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Abstract

In a seminal 1965 paper, Motzkin and Straus established an elegant connection between
the clique number of a graph and the global maxima of a quadratic program defined on the
standard simplex. Since then, the result has been the subject of intensive research and has
served as the motivation for a number of heuristics and bounds for the maximum clique
problem. Most of the studies available in the literature, however, focus typically on the
local/global solutions of the program, and little or no attention has been devoted so far to
the study of its Karush-Kuhn-Tucker (KKT) points. In contrast, in this paper we study the
properties of (a parameterized version of) the Motzkin-Straus program and show that its
KKT points can provide interesting structural information and are in fact associated with
certain regular sub-structures of the underlying graph.

Keywords: Standard quadratic optimization, KKT points, clique, regular graphs, replicator
dynamics

1 Introduction

In 1965, Motzkin and Straus [14] studied the program:

maximize
x ∈ Rn

f(x) = x>Ax (1a)

subject to 1>x = 1, (1b)

x ≥ 0, (1c)

where A denotes the adjacency matrix of an undirected unweighted graph G on a set of n
vertices. They proved that the value of (1) equals ω(G)−1 + 1, where ω(G) is the clique number

∗Note: this article has not been peer reviewed yet. Guglielmo Beretta’s scholarship is funded jointly by Ca’
Foscari University of Venice and by Polytechnic University of Turin. The authors have no competing interests
to declare that are relevant to the content of this article. All authors contributed to the study conception and
design. The first draft of the manuscript was written jointly by Alessandro Torcinovich and Guglielmo Beretta.
This study has been performed under the supervision of Marcello Pelillo. All authors commented on previous
versions of the manuscript. All authors read and approved the final manuscript. Figure 1 and Figure 2 have been
produced using TikZ.
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of G, and that every maximum clique C corresponds to a global solution for (1). More recently,
Pelillo and Jagota [17] studied the “spurious” solutions of the Motzkin-Straus program (namely,
solutions that are not associated to any maximum clique) and provided a characterization of
its (strict) local solutions in terms of (strictly) maximal cliques of G. Bomze [1] modified (1) by
adding a convex regularization term to its objective function, thereby obtaining a spurious-free
version of the program where local (global) solutions are in one-to-one correspondence with
maximal (maximum) cliques (and all solutions are strict).1

Since its introduction, the Motzkin-Straus program, and its variations, has been the subject
of intensive research and has been generalized in various ways [8, 4, 20, 21], motivating a number
of heuristics and bounds for the maximum clique problem (see, e.g., [2, 26, 5, 22]). Most of the
studies available in the literature, however, focus typically on the properties of the local/global
maximizers of (1) and little or no interest has been devoted to its Karush-Kuhn-Tucker (KKT)
points. In contrast, in this paper we study the KKT points of (a parametric version of) the
program introduced by Bomze [1, 3], in an attempt to obtain structural information on the
underlying graph. In particular, we extend some known results about characteristic vectors
concerning regular induced subgraphs and discuss how a KKT point is related to the symmetries
of the subgraph induced by its support. Using barycentric coordinates [19, 10], we then exploit
a suitable representation of KKT points to further analyze the combinatorial structure of its
support. To do this, we introduce the novel concept of a partition induced by an element in the
standard simplex and that of highly regular families. Finally, the results obtained are applied
to the class of generalized star graphs.

2 Notation

Here, we fix the notation that we will adopt throughout this paper. For a positive integer n ∈ N
we write [n] for the set {i ∈ N : 1 ≤ i ≤ n}. Lowercase bold fonts are reserved to column vectors,
whereas uppercase bold fonts will denote matrices and a superscript > denotes transposition.
We denote by 0 (resp. 1) a vector with every component equal to 0 (resp. 1), with dimension
in agreement with the context in which it is used.

The support of a vector x ∈ Rn is the set supp(x) = {i ∈ [n] : xi 6= 0}. The standard simplex
in Rn is the set:

∆n = {x ∈ Rn | 1>x = 1, x ≥ 0},

For a non-empty S ⊆ [n], we define:

∆n(S) = {x ∈ ∆n : supp(x) ⊆ S},
int(∆n(S)) = {x ∈ ∆n : supp(x) = S},
∂(∆n(S)) = ∆n(S) \ int ∆n(S),

being ∆n(S) the face of ∆n associated with S, whereas int(∆n(S)) and ∂(∆n(S)) are the
(relative) interior and the (relative) boundary of ∆n(S) respectively. In this notation ∆n([n])
is an alias for ∆n.

As for the graph-related notation, G = (V,E) denotes in the sequel an unweighted undirected
graph on a set V and with set of edges E ⊆

(
V
2

)
. We say that two vertices i, j ∈ V are adjacent,

and write i ∼ j, whenever {i, j} ∈ E. The adjacency matrix of G is the symmetric n×n matrix
with coefficent ij equal to 1 whenever i ∼ j and equal to 0 otherwise. Given a non-empty
S ⊆ V , we use G[S] for the subgraph of G induced by S, that is the graph on the set S in which
two vertices i, j ∈ S are adjacent if and only if {i, j} ∈ E. A non-empty subset C ⊆ V is called

1See Hungerford and Rinaldi [12] for an alternative family of regularizations of the program.
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a clique if the induced subgraph G[C] is complete, i.e., i ∼ j for every distinct i, j ∈ C. The
degree of a vertex in a graph is the amount of neighbors that vertex has among the vertices in
the graph and a graph is said regular if every vertex in the graph has the same degree. We also
recall that an automorphism of a graph is an isomorphism with itself, i.e., a permutation σ of
its vertices such that two vertices i and j are neighbors if and only if σ(i) is adjacent to σ(j).

3 Parametric Motzkin-Straus programs

Consider a graph G = (V,E) on a finite non-empty set V , with |V | = n. Without loss of
generality, assume V = [n] to simplify the notation. Denote by A the adjacency matrix of G
and by I the n × n identity matrix. Fix now a parameter c ∈ R and consider the quadratic
program:

maximize
x ∈ Rn

fc(x) = x>(A + cI)x (2a)

subject to 1>x = 1, (2b)

x ≥ 0, (2c)

and the associated Lagrangian [13]:

L(x, µ0,µ) = fc(x) + µ0(1>x− 1) + µ>x,

which is defined for x ∈ Rn and for the multipliers µ0 ∈ R and µ ∈ Rn. Program (2) is discussed
in Bomze [1] for c = 1

2 and in Bomze et al. [3] in its more general formulation. Observe that
(1) is precisely (2) in case c = 0.

Definition 1. A point x ∈ Rn is a Karush-Kuhn-Tucker (KKT) point for (2) if some (µ0,µ) ∈
R× Rn exists such that: 

∂ L
∂x

(x, µ0,µ) = 0,

1>x = 1,

x ≥ 0,

µixi = 0 for i ∈ V ,
µ ≥ 0.

(3)

The set KKT (c) denotes the set of KKT points for (2).

Dropping in (3) the sign condition for the multipliers leads to the following generalization
of a KKT point:2

Definition 2. A point x ∈ Rn is a generalized KKT point for (2) if some (µ0,µ) ∈ R × Rn
exists such that: 

∂ L
∂x

(x, µ0,µ) = 0,

1>x = 1,

x ≥ 0,

µixi = 0 for i ∈ V ,

(4)

The set gKKT (c) is the set of generalized KKT points for (2).

2Definition 2 differs from how Bomze [1] and Bomze et al. [3] define generalized KKT points, where the only
difference is that they require the condition p) µ>x = 0 in place of our q) µixi = 0 for all i ∈ V . If µ ≥ 0, then
p and q are equivalent, but observe that without requiring µ ≥ 0, then p is a weaker constraint then q.
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Notice that removing the condition µ ≥ 0 amounts to converting active inequality con-
straints into equality constraints. For this reason, a point x̂ ∈ ∆n with support S = supp(x̂)
satisfies Definition 2 if and only if x̂ is a KKT point for the program:

maximize
x ∈ Rn

fc(x) = x>(A + cI)x (5a)

subject to 1>x = 1, (5b)

x ≥ 0, (5c)

xi 6= 0 for i ∈ S, (5d)

xi = 0 for i 6∈ S (5e)

i.e., for the program:
maximize

x ∈ int(∆n(S))
fc(x). (6)

The inclusions
gKKT (c) ∩ int(∆n) ⊆ KKT (c) ⊆ gKKT (c)

follow directly from the definitions given. Proposition 1 presents a well known alternative
description of KKT (c) and gKKT (c) [8, 3].

Proposition 1. Let x ∈ ∆n and set λ = fc(x). For M = A + cI, consider the statements:

1. (Mx)i = (Mx)j for every i, j ∈ supp(x);

2. (Mx)i = λ for every i ∈ supp(x);

3. (Mx)i ≤ λ for every i ∈ V \ supp(x).

Then:

• the statements 1. and 2. are equivalent;

• x ∈ KKT (c) if and only if 2. and 3. hold;

• x ∈ gKKT (c) if and only if 2. holds.

Proof. First observe that fc(x) =
∑

i∈supp(x) xi(Mx)i, which entails the equivalence of 1. and
2.

Since:
∂ L
∂x

(x, µ0,µ) = 2Mx + µ01 + µ,

the implications claimed are a simple restatement of the definitions given under the change of
variables µ0 = −2λ and µ = 2(λ1−Mx).

Motzkin and Straus [14], Bomze [1] and Pardalos and Phillips [15] considered, other than
some instances of (2), the program obtained by replacing the matrix A appearing in (2) with
the adjacency matrix of the complement graph of G.3 Looking at the KKT points of these
quadratic programs leads to Proposition 2. Let G denote the complement graph of G and call
A its adjacency matrix.

3This is also motivated by the fact that the maximum clique problem for G is the dual problem of finding a
maximum independent set for G [6].
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Proposition 2. 1. KKT G(c) coincides4 with the set of KKT points for the minimization
program:

minimize
x ∈ Rn

x>(A + (1− c)I)x (7a)

subject to 1>x = 1, (7b)

x ≥ 0; (7c)

2.
gKKT G(c) = gKKT G(1− c).

Proof. Consider a matrix M ∈ Rn×n, the affine transformation φ(t) = 1−t and a vector x ∈ ∆n.
The matrix N ∈ Rn×n with general coefficient nij = φ(mij) satisfies also

(Nx)i = φ((Mx)i) for every i ∈ V (8)

since the coordinates of x sum up to 1.5 The proof is then a consequence of (8) applied for
M = A + cI and M = A + (1− c)I, using Proposition 1 and the identity A + A + I = 11>.

Proposition 2 has been ispired by Motzkin and Straus’s work [14], in which a similar idea
shows essentially that the Motzkin-Straus program has the same value as that of a suitable
minimization program. Notice that Proposition 2 entails that gKKT G(1

2) = gKKT G(1
2), a

curious equality involving the quadratic program studied by Bomze in [1].

3.1 KKT points and replicator dynamics

Let M ∈ Rn×n and consider on Rn the ordinary differential equation:

ẋi = xi[(Mx)i − x>Mx], i = 1, 2, . . . , n. (9)

It is easy to show [9] that the set ∆n is invariant under the flux defined by Equation 9. The
replicator dynamics6 with payoff-matrix M is the dynamics defined on ∆n by 9.

Replicator dynamics denotes a class of continuos-time and discrete-time dynamical systems
introduced in Taylor and Jonker [24] to describe the coexistence of interacting self-replicating
species [9, 25], and that resulted useful also in economics and social sciences, where behavioural
patterns or strategies are studied in place of species, and the concept of replication corresponds
to imitation of successful behavior [25].

The content of this paper has an alternative interpretation in the replicator dynamics frame-
work. In facts, imposing ẋ = 0 in Equation 9 allows to characterize stationary points under
replicator dynamics [9], and it is easy to see that a point x ∈ ∆n is stationary for the replicator
dynamics with payoff-matrix M if and only if there exists some λ ∈ R such that (Mx)i = λ
for every i ∈ supp(x). The reader may notice the resemblance of this with Proposition 1. In-
deed, x ∈ ∆n is stationary for the replicator dynamics with payoff-matrix A + cI if and only if
x ∈ gKKT (c) [1].

Moreover, the replicator dynamics with payoff-matrix A + cI admits fc as a Lyapunov
function [1],7 thus motivating the numerical simulation of the dynamics as a means to look

4We write here KKT G(c) (resp. gKKT G(c)) for KKT (c) (resp. gKKT (c)) so as to make explicit the
dependence on G, which affects the objective function of Program (2).

5This is true if φ is replaced by any affine transformation of R into itself.
6Indeed, this is not the only possible replicator dynamics having M as payoff- matrix [9, 18].
7The replicator dynamics with a symmetric payoff-matrix M admits x>Mx as a Lyapunov function, which

can be thought as a measure of fitness when it comes to modeling biological systems. The adoption of this
framework is hence supported by an intriguing connection with Fisher’s Theorem of Natural Selection [1, 7].
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for maximizers for fc in the standard simplex, and even though the dynamics is not bound to
converge to a local solution of (2), it can be shown that each trajectory initialized in int(∆n)
converges to an element of KKT (c) [1, Lemma 4].

4 Characteristic vectors

Let S be a non-empty subset of V . The characteristic vector representing S in ∆n is the vector
xS ∈ ∆n defined by:

xSi =

{
1/|S| if i ∈ S,
0 otherwise.

In [14] characteristic vectors representing maximum cliques emerge as global solutions to (1),
and characteristic vectors representing maximal cliques are among the more interesting local
solutions of (1) [14, 17, 23]. For a KKT point for (1) that is a characteristic vector, the subgraph
of G induced by its support is not necessarily a complete graph. However, it must be a regular
graph. Bomze [1] observed that xS ∈ gKKT (1

2) if and only if G[S] is a regular graph,8 and the
same proof indeed works also for c 6= 1

2 , as Proposition 3 shows.

Proposition 3. Let x be a characteristic vector. Then x ∈ gKKT (c) if and only if G[supp(x)]
is regular.

Proof. Let x be a characteristic vector and set S = supp(S), so that x = xS . For each i ∈ S,
let the integer di count how many vertices in S are adjacent to i. Then (AxS)i = di/|S|, thus
((A + cI)xS)i = (di + c)/|S|. By Proposition 1, the vector xS is in gKKT (c) if and only if for
some λ ∈ R the equality (di + c)/|S| = λ holds for every i ∈ S. This is possible if and only if di
has the same value for every i ∈ S, that is, if and only if G[S] is regular.

Thanks to Proposition 3, a characteristic vector is in gKKT (c) either for every value of c or
for no value of c. In contrast, vectors in the standard simplex that are not characteristic vectors,
that is all but 2n − 1 elements of ∆n, exhibit a different behavior. Indeed, as a consequence of
the next proposition, which generalizes [3, Proposition 6], each of those vectors is an element
of gKKT (c) for one value of c at most.9

Proposition 4. Let x ∈ ∆n and suppose two distinct c1, c2 ∈ R exist such that10 x ∈ KKT (cj)
for j = 1, 2. Then x is a characteristic vector, and G[supp(x)] is regular.

Proof. Set S = supp(x). By Proposition 1, there exist λ1, λ2 ∈ R such that for j = 1, 2, the
equation ((A + cjI)x)i = λj holds for every i ∈ S, and so every non-zero component of x equals
(λ1 − λ2)/(c1 − c2). Then necessarily x = xS , and G[S] is regular by Proposition 3.

5 Automorphisms of induced subgraphs

The elements of KKT (c) need not be characteristic vectors. For instance, suppose G is the
graph on the set of vertices {1, 2, 3} and edges {{1, 3}, {2, 3}}, sometimes called the cherry
graph. It is easy to check that the point x̃ = (1/4, 1/4, 1/2), which clearly is not a characteristic
vector, is an element of KKT (0), as discussed in Pardalos and Phillips [15].

8Bomze’s proofs contained in [1] work also for 0 < c < 1, as mentioned in [3].
9Let x ∈ ∆n and assume x is not a characteristic vector. An analysis on the spectrum of A + cI shows that

if c lies in a certain range depending on supp(x) and of A then x can’t be a stationary point for a replicator
dynamics with payoff-matrix A + cI [3, 18]. As a consequence of Proposition 3, knowing that x is a stationary
point for the replicator dynamics with payoff-matrix A+ cI, then x ceases to be stationary in case we perturb c,
and this is true for any perturbation of c.

10The proof requires only x ∈ gKKT (cj) for j = 1, 2.
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1 2

Figure 1: The cherry graph

What kind of information on G can be possibly obtained from x̃? Observe that both the
vector x̃ and the cherry graph are preserved if vertex 1 and vertex 2 are exchanged. To be
rigorous, call σ the permutation on {1, 2, 3} swapping 1 and 2. Then σ is an automorphism for
the cherry graph and at the same time x̃ is invariant under the pull-back by σ, i.e., the vector
x̃ is preserved if its i-th coordinate is replaced with its σ(i)-th coordinate for every i ∈ V .

Theorem 1 shows that this is an instance of a more general fact.

Theorem 1. Let x ∈ gKKT (c), set S = supp(x) and let G be a group of automorphisms for
the induced subgraph G[S]. Then there exists a point x̂ ∈ gKKT (c) satisfying supp(x̂) = S and
x̂σ(i) = x̂i for every i ∈ S and every σ ∈ G.

Proof. For every σ ∈ G, denote by σ∗x the vector in ∆n satisfying:11

(σ∗x)i =

{
xσ(i) for i ∈ S
0 otherwise.

Set x̂ = 1
|G|
∑

σ∈G σ
∗x and all is left is to check that x̂ satisfies the desired properties.

Observe first that x̂ ∈ ∆n by convexity of ∆n, and that for every σ ∈ G we have supp(σ∗x) = S,
thus supp(x̂) = S by construction.
To prove that x̂ is a generalized KKT point, recall that by hypothesis on x some λ exists such
that ((A + cI)x)i = λ for every i ∈ S. For every σ ∈ G and every i, j ∈ S we have i ∼ j if and
only if σ(i) ∼ σ(j), which is equivalent to aij = aσ(i)σ(j). Then:

((A + cI)σ∗x)i =
∑
j∈S

aijxσ(j) + cxσ(i) =
∑
j∈S

aσ(i)σ(j)xσ(j) + cxσ(i)

= ((A + cI)x)σ(i) = λ

and so

((A + cI)x̂)i =
1

|G|
∑
σ∈G

((A + cI)σ∗x)i = λ,

showing that x̂ ∈ gKKT (c).
Since G is a group, for every τ ∈ G we have G = τ−1G, thus:

τ∗x̂ =
1

|G|
∑
σ∈G

σ∗(τ∗x̂) =
1

|G|
∑

σ∈τ−1G

σ∗(τ∗x̂) =
1

|G|
∑
σ∈G

σ∗x̂ = x̂.

Given a non-empty S ⊆ V , Theorem 1 allows to infer information about the automorphism
G[S] provided we are able to find x ∈ gKKT (c) with support equal to S. For |S| = 1, 2 it is
trivial to check that xS ∈ gKKT (c). However, it is sometimes impossible to find such an x for
|S| ≥ 3.

11The reader may notice a subtle abuse of notation for the pull-back: we are identifying σ, which is a permu-
tation on S, and the permutation on V extending σ to V so that it keeps fixed every vertex in V \ S.
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Proposition 5. Suppose three distinct vertices i1, i2, i3 ∈ V satisfy i1 6∼ i3 and i2 ∼ i3. Let
S′ ⊆ V be such that every vertex in S′ that is adjacent to i1 is also adjacent to i2 and set
S = S′ ∪ {i1, i2, i3}.

(a) If i1 ∼ i2, then no element of gKKT (1) has support equal to S;

(b) If i1 6∼ i2, then no element of gKKT (0) has support equal to S.

Proof. (a) Set M = A + I. By hypothesis mi2j −mi1j ≥ 0 for every j ∈ S, and the inequality
is strict for j = i3. Suppose now some x ∈ gKKT (1) satisfies supp(x) = S. By Proposition 1,
every i ∈ supp(x) yields the same value for the quantity

∑
j∈V mijxj , hence:

0 =
∑
j∈V

mi2jxj −
∑
j∈V

mi1jxj =
∑
j∈S

(mi2j −mi1j)xj ≥ (mi2i3 −mi1i3)xj0 > 0,

and this is absurd.
(b) This time, set M = A. Arguing as before, a vector x ∈ gKKT (0) such that supp(x) = S

leads to a contradiction.

The two conclusions of Proposition 5 are indeed equivalent in light of Proposition 2. Observe
that in Proposition 5 the graph G[S] is isomorphic to either the cherry graph or its complement
graph in case S = ∅.

Even though it is possible that no element of gKKT (c) has support equal to S, this does
not depend solely on S. In fact, gKKT (c) 6= ∅ in case c lies outside a suitable bounded subset
of R.

Proposition 6. Let S be a non-empty subset of V . Then there exists a bounded interval I ⊂ R
such that for every c ∈ R \ I at least an element of gKKT (c) has support equal to S.

Proof. Call s = |S| and assume s > 1, for otherwise the proof is trivial. Observe that:

0 < min
x∈∆n(S)

x>x =
1

s
<

1

s− 1
= min

x∈∂(∆n(S))
x>x

thus:
max

x∈∆n(S)
fc(x) ∼ c

s
, max

x∈∂(∆n(S))
fc(x) ∼ c

s− 1

as c → −∞. Then, for c negative and with modulus sufficently big, the function fc restricted
to ∆n(S) admits a maximum z ∈ int ∆n(S). By construction, z ∈ gKKT (c). To complete the
proof, apply the same idea to G in place of G and use Proposition 2.

As an immediate application of Theorem 1, we can show that in case −c is not an eigenvalue
of A, then a KKT point x reveals additional information about its support, since in this case
for no automorphism σ of G[supp(x)] two vertices i and j lying in the same orbit under σ may
satisfy xi 6= xj .

Recall that for the matrix A and a non-empty subset S ⊂ V the principal submatrix A[S, S]
is the submatrix of A having entries in the rows and columns of A indexed by S [11].12 The
concept of induced partition is the final ingredient for Corollary 1.

Definition 3. Given x ∈ ∆n, define on supp(x) the equivalence relation ∼x such that i ∼x j if
and only if xi = xj. The partition induced by x is the family of the equivalence classes of ∼x.

12A tighter bound on the interval I in Proposition 6 can be derived from the spectral radius of A[S, S], as
shown in [16, Theorem 1].
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Corollary 1. Let x ∈ KKT (c), set S = supp(x) and suppose −c is not an eigenvalue of
A[S, S]. Every class of the partition induced by x is invariant under every automorphism of
G[S].

Proof. The thesis is that xσ(i) = xi for every i ∈ S and automorphism σ for the induced subgraph
G[S]. Let σ be an automorphism for G[S]. Apply Theorem 1 for the group of automorphisms
generated by σ to get x̂ ∈ gKKT (c) satisfying supp(x̂) = S and x̂σ(i) = x̂i for every i ∈ S. The
hypothesis on the spectrum of A[S, S] entails that gKKT (c) contains one point at most with
support equal to S. Consequently, x = x̂.

6 KKT points and convex hulls of characteristic vectors

We are about to discuss representations of elements in the standard simplex as convex combina-
tions of characteristic vectors. Such representations turn out to be interesting for KKT points
of (5).

Definition 4. Consider a family F = {V1, V2, . . . , Vk} of pairwise disjoint non-empty subsets
of V . Given x ∈ conv(xV1 ,xV2 , . . . ,xVk), the barycentric coordinates of x with respect to (the
characteristic vectors representing the classes of) F is the unique13 vector y = baryF (x) in ∆k

such that x =
∑k

`=1 y`x
V`.

For instance, in case F = {{i} | i ∈ V }, it is trivial to check that for every x in ∆n the
equality baryF (x) = x. Observe that in the setting of Definition 5 we must have xi = xj =
y`/|V`| in case i, j ∈ V`. Moreover, it is easy to see that baryF (x) lies in int(∆k) if and only if
supp(x) = ∪k`=1V`.

Definition 5. Let x ∈ ∆n. A partition P of supp(x) separates distinct values of x if for every
i, j ∈ supp(x) the relation xi 6= xj implies that the vertices i and j belong to distinct classes of
P.

In other words, a partition P of supp(x) separates distinct values if and only if it is finer
than the partition induced by x.

Choose x ∈ ∆n and consider a partition P = {V1, V2, . . . , Vk} of supp(x) separating dis-
tinct values of x. Then x ∈ span(xV1 ,xV2 , . . . ,xVk) and thanks to Proposition 7 we get
x ∈ conv(xV1 ,xV2 , . . . ,xVk), hence it makes sense to consider baryP(x). In particular, in the
setting of Theorem 1, such a partition for supp(x̂) is given by the orbits of supp(x̂) under the
action of G.

Proposition 7. Consider a family {V1, V2, . . . Vk} of pairwise disjoint non-empty subsets of V .
Then:

conv(xV1 ,xV2 , . . . ,xVk) = ∆n ∩ span(xV1 ,xV2 , . . . ,xVk).

Proof. The vectors xV1 ,xV2 , . . . ,xVk are elements of span(xV1 ,xV2 , . . . ,xVk) and of ∆n, which are
convex sets, hence conv(xV1 ,xV2 , . . . ,xVk) is included in their intersection. The trivial inclusion
conv(xV1 ,xV2 , . . . ,xVk) ⊆ ∆n ∩ span(xV1 ,xV2 , . . . ,xVk) is thus proved.

13Strictly speaking, the uniqueness depends also on the enumeration of the classes forming the partition F .
Many of the results contained in this section depend indeed on the enumeration of the classes, we omit writing
it explicitly to simplify the notation. Barycentric coordinates are widely employed in finite element method and
computer graphics [19, 10].

9



To prove the reversed inclusion, consider some real coefficients a1, a2, . . . , an such that
x =

∑k
`=1 a`x

V` is an element of the standard simplex ∆n. Every component of x is non-
negative, and since the sets V1, V2, . . . , Vk are pairwise disjoint14 this means that a` ≥ 0 for all
` ∈ [k]. Using again that x ∈ ∆n we obtain:

1 =
n∑
i=1

xi =
n∑
i=1

(
k∑
`=1

a`x
V`

)
i

=
k∑
`=1

n∑
i=1

(
a`x

V`
)
i

=
k∑
`=1

a`.

Then x is a convex combination of xV1 , xV2 , . . . , xVk .

Some additional graph theory tools [6] can help recognizing some properties of barycentric
coordinates for KKT points.

For every non-empty S1, S2 ⊆ V , let eG(S1, S2) count the ordered15 pairs of adjacent vertices
in the set S1 × S2:

eG(S1, S2) = |{(i, j) ∈ S1 × S2 | i ∼ j}|

and call edge density between S1 and S2 the ratio:

dG(S1, S2) =
eG(S1, S2)

|S1||S2|
.

For a finite family F = {V1, V2, . . . Vk} of distinct non-empty subsets of V that are not necessarily
pairwise disjoint, call density matrix of F the matrix D ∈ Rk×k with general coefficient d`,m =
dG(V`, Vm).16 By definition, D is a symmetric matrix. The following lemma will be useful to
prove Theorem 2 and Theorem 3.

Lemma 1. Let x ∈ ∆n, let P = {V1, V2, . . . Vk} be a partition of supp(x) separating distinct
values of x, and set y = baryP(x). Then for every vertex i ∈ V :

(Ax)i =
k∑

m=1

dG({i}, Vm)ym.

Proof. Since x =
∑

` y`x
V` , then:

(Ax)i =

n∑
j=1

aijxj =

k∑
m=1

∑
j∈Vm

aijxj =

k∑
m=1

∑
j∈Vm

aij(ym/|Vm|)

=
k∑

m=1

(eG({i}, Vm)/|Vm|) ym =
k∑

m=1

dG({i}, Vm)ym.

We are going to prove the main result of this section, namely that for x ∈ KKT (c) , under a
suitable choice of F separating distinct values of x, also baryF (x) is a KKT point for a quadratic
program having as many variables as |F|.

14This hypothesis can be relaxed to V` 6⊆ ∪m 6=`Vm for every `, and the conclusion a` ≥ 0, which is what we
are interested in, would follow as well.

15The definition of eG(S1, S2) can be regarded as a way to count the edges crossing S1 and S2, keeping in
mind that each edge with both endnodes in S1 ∩ S2 is counted twice.

16Also D depends on the enumeration of the sets in the family F .
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Theorem 2. Let x ∈ ∆n and let the partition P = {V1, V2, . . . Vk} of supp(x) separate distinct
values of x. Call D the density matrix associated with F and set:

Λ = diag(|V1|, |V2|, . . . , |Vk|) =


|V1|

|V2|
. . .

|Vk|


If x ∈ KKT (c),17 then baryF (x) is a KKT point for the program:

maximize
y ∈ int(∆k)

y>(D + cΛ−1)y. (10)

Proof. Set y = baryF (x). We may write x =
∑

` y`x
V` by definition of y. By Proposition 1

and Lemma 1, there exists λ such that for every i in the support of x:

λ = ((A + cI) x)i =
k∑

m=1

dG({i}, Vm)ym + cxi.

Consider now ` ∈ [k]. Computing the arithmetic mean of the previous expression as i varies in
V` we get

λ =
1

|V`|
∑
i∈V`

(
k∑

m=1

dG({i}, Vm)ym + cxi

)

=
1

|V`|
∑
i∈V`

(
k∑

m=1

eG({i}, Vm)(ym/|Vm|) + c(y`/|V`|)

)

=
k∑

m=1

dG(V`, Vm)ym + (c/|V`|)y`

=
((

D + cΛ−1
)
y
)
`
.

Then y is a KKT point for (10).

What one could hope is that a converse of Theorem 2 holds. Still, suppose G is the graph
on V = [4] with adjacency matrix:

A =


0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 (11)

and consider the characteristic vector x = xV . For V1 = {1, 2} and V2 = {2, 3} the family
P = {V1, V2} partitions the support of x, and in this case:

D =
1

2

(
1 1
1 1

)
, Λ =

(
2 0
0 2

)
. (12)

17The proof requires only that x ∈ gKKT (c).
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Observe that baryP(x) =

(
1

2
,
1

2

)
is a KKT point for (10) regardless of the value of c, whereas

x 6∈ KKT (c).
Theorem 3 allows to obtain a partial converse of Theorem 2 in case stronger hypotheses

hold.

Definition 6. Consider a finite family F = {V1, V2, . . . Vk} of pairwise disjoint non-empty
subsets of V . We call F highly regular for G if:18

dG(V`, Vm) = dG({i}, Vm) for every `, m ∈ [k] and every i ∈ V`.

A finite family F = {V1, V2, . . . Vk} of subsets of V is highly regular for G if and only if the
following two conditions hold:

(a) for every ` ∈ [k] the set V` is non-empty and the induced subgraph G[V`] is regular;

(b) for every distinct `, m ∈ [k] the sets V`, Vm are disjoint and each vertex in V` has the
same amount of neighbors in Vm.

In fact, suppose F is highly regular. Then every vertex in V` has dG(V`, Vm)|Vm| neighbors in
Vm for every `, m ∈ [k], and this proves (a) and (b).
Conversely, assume (a) and (b). Fix `, m ∈ [k] and some i ∈ V`. It’s easy to see that the equality∑

j∈V` eG({j}, Vm) = eG(V`, Vm) holds true and that every term appearing in the summation is
equal to eG({i}, Vm), thanks to (a) in case ` = m and to (b) in case ` 6= m. Hence dividing both
sides of the equality by |V`||Vm| we get dG({i}, Vm) = dG(V`, Vm), and this value is independent
of the choice of i in V`.

The following proposition gives some examples of highly regular families.

Proposition 8. Consider some non-empty S ⊆ V . Then:

1. The family {{i} | i ∈ S} is highly regular for G.

2. The induced subgraph G[S] is regular if and only if the family {S} is highly regular for G.

3. Suppose S is not an independent set. Then S is a clique if and only if every partition of
S is highly regular for G.

Proof. (1) Trivial. (2) It follows from the equivalent formulation of highly regular families. (3)
Every partition of a clique is trivially highly regular.
To prove the other implication, assume there exist two adjacent vertices in i1, i2 ∈ S and that
every partition of C is highly regular. Then the partition {{i1}, S \ {i1}} is highly regular, and
we get dG({i0}, {i1 = dG({i2}, {i1 = 1 for every vertex i0 ∈ S \ {i1}, which means that the
degree of i1 in G[S] is |S|−1. Also {S} is highly regular, thus by (2) each vertex of the induced
subgraph G[S] has degree |S| − 1, i.e., S is a clique.

We are now in the position to prove Theorem 3.

Theorem 3. Let x ∈ ∆n and let the partition P = {V1, V2, . . . Vk} of supp(x) separate distinct
values of x. Call D the density matrix associated with P and set Λ = diag(|V1|, |V2|, . . . , |Vk|).
If P is highly regular for G, then x ∈ gKKT (c) if and only if baryP(x) is a KKT point for (10).

18Equivalently, for every non-empty X ⊆ V` and every non-empty Y ⊆ Vm we have dG(X,Vm) = dG(V`, Vm) =
dG(V`, Y ).
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Proof. If x ∈ gKKT (c) then baryP(x) is a KKT point for (10) by Theorem 2. Set now y =
baryP(x) and assume P is higly regular and that y is a KKT point for (10). Then supp(y) = [k],
and there exists λ ∈ R such that for every ` ∈ [k]:(

(D + cΛ−1)y
)
`

= λ.

Pick any i in the support of x. The vertex i is in V` for some ` ∈ [k] and dG({i}, Vm) = dG(V`, Vm)
since P is highly regular. By Lemma 1:

((A + cI)x)i =
k∑

m=1

dG({i}, Vm)ym + cxi

=
k∑

m=1

dG(V`, Vm)ym + (c/|V`|)y` = λ.

Then x ∈ gKKT (c) thanks to Proposition 1.

Specializing Theorem 3 for a family {V1, V2} that is highly regular for G we get Corollary 2
and Corollary 3. The two corollaries differ in the hypothesis on the regularity of G[V1∪V2], and
this produces different behaviors on how gKKT (c) intersects the set [xV1 ,xV2 ] = conv(xV1 ,xV2).

Corollary 2. Let {V1, V2} be highly regular for G and assume G[V1 ∪ V2] is a regular graph.
There exists c∗ ∈ R such that:

• If c = c∗, then gKKT (c) ∩ [xV1 ,xV2 ] = [xV1 ,xV2 ];

• If c 6= c∗, then gKKT (c) ∩ [xV1 ,xV2 ] = {xV1 ,xV2 ,xV1∪V2}.

Proof. Let D ∈ R2×2 be the density matrix associated with {V1, V2} and set α = |V2|(d12−d22)
and β = |V1|(d21 − d11).

Observe first that G[V1 ∪ V2] is a regular graph if and only if α = β. Indeed, for i = 1, 2
every vertex in Vi is adjacent to di1|V1|+ di2|V2| vertices of V1 ∪V2. This means that G[V1 ∪V2]
is regular if and only if d11|V1|+ d12|V2| = d21|V1|+ d22|V2|, which is equivalent to α = β.

Both xV1 and xV2 are in gKKT (c) regardless of the value of c as a consequence of Propo-
sition 3. By Theorem 3, we can find the remaining elements of gKKT (c) within [xV1 ,xV2 ]
by looking for points of the form y1x

V1 + y2x
V2 , where (y1, y2)> ∈ int(∆2) satisfies for some

parameter λ: (
D + cdiag

(
|V1|−1, |V2|−1

))(y1

y2

)
=

(
λ
λ

)
By eliminating λ, this means that:

(c/|V1|+ d11y1+d12) y2 = d21y1 + (d22 + c/|V2|)y2,

which is equivalent to:
(c− β)y1/|V1| = (c− α)y2/|V2|. (13)

Set c∗ = α = β. Then for c = c∗ every (y1, y2)> ∈ int(∆2) satisfies (13). For c 6= c∗, dividing
both sides in (13) by c− c∗ yields y1/|V1| = y2/|V2|, leading to the solution xV1∪V2 .

Corollary 3. Let {V1, V2} be highly regular for G and assume G[V1∪V2] is not a regular graph.
There exists an interval [a, b] ⊂ R such that:

• If c ∈ [a, b], then gKKT (c) ∩ [xV1 ,xV2 ] = {xV1 ,xV2};

13



• If c 6∈ [a, b], then gKKT (c) ∩ [xV1 ,xV2 ] = {xV1 ,xV2 ,xc} for some xc ∈ ∆n depending on c
that is not a characteristic vector.

Proof. Define α and β as in the proof of Corollary 2. Then that proof shows that α 6= β in this
case. Set a = min(α, β) and b = max(α, β). Looking for generalized KKT points in [xV1 ,xV2 ]
leads to xV1 , xV2 , and to points of the form y1x

V1 +y2x
V2 , where (y1, y2)> ∈ int(∆2) solves (13).

For positive y1, y2 a solution to (13) is possible only in case c 6∈ [a, b], and if that occurs then
the unique solution is xc = y1x

V1 + y2x
V2 , where:

y1 =
(c− α)|V1|

(c− α)|V1|+ (c− β)|V2|

y2 =
(c− β)|V2|

(c− α)|V1|+ (c− β)|V2|
.

Corollary 3, which is applicable to the cherry graph, is also useful for a broader class of
graphs. Recall that a star is a complete bipartite graph in which one vertex, called center of
the star, is adjacent to every edge of the graph [6]. The cherry graph (Fig. 1) is trivially a star,
with center z = 3.

Definition 7. A graph G = (V,E) is a generalized star with core H if there exists a graph
S = (V ′, E′) and a surjection φ : V → V ′ such that:

• S is a star with center z ∈ V ′ and H = φ−1(z);

• Every node in H is adjacent to every node in V \H;

• G is not complete, whereas the induced subgraph G[H] is complete;

• The induced subgraph G[V \H] is regular.

Theorem 4. Let H, P be disjoint subsets of V such that G[H ∪ P ] is a generalized star with
core H. There exists an integer b > 1 such that, if c 6∈ [1, b], then gKKT (c) contains a vector
with support H ∪ P .

Proof. Set h = |H|, p = |P | and assume G[P ] is a d-regular graph. By hypothesis, the family
{P,H} is highly regular for G and the associated density matrix is:

D =

(
d/p 1
1 1− 1/h

)
.

The integer b = p − d satisfies 1 < b < p since G[P ] is not complete. By Corollary 3, for
c ∈ R \ [1, b] and

y1 =
(c− 1)p

(c− 1)p+ (c− b)h
(14)

y2 =
(c− b)h

(c− 1)p+ (c− b)h
(15)

the point x = y1x
P + y2x

H is an element of gKKT (c).
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Figure 2: Generalized stars

In [17, Theorem 10], a configuration of cliques C1, C2, . . . , Cq is exhibited such that the
convex hull conv(xC1 , . . . ,xCq) is entirely contained in gKKT (0), due to the fact that every
point of that convex hull is a local solution to the parametric Motzkin-Straus program for
c = 0 (recently, this has been generalized by Tang et al. in [23]). Theorem 4 allows to exhibit
a particular configuration of cliques C1, C2, . . . , Cq and conditions on c such that the set
gKKT (c) \ conv(xC1 , . . . ,xCq) contains a vector with support ∪`C`.

Corollary 4. Consider q ≥ 2 distinct cliques C1, C2, . . . , Cq such that:

• the set H = ∩`C` is not empty and C` ∩ Cm = H for every distinct `, m ∈ [q];

• the set ∪`C` \ H is not empty and the induced subgraph G[∪`C` \ H] is regular but not
complete.

There exist c0 < 1 and 2 < b < |∪`C`| such that, if c 6∈ {c0} ∪ [1, b], then the set gKKT (c) \
conv(xC1 , . . . ,xCq) contains a vector with support ∪`C`.

Proof. Call P = |∪`C` \H| and observe that G[H ∪P ] is a generalized star. By Theorem 4 the
point x = y1x

P + y2x
H is an element of gKKT (c) if we set:

y1 =
(c− 1)p

(c− 1)p+ (c− b)h
(16)

y2 =
(c− b)h

(c− 1)p+ (c− b)h
(17)

h = |H|, p = |P |, b = p−h under the assumptions that G[P ] is a d-regular graph and c ∈ R\[1, b].
However, nothing so far proved excludes that x ∈ conv(xC1 , . . . ,xCq). Suppose it is possible
to write x as a convex combination of xC1 , xC2 , . . . , xCq . Equations (16) and (17) yield the
equality (y2/h)/(y1/p) = (c− b)/(c− 1).
There is an alternative way to compute the ratio (y2/h)/(y1/p). In fact, notice that xi = xj
whenever i, j ∈ ∪`C` \H, and by hypothesis the cliques C1, . . . , Cq have the same cardinality.
Therefore, x must be the arithmetic mean of xC1 , xC2 , . . . , xCq , and so:{

y1/p = 1/(p+ qh)

y2/h = q/(p+ qh),

thus (y2/h)/(y1/p) = q. The two equalities obtained for (y2/h)/(y1/p) give (c− b)/(c− 1) = q,
which solved for c gives c = (q − b)/(q − 1). Set c0 = (q − b)/(q − 1), and observe that b ≥ 2
implies c0 < 1.
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7 Conclusion

In this article, we have discussed some properties of the KKT points of the parametric Motzkin-
Straus programs introduced by Bomze et al.. We would like to mention that Theorem 2 and
Theorem 3 have a nice interpretation in the replicator dynamics setting, as they may provide a
correspondence between stationary points of distinct dynamics running on simplices of distinct
dimension. In this regard, it would be interesting to fruitfully apply the topic discussed to the
replicator dynamics and use the resulting stationary point, that are generalized KKT points
for the parametric programs mentioned, as a means to probe a given graph, so as to detect
symmetries and regular structures therein, besides cliques. This would be especially useful in
computer science applications.
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