g., Sentinel-2 imagery characterized by 12
channels). In this case, the models must be trained from
scratch, and training techniques, such as curriculum learning,
are needed to use the limited amount of labeled data available
effectively.

B. Curriculum Learning

The curriculum learning methodology was introduced by
Bengio et al. in [13]. The concept of curriculum learning
has shown its benefits in different fields, including computer
vision [11], natural language processing [14], and reinforce-
ment learning [15]. The approach proposed in [13] involves
gradually exposing the models to increasingly complex ex-
amples/input data during training to mimic human learning
behavior. This methodology was applied by starting with sim-
pler samples and progressively introducing more sophisticated
examples as the training progressed.

Curriculum learning strategies can act at different levels:
(i) at the data level [14], increasing the complexity of the
training data while the training progresses, (ii) at the task
level [9], [15], [16], proposing tasks of increasing difficulty
to the network we are training, or (iii) at the model level [11],
updating the model complexity periodically. Regardless of
the strategy used, the basic idea is gradually increasing the
complexity. Similar to humans, the model first learns to solve
simple cases. Then it gradually increases its expertise and
solves more complex cases.

1) Curriculum learning at the data level: The application
of curriculum learning at the data level has proven successful
in many tasks in various domains, such as natural language
processing and computer vision. When applying curriculum
learning at the data level, the training process is first fed with
simple data samples. Then, more data, representative of more
complex cases, are used to continue training the model. The
amount and complexity of data increases until convergence
is achieved. In this type of strategy, the architecture of the
trained model does not change over time. Thus, we only use
intelligent data-feeding strategies to train a more effective
model. Many different criteria were used for evaluating the
difficulty of the samples, ranging from simple shape analysis
[13] to more complex factors such as the presence of fog [10].
More advanced techniques were explored, such as considering
how much we learn from each sample [17] to optimize the
training.

2) Curriculum learning at the model level: The complexity
of the architecture increases periodically when curriculum
learning is applied at the model level. We start with a simple
architecture, and after a certain number of steps, the com-
plexity of the architecture increases. For example, we begin
with a multilayer perceptron network with N hidden layers
and gradually increase the complexity by adding more hidden
layers. It is difficult to change the model architecture during
training and keep the information learned so far. For this
reason, few curriculum learning strategies have been proposed
at the model level. The proposed approaches may gradually
act on the number of layers of the network [11] or on
dropout layers [18] or on the embeddings of convolutions [19].
However, these approaches are often limited to specific models
or individual components of deep learning networks. Further
research is needed to propose universal curriculum learning
strategies independent of the trained architecture/model.

The curriculum learning strategy we propose in this pa-
per acts at the model level. Differently from the previous
works [11], it is the first attempt to apply a curriculum learning
strategy at the model level on a Vision Transformer.

III. PROBLEM STATEMENT

The addressed task is semantic segmentation, which can be
defined as follows. Given a set of classes C and a set of un-
labeled images U , the objective of the semantic segmentation
task is to assign a class label c ∈ C to each pixel of the images
I ∈ U by using a model M trained on a set of images T for
which the class labels of their pixels are known.

More precisely, we have at our disposal a set of images T
of size W×H×D (where W , H , and D are the width, height,
and depth of the images, respectively) and a classification
model M trained on the training set T . We have an associated
mask of size W×H for each image in T , where each pixel/cell
assumes a value from 1 to Ncls (where Ncls is the number of
distinct classes). The goal consists in training a model M that
learns how to predict the masks for the unlabeled images in
U . The images in U and T have the same features, but U ∩T
is the empty set.



IV. METHODOLOGY

This paper proposes a solution to the semantic segmenta-
tion problem based on a novel curriculum learning strategy
applied to the well-known SegFormer vision transformer [20].
SegFormer is a well-known model that can effectively address
semantic segmentation. For completeness and clarity, Figure 1
provides the architecture of the SegFormer from the original
paper [20], which consists of four transformer blocks in the
encoder part and some MultiLayer Perceptron (MLP) layers
in the decoder to obtain the final prediction. The following
refers to the transformer blocks as blocks or layers.

The proposed curriculum learning strategy was applied
at the model level. Moreover, other techniques to stabilize
the training were also employed (see Sections IV-B IV-C,
and IV-D). Specifically, we propose first to train a simple
SegFormer using only the first encoder block. Then, after a
certain number of iterations, the second encoder block is added
to the model to specialize it further (adding a block means
activating it). This procedure continues until all encoder blocks
are activated, i.e., added to the model (see Section IV-A for
details). Compared to a traditional training procedure where
the most complex SegFormer model is trained directly with
all blocks, our proposed curriculum learning approach aims at
a better initialization of the parameters of the first blocks.

To manage the increasing complexity of the model, the
training data are split into partitions (see Section IV-B).
Specifically, a percentage of the training data equal to
dataPercentageStep is used initially to train the initial model
based on a single block. Then, each time a new block is
added, the percentage of training data considered increases
proportionally. This partitioning approach helps preventing
overfitting. Finally, embedding smoothing IV-C and a cyclical
learning rate scheduler IV-D are used in our solution to
optimize the training of the model further.

The procedure can be found in Figure 2, where maxLayers
is the number of layers (blocks) of the model to add gradually,
maxTrainingSteps is the number of training steps, and
activationSteps is the set of steps in which the new layers are
added. For consistency, the number of activation steps must be
equal to maxLayers, i.e., the number of layers to add. The
function on line 9 executes the training loop for the batch
at step s, having access only to dataPercentage portion of
the training data. A detailed description of each step of the
proposed solution is provided below. In the following descrip-
tions, we use a running example with a ViT network composed
of 4 layers. Specifically, we use the following assumption:
maxLayers = N , activationSteps = {T0, . . . , TN−1}, and
N (the number of layers to add/activate) is 4.

A. Progressive Model Growth

This is the novel curriculum learning strategy that we
propose. The idea is to generalize the pattern proposed in [11]
to our transformer architecture. Since we use a ViT model,
the approach proposed in [11] cannot be directly applied in
our scenario, as they add the model layers to a Generative

Fig. 1: SegFormer architecture. In white, the embeddings and
the respective sizes. W and H are the respective width and
height of the input image, Cx is a generic number of channels,
and Ncls is the number of classes to predict in the task.

Require: maxLayers > 0
Require: maxTrainingSteps > 0
Require: activationSteps ⊆ {0, . . . ,maxTrainingSteps}
Ensure: |activationSteps| = maxLayers

1: dataPercentageStep← 1/maxLayers
2: dataPercentage← 0
3: for s← 0 to maxTrainingSteps do
4: if s in activationSteps then
5: ActivateNextBackboneLayer()
6: EnlargeFusionLayer()
7: dataPercentage += dataPercentageStep
8: end if
9: TrainingLoop(dataPercentage)

10: end for

Fig. 2: Curriculum-Enhanced Segmentation Algorithm

Adversarial Network (GAN) one by one. In our case, these
layers are transformer blocks of the encoder.

At the time T0 (first activation step), only one block is
active (see Figure 3). We start training the model with one
single active layer (block). When we reach a stability situation
at time T1 (second activation step), we activate the second
encoder layer (see line 5 of Figure 2 and the second image
from the top in Figure 3). This action provides a new stimulus
to the network since the resulting model, and embeddings
will be more complex and capable of capturing details. This
is done for each timestep in activationSteps, stabilizing
the learning of the previous layers and speeding up the
convergence of the newly introduced ones. The ViT model
is composed of the encoder and decoder parts. The decoder
must be updated when further encoder layers are activated in
the network. At the time T0, the deepest layer of the decoder
processes a single embedding, which is fed into a Linear
Fusion layer (Convolutional layer) (see Figure 4). At timestep
T1, the processed embeddings are two (corresponding to the
outputs of the two encoder/transformer blocks 1 and 2 reported
in Figure 4). Thus, linear fusion must process a tensor with
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Fig. 4: Curriculum learning applied to the decoder at different
timesteps. The linear fusion layer, highlighted in yellow, grows
at each timestep. In blue, the static layers of the decoder. The
final prediction is the output of Decoder Final Layers.

multiple channels. The simplest, but at the same time effective
approach to deal with this change in the number of embeddings
is to replace the linear fusion layer with a new layer of a
different size (see line 6 and the second figure from the top
in Figure 4). Since it is a simple convolution, it can quickly
learn from scratch without significantly affecting the rest of
the network. The procedure is applied at each time step in
activationSteps.

The curriculum learning procedure applied to SegFormer
is depicted in Figures 3 and 4 with maxLayers = 4 and
activationSteps = {T0, T1, T2, T3}.

B. Dataset Portioning

As the network becomes more complex and powerful over
time, we initially provide it with only a subset of the training
data. Then we increase the number of samples each time we
add a new encoder block, as shown in Figure 2 at line 7. This
helps prevent overfitting, as the model gets another stimulus
every time a new layer is added. For simplicity, we defined
the increment dataPercentageStep = 1/maxLayers, to
increase the training data uniformly with the increasing com-
plexity of the SegFormer model. The validation set, on the
other hand, always remains the same.

C. Embedding Smoothing

Since the embeddings of a newly inserted layer are noisy,
we used a smooth insertion as suggested in [11]. Before
linear fusion, the new embeddings are replaced by a linear
interpolation between the representation of the previous layer
and the current one for a certain number of steps S. In this way,
the network can slowly adjust the weights of the randomly
initialized layer without spikes in the loss optimization.

D. Cyclical Learning Rate Scheduler

Inspired by the cyclical learning rate scheduler [21], we used
this approach to give the network a new exploration push when
a new layer is added. When a new layer is added/activated
in a time step Ti, the learning rate is set to lrmin. Then
the learning rate increases linearly up to lrmax. When the
maximum learning rate is reached, the scheduler decreases the
learning rate until it reaches lrmin. This is defined as a cycle
of the scheduler. After all the layers have been activated, we
follow the triangular2 policy [21] multiplying lrmax by 0.5
after the end of each cycle.

V. EXPERIMENTAL RESULTS

The following section presents the results obtained with a
standard benchmark dataset: CityScapes [3]. The evaluation
metric is the same one used in CityScapes. More specifically,
the mean Intersection Over Union (IoU) or Jaccard index, a
standard semantic segmentation metric, was used.
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Fig. 5: CityScapes: 19 classes. Vertical grey dashed lines represent the insertion of a new layer.
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Fig. 6: CityScapes: 34 classes. Vertical grey dashed lines represent the insertion of a new layer.

A. CityScapes Data Set

The data set comprises RGB images of size 1024×2048×3.
It includes 2975 samples for the training set and 500 for the
validation set. We used the same data set split used in [3]. The
annotation comprises 34 classes, ranging from the class person
to class sky. Some classes, such as road, are more present with
values higher than 106 pixels, while others, such as bus, are
rare, with values around 103 pixels.

B. Experimental Settings

Since the proposed approach can be applied indiscrimi-
nately to any version of SegFormer, we chose the lighter
version to train on a single A6000. We use the settings
given in the original paper [20]. We trained all models for
maxTrainingSteps = 50000. We compared the model
trained using our curriculum learning with a SegFormer model
trained using a traditional learning approach. The input pa-
rameters of our approach are determined as follows. Since
there are four transformer blocks, we set maxLayers = 4.
A new layer is activated every 50 training epochs, so we
set activationStep = {0, 3700, 11100, 22250}. Finally, the
smoothing parameter was set to S = 8000 steps. The gap
in terms of steps between consecutive activation steps in
activationStep varies because we are gradually increasing the
number of training samples (see Section IV-B), so the initial
epochs are shorter than the latter. The cyclical learning rate
scheduler uses lrmin = 10−7, lrmax = 10−3 and Pup = 0.1.
According to the original paper, the Cross-Entropy loss is
used, and the batch size was set to 8. To perform a fair
comparison, we used the same loss (the Cross-Entropy loss),

the same batch size (8), and the same augmentation techniques
(horizontal flipping with a probability of 0.5 and cropping to
size 1024x1024) as it is used in [20].

C. Results on Cityscapes

The Cityscapes dataset is generally used with a subset of
19 classes. We also report experiments with all 34 classes to
widen the evaluation of the proposed approach into a more
complex problem. The metrics are computed on the validation
set of CityScapes, since no public annotations are available
for the test set. Evaluation on the validation set is the usual
approach on CityScapes (see [20], [22]).

1) Evaluation on 19 classes: Figure 5a reports the results in
terms of IoU on the validation set. For completeness, we also
report the training and validation losses (see Figures 5b-5c) In
Figure 5, we can see that the training loss is almost the same in
both cases (curriculum learning vs. standard learning), whereas
the validation loss after 30k steps is slightly better using
the curriculum learning. Looking at the IoU (Figure 5a), the
curriculum learning model performs better than the standard
model after 30k steps, similar to what happens with the
validation loss. At the end of the training process, our proposed
approach reaches a validation IoU equal to 0.57, which is
3.76% higher than the standard model. Each time a new layer
is added/activated, there is a small drop in the performance
of the curriculum learning approach for a certain number of
steps due to the network’s adaptation. This behavior ensures
a generalizable approach that allows not to get stuck in local
minima for more complex optimization problems.
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Fig. 7: CityScapes: 19 classes. Validation IoU. Impact of
learning rate scheduler and embedding smoothing. Vertical
grey lines represent the insertion of a new layer.

2) Evaluation on all 34 classes: Figure 6a reports the
results in terms of IoU on the validation set when considering
all the 34 classes in CityScapes. Figures 6b and 6c report the
training and validation losses, respectively. In Figure 6, we see
similar behavior for training and validation losses as for the
19-class settings. The same statement holds for the validation
IoU. Although the validation IoU reaches lower values than
before, the trend is the same. Analogous to the other case,
the curriculum learning model outperforms the standard model
after a certain point. At the end of the training, the validation
IoU of the curriculum learning model is 1.90% higher than
the standard model. The deterioration in performance due to
adding new layers is less obvious.

D. Ablation Study

In this section, we analyze the impact of the cyclic scheduler
and the embedding smoothing approach.

Figure 7a compares two schedulers on the 19 classes setting:
cyclic vs. polynomial (a common scheduler). Using the more
aggressive cyclic scheduler after each insertion leads to an
increase of up to 10% in validation IoU. Figure 7b highlights
the effect of embedding smoothing. Looking at the validation
IoU, we notice large spikes after inserting a layer when
embedding smoothing is not applied. This is an undesirable
behavior, as it creates a situation of instability. However, even
without smoothing, the model recovers quickly thanks to the
curriculum learning strategy. Thus, embedding smoothing has
a limited impact.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an effective approach for training
vision transformers from scratch based on curriculum learning.
Experiments conducted on a benchmark dataset demonstrate
the quality of the proposed method. In future work, we plan
to extend the methodology to other models and new datasets
for a more comprehensive and general solution.
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