
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

P4FL: An Architecture for Federating Learning with In-Network Processing / Sacco, Alessio; Angi, Antonino; Marchetto,
Guido; Esposito, Flavio. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 11:(2023), pp. 103650-103658.
[10.1109/ACCESS.2023.3318109]

Original

P4FL: An Architecture for Federating Learning with In-Network Processing

Publisher:

Published
DOI:10.1109/ACCESS.2023.3318109

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982469 since: 2023-10-04T08:13:56Z

IEEE

Received 5 September 2023, accepted 15 September 2023, date of publication 22 September 2023,
date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3318109

P4FL: An Architecture for Federating Learning
With In-Network Processing
ALESSIO SACCO 1, (Member, IEEE), ANTONINO ANGI 1, (Student Member, IEEE),
GUIDO MARCHETTO 1, (Senior Member, IEEE), AND FLAVIO ESPOSITO 2, (Member, IEEE)
1Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
2Department of Computer Science, Saint Louis University, Saint Louis, MO 63103, USA

Corresponding author: Alessio Sacco (alessio_sacco@polito.it)

This work was supported in part by Comcast, and in part by the National Science Foundation (NSF) under Award 1908574 and
Award 2201536.

ABSTRACT The unceasing development of Artificial Intelligence (AI) and Machine Learning (ML)
techniques is growing with privacy problems related to the training data. A relatively recent approach to
partially cope with such concerns is Federated Learning (FL), a technique in which only the parameters of
the trained neural network models are transferred rather than data. Despite the benefits that FL may provide,
such an approach can lead to synchronization issues (especially when applied in the context of numerous IoT
devices), the network and the server may turn into bottlenecks, and the load may become unsustainable for
some nodes. To solve this issue and reduce the traffic on the network, in this paper, we propose P4FL, a novel
FL architecture that uses the paradigm of network programmability to program P4 switches to compute
intermediate aggregations. In particular, we defined a custom in-band protocol based on MPLS to carry the
model parameters and adapted the P4 switch behavior to aggregate model gradients. We then evaluated P4FL
in Mininet and verified that using network nodes for in-network model caching and gradient aggregating has
two advantages: first, it alleviates the bottleneck effect of the central FL server; second, it further accelerates
the entire training progress.

INDEX TERMS Data plane programmability, federated learning, machine learning, network processing, p4.

I. INTRODUCTION
The deployment of Federated Learning (FL) architectures
is increasing, involving several applications. For example,
smart cities, precision agriculture, healthcare, smart homes,
and wearable devices, to name a few. Distributed approaches
were introduced with the aim of building Machine Learning
(ML) models able to account for security and data privacy
concerns. Instead of transferring the raw privacy-sensitive
data among devices, only a few parameters during the ML
training model would be exchanged, preserving at least some
level of privacy [1], [2], [3], [4].

The typical and most common design of an FL system
comprises a central server that aggregates the weights of a
neural network during a training phase. Each training node of
the federation works locally on the available data and submits

The associate editor coordinating the review of this manuscript and

approving it for publication was Rentao Gu .

its partially trained model to such a central server; subse-
quently, it receives the global model returned by the server
and continues the training process [5]. Despite the scalability,
privacy, and security benefits that FL provides, researchers
have shown that FL may suffer from a few issues (e.g., neural
network synchronization among servers and clients) and
network or server bottlenecks, as inmany distributed systems.
The model synchronization can be especially problematic
for neural network model convergence time over wide-
area networks [4], [6]. These problems are aggravated by
the complexity of Deep Neural Networks (DNNs), since
billions of parameters need to be transmitted thousands of
times between clients and servers, becoming a considerable
burden on the communication networks connecting them [7].
Although recent approaches aim to speed up ML training
using intermediate servers [8], [9] or network elements [10],
[11], these solutions are either tailored to specific network
scenarios (e.g., datacenter), or to hardware features supported

103650
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-2835-5455
https://orcid.org/0000-0003-1619-6805
https://orcid.org/0000-0003-3588-9367
https://orcid.org/0000-0002-7798-4584
https://orcid.org/0000-0003-3183-2857

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

by specific vendors, or require a logically centralized entity
(e.g., a Software-Defined Networking (SDN) controller) for
part of the computation.

A. OUR CONTRIBUTIONS
To alleviate some of these problems, we present the design
and prototype implementation of P4FL, our proposed FL
architecture that takes advantage of network programmability
in general, and P4 [12] programmable switches in particular,
to perform intermediate aggregation of model parame-
ters, reducing significantly the model parameter exchange
between client and the averaging server. In our design, the
model parameters are aggregated locally rather than on the
global server, which can thus maintain active connections
only for the switches. Such aggregation, in turn, can also
mitigate the machine learning model synchronization issues
caused by excessive network latency. To speed up the
aggregation on switches, we design an in-band FL model
exchange protocol based on MPLS that can be interpreted by
programmable switches. Since the switches are transparent
in the client-server communication, our switch processing
introduces a limited overhead in the process, and the final
architecture is highly portable.

Designing a federated learning aggregation model with
P4 is a challenge, since the architecture does not support
the arithmetical division operation and floating-point values,
which is fundamental in model aggregation for FL. To over-
come the division limitation, we modified the traditional
P4-16 compiler and the version of BMV2, i.e., the P4 standard
architecture model, in order to support external functions
written in C++.

We conducted experiments on an emulated network
topology, verifying that the intermediate aggregation limits
the network traffic and reduces training time in the case
of challenging networks. In our evaluation, we found that
P4FL leads to better training process performance in terms
of accuracy, loss, and network overhead.

B. PAPER OUTLINE
The rest of the paper is structured as follows. In Section II,
we introduce the FL concepts and present some limitations
that motivated this work; in Section III, we describe our
solution design. Section IV presents the experimental results,
and Section V concludes the paper.

II. BACKGROUND ON FEDERATED LEARNING
AND RELATED WORK
Over the past few years, we have observed that the number
of connected IoT devices has grown exponentially, as they
underpin heterogeneous architectures and applications, e.g.,
smart industry, healthcare, smart homes, and wearables
[13], [14]. At its core, Federated Learning (FL) enables
end devices to train models cooperatively, whereas Machine
Learning (ML) models are trained on such devices without
the need to share their local datasets.

A. FEDERATED LEARNING CONCEPT
AND ARCHITECTURES
By sending update parameters instead of raw data, i.e.,
reducing communication data size, FL solutions free up
network bandwidth that can be used by delay-sensitive
applications, such as augmented and virtual reality, event
detection, and autonomous vehicle network systems. More-
over, because data never leave client devices, FL represents an
excellent solution in all applications where data privacy and
security are essential. In the healthcare industry, for example,
where the usage of patient data is regulated by specific
laws, a prediction algorithm for clinical purposes, e.g., find
clinically similar patients or hospitalization prediction due to
cardiac events, can be trained using vast and varied datasets
collected in different hospitals, i.e., sites [4].
Similarly, in the insurance sector, FL could be used to

detect individuals or businesses accountable for fraud and
illicit activity, for example, by training a model that uses
varied data ranging from health insurance to cars to mobile
to business assets. Or in the IoT field, FL can help to
achieve the personalization of user experience and increase
the performance of devices, as in text prediction in Google’s
Android Keyboard and Siri’s voice recognition for Apple [6].

The FL process that we consider in this paper can be
divided into several iterations. At first, the FL server first
determines an ML model to be trained on the client’s
local database. Then, each participating client downloads the
global model from the server and takes local training on its
own data. Each client sends the updated model parameters to
the server for global aggregation, typically weighted average
on parameters. Finally, the aggregated global model is sent
to each device for the next round of training. The entire
process is repeated until either a target accuracy or a certain
number of iterations are achieved. However, there may still be
issues mainly caused by the limited resources of edge nodes
that have to manage an increasing amount of data and the
communication between the server and clients.

B. STATE-OF-THE-ART AND LIMITATIONS
After the concept of Federated Learning (FL) was proposed
by Google [5], several modifications have been proposed
to solve the synchronization issues that may arise in IoT
domain [4], [15], [16], [17]. Despite the fact that data
generated on each device stay local, federated networks of
IoT can comprise a massive number of agents, and the
model communication can be a critical bottleneck due to
limited resources, such as bandwidth, energy, and power
[1], [18]. In some proposed solutions, the FL approach has
been combined with the edge computing paradigm, and the
central cloud server is replaced by different edge servers
collaborating to obtain the final global model [19], [20], [21].
With this method, both the central server and edge nodes
perform aggregation and update of parameters, reducing the
traffic on the backbone. Many solutions rely on D2D (device-
to-device) communication to speed up the training process,

VOLUME 11, 2023 103651

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

FIGURE 1. Federated Learning architectures, client-based, edge-based
and hierarchical FL.

as in [22], which combines the traditional paradigm of
device-to-server communication for federated learning with
device-to-device communication for model training. Clients
are divided into clusters, and, in each round, the central
server elects one device from each cluster responsible for
aggregating local training parameters and sending the final
results to the server.

Intermediate aggregation of model parameters performed
by edge servers or, in general, edge nodes, is appearing
as a viable trend [8], [9], [23]. These solutions propose
intermediate edge servers to perform partial aggregation of
the model in a hierarchical FL system, which has one cloud
server, L edge servers, to which clients with distributed
datasets are connected. After each local update, each edge
server aggregates its clients’ models; then, after every edge
model aggregation (less frequent than the local update), the
cloud server aggregates all the edge servers’ models. This
approach lowers the interaction with the cloud compared to
the traditional cloud FL. We summarize in Fig. 1 the different
approaches, highlighting the differences between cloud-
enabled FL and edge-enabled FL with the new perspective
of a hierarchical FL.

To eliminate part of the overhead and abundance in the
entities involved (typically edge servers run inside VMs and
require complicated synchronization protocols), we decided
to introduce in-network model processing. As demonstrated
in [24], aggregating information along the path rather than
on dedicated edge servers can efficiently increase application
throughput and reduce latency. Based on the same concept
of in-network aggregation for machine learning models, the
work of Chen et al. [11] aims to reduce the bottleneck in the
network during model synchronization, with special attention
to the security of the transmitted data. The model parameters,
enciphered using homomorphic encryption, are extracted by

FIGURE 2. P4FL system: edge devices train the model and send results to
the intermediate node (edge proxy), which aggregates them and responds
to clients while forwarding aggregation to the server for final
computation.

the switch and sent to the SDN controller for deciphering and
aggregating. The global updated model is sent back to the
clients so they can proceed to the next round of training.

With the advent of programmable switches, moving
these computations inside network devices is becoming a
possibility. For example, SwitchML [10] uses computations
on the P4 programmable switches to aggregate model updates
and to reduce the volume of exchanged data during ML
training of model updates from multiple workers in the
network. This involves minimal communication so that each
worker sends its update model vector and receives the
aggregated updates back. However, this approach is designed
for a specific network scenario, i.e., datacenter; to overcome
some of the P4 language limitations and perform in-network
aggregation at line rate, the authors use hardware and vendor-
specific features. Similarly, GRID [25] is a recent solution to
gradient routing for in-network aggregation, consisting of the
control plane and data plane, to mitigate the communication
bottleneck and speed up distributed training tasks. In this
paper, instead, we aim to provide a general architecture where
P4 programs can run on any P4-compatible switch.

III. SYSTEM DESIGN
We summarize in Fig. 2 the main components of P4FL.
As it can be seen, our hierarchical architecture is composed
of: (i) edge devices, also referred to as P4FL clients since
they hold training data and start the training process, (ii) the
intermediate nodes, which in our case are modified instances
of P4-enabled switches performing intermediate gradients
aggregation, (iii) central server, for central aggregation and
for driving the entire process by sending instructions to
the edge devices. In this scenario, after the local training
round on the client ends, the end host creates and sends the
packet containing the parameters of the model. This packet
is received by the intermediate switches that perform the
aggregation and send the intermediate results back to the

103652 VOLUME 11, 2023

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

FIGURE 3. MPLS-compliant version of P4FL. Model’s gradients are
inserted directly into the packet (in red), with little impact on the
switch-forwarding process.

clients while forwarding the same result to the server, which
can aggregate all results of switches. Because the switch
is the equivalent of an edge server in an edge-computing
architecture, we also refer to this node in general as P4FL
Edge Proxy of the FL architecture. In what follows, we detail
the role and functionalities of these devices in the FL process.

A. NETWORK NODES ASSISTANCE
Programmable switches are pivotal in our architecture as they
aggregate model parameters and constitute the intermediate
server of the model exchange communication. The behavior
of these switches has been expressed using P4, a high-
level programming language for packet processing [12],
which provides some clear advantages compared to the
traditional way of expressing traffic management rules
[26], [27]. P4 defines a device-independent way of expressing
how programmable forwarding elements, such as a pro-
grammable switch, should manage packets independently of
the hardware architecture and platforms, e.g., NetFPGA, and
Intel Tofino. This introduces much flexibility in the system
compared with a traditional one because the data plane can
be changed in a programmatically way; particularly, it is
possible to parse the packet header, extract information, and
use it to process the packet.

In order to speed up the aggregation on switches, the
model parameters were encapsulated into the packets using an
in-band protocol built upon MPLS. While most existing FL
frameworks transfer ML parameters in the application layer
of the messages, we design the MPLS protocol to encode
the parameters in order to simplify programming the devices,
which can easily parse intermediate layer protocols and work
with multiple higher level protocols, e.g., TCP/UDP/QUIC.
We show in Fig. 3 the usage of MPLS as a packet header
to carry the model’s gradients. This MPLS-based approach
thus provides remarkable flexibility and is compatible with
most existing network devices. MPLS works by prefixing
packets with an MPLS header containing one or more labels
and forming a label stack. Each entry in the label stack
contains four fields, where the main part is a 20-bits used
for the label value. Although this protocol is typically used
to select the forwarding path, in P4FL we use it only to
carry the information about the model weights in the label
field, removing the Label Distribution Protocol (LDP). The
popularity of the MPLS protocol would favor considerable
interoperability among both switches and hosts. Since a
model is characterized by hundreds of weights, we encode
the entire list of parameters into multiple MPLS label fields.

In addition to these parameters, we need to encapsulate
some additional configurations to make the FL system work.
For example, a preliminary handshake phase is required to
exchange communication parameters, and the server sends
actions to clients specifying when to start training and
the evaluation phase. Along with the important abstraction,
however, coding using P4 brings many limitations and
challenges. First of all, ‘‘for’’ loops are not available, and
the programmer can write ‘‘if-else’’ blocks only in selected
areas. Then, the P4 language supports only integer and bit
operations, so it is impossible to perform aggregation directly
onmodel parameters, which are usually floating-point values.
To solve this limitation, we apply a quantization technique
that scales the floating-point value to an 8-bits integer [28].
This approach is commonly used in deep learningmodels as it
maps the real values to integers representable by the bit-width
of the quantized representation and then rounds each mapped
real value to the closest integer value.

On top of these limitations, the P4 language does not
support arithmetical division operations, so the average
calculation became challenging for any chosen aggregation
method. As explained in Section III-B, the method used for
aggregation is a variation of the average operation. To address
this issue, we modified the default P4 frontend and backend
compiler to enable extern functions [29]. The additional
constructs are functions implemented in C/C++ that are
called directly in the P4 program as new P4 constructs.
Because this construct considers the final platform and its
possible limitations during the compilation, this approach is
considered portable over all P4-enabled switches. Thus, the
use of externs results in a more elegant code solution since
they are implemented outside the switch core, reducing side
effects and risks that can be caused by an alternative approach
based on modification in the switch pipeline implementation.

Lastly, the forwarding behavior of the switch is modified
so that only the aggregated value is sent to the server, which
value can be obtained only when all packets from connected
hosts are received.

B. FEDERATED LEARNING FRAMEWORK IN P4FL
On clients and the central server runs the FL framework,
whose training process relies on exchanging request-response
messages.We defined a new communication pattern based on
a hierarchical FL setting composed of the central server, edge
switches (also acting as proxies in the FL framework), and the
clients involved in such a process.

Despite the large number of existing FL frameworks and
optimizations on ML model training, the main operations of
any architecture are the exchange of model parameters. In this
paper, we consider a centralized version (since the most
common one) where both the clients and the server include
model parameters in the messages via MPLS. Because the
server controls the overall procedure, its messages contain
instructions on the following actions to be performed by
the clients, along with the model parameters. Compared
to the vanilla FL schema, where the server establishes

VOLUME 11, 2023 103653

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

FIGURE 4. Network topology used in the evaluation of the FL architecture.

connections with each client that joins the training process,
in our version, since it receives aggregated values from the
switches, it establishes connections only with special hosts
representative of the entire subnetwork.

The central server handles the overall FL process by
sending messages to the clients with instructions to train or
evaluate the model locally. In particular, the central server
is in charge of starting the FL process, initializing the
strategy, delimiting the round, sending requests to the clients,
and aggregating the responses. As soon as the server is
started, it manages M parallel connections, where M is the
number of different sites. For each site, a leader is elected to
maintain active connections with keepalive messages. Then,
the server requests the initial communication parameters
to these representatives and, after receiving the responses,
asks all clients to start the training evaluation round until
convergence. A specific process on the server manages these
message exchanges, parses the packets, and extracts the data,
while another process manages the FL aggregation process.
In this paper, we use the most common strategy, the same
of FedAvg [5], which performs the average of the collected
neural network weights. However, since we focus on the
network architecture, this aggregation strategy is just a policy
of P4FL. Our architecture comes with other strategies and
optimization methods, such as FedAdaGrad, FedYogi, and
FedAdam [30], which are adaptive and can be used for
different scenarios, e.g., with heterogeneous data.
Moreover, the neural network model can undergo several

other optimizations, such as 1-bit neuron [31], to further
reduce model complexity and overhead. However, our main
contribution focused mainly on how network devices can
assist the FL centralized training process, resulting in an
architecture that is general enough and can be applied to other
model variations.

IV. EVALUATION RESULTS
In this section, we present experimental results obtained that
confirm the validity of our architecture. We start describing

TABLE 1. Performance comparison between the traditional FedAvg and
our solution. P4FL drastically reduces the number of bytes exchanged
while increasing the global accuracy.

the testbed and settings used during the experimental
campaign, then we quantify the advantages in the model
accuracy and the reduced additional traffic, concluding with
evaluating the feasibility of the overall solution.

A. EXPERIMENTAL SETTINGS
To validate P4FL’s benefits, we deploy it over Mininet,
a network emulator that allows reproducing arbitrary virtual
networks for fast simulations [32]. Since it is designed
explicitly for Software-Defined Networking (SDN), it can
also support P4-compatible switches via Behavioral Model
Version 2 (BMV2), which allows compiling a P4 program
into packet-processing actions of C++11 software switches.
Our modified instance of the P4 compiler is built upon
standard version p4-16. As the P4 behavioral model we use
is a soft switch, ‘‘externs’’ are typically defined in a separate
file, often in a C or C++ programming language, and linked
to the P4 program during compilation. This allows the P4
program to use the functionality provided by the extern object
without having to know the implementation details. In P4FL,
our extern object is implemented in C++, extending the
ExternType class used to interact with the extern instances in
our P4 code.

The task of the ML model is to predict whether or not a
patient has diabetes by using a list of diagnostic measure-
ments contained in the Pima Indians Diabet dataset [33],
a dataset widely used for benchmarking, originally compiled
by the National Institute of Diabetes and Digestive and
Kidney Diseases. The dataset consists of 1596 samples,
where each item contains eight features as input: number of
times pregnant, plasma glucose concentration at 2 hours in an
oral glucose tolerance test (GTIT), diastolic blood pressure,
triceps skin fold thickness, 2-hour serum insulin, Body Mass
Index, diabetes pedigree function, age. The dataset is first
split into training set (80%) and test set (20%), then the
training set is split into equal-sized subsets then assigned
to each client. The neural network we trained comprises
two hidden layers of 64 and 32 neurons, respectively. These
hyper-parameters are selected after cross-validation in a
single client setting. The machine used for tests presented
20 GB of RAM and four processors. We consider the default
transport protocol of the FL communications to be UDP
to make the packet parsing smoother and to manage (both
in the application and switches) efficiently the multicast
transmission of packets from the server to all clients, e.g., for
model configuration and rounds definition.

103654 VOLUME 11, 2023

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

TABLE 2. Training time (TR) and evaluation time (EV) evolution over 3 rounds for all clients in the network.

We replicate the hierarchical topology with eight clients
connected to a local network node and the external server
residing in a different network, as shown in Fig. 4. This
scenario is inspired by the healthcare industry, where the
sites have modest computing resources and participate in the
process of training a global model without exchanging private
and sensitive medical data [4]. In this case, we consider
3 different sites, where every link has 100 Mbps bandwidth,
but the link between S4 and the server is of 50 Mbps
bandwidth and the delay of 20ms. Each client sends the neural
network’s weights to the switch using the MPLS header.

B. MODEL PERFORMANCE AND NETWORK
TRAFFIC ANALYSIS
We start comparing the critical parameters of P4FL against
the traditional FedAvg, which is the widely used solution in
FL-based systems, and FL-hierarchical, a hierarchical FL
setting in which intermediate aggregation is performed by
edge computers instead of network devices. The difference
between P4FL and FL-hierarchical also lies in the protocol
used for gradient exchange: gRPC for FL-hierarchical and
MPLS for P4FL. Table 1 summarizes the obtained results
in terms of training time, network traffic, and final global
accuracy and loss after 10 rounds. In the FedAvg case, each
client trains the model individually and sends the learned
parameters to the server at the end of each round.

The main result brought by P4FL is the reduced amount
of network traffic that is reduced by a factor of more than
60%, as observed in the table. In general, our architecture
allows reducing the traffic by a factor of S/N where S is the
number of switches, and N is the number of training nodes
in the process. Also, FL-hierarchical, based on application
layers for sending model gradients to the edge and cloud,
results in additional bytes in the network. This result is
extremely important in cross-silo scenarios, where the central
server may be far from sites, e.g., hospitals, and network
latency represents an issue originating synchronization
problems [6], [34].
Another relevant obtained result regards the accuracy of

the global model. First, we can note how the simplicity of

FIGURE 5. Training time for increasing network latency. P4FL can keep
the training process limited in time.

the neural network model hinders an optimal prediction, but
in the paper, we mainly focused on the network architecture
rather than on the design of a specialized ML model.
However, we can observe how P4FL leads to higher accuracy
and lower loss compared to the alternative approach of
FedAvg. Even if the same number of clients takes part in
the training process, the preliminary aggregation performed
by the switches enables the server to perform a weight
adjustment over a more stable version of the received models.
In fact, the loss and accuracy are similar to FL-hierarchical
despite being slightly higher.

We then compare the training time of these three versions at
varying latency between the clients and server (Fig. 5). When
the server is located near the sites, the training processes
of the approaches last quite similarly, but when latency
increases, we can observe significant improvements. Having
the switches to provide a first response to the clients, the
next phase, i.e., the evaluation phase, of clients, can start
without waiting for final aggregation on the server. Notably,
the in-network computing offered by P4FL reduces the
training time even compared to amore traditional hierarchical
environment. This result is extremely important for many
cloud-centric solutions where the server resides in a different
city or infrastructure, e.g., a hospital. We expect, however,
that in IoT scenarios, as explained in [35] and [36], the
benefits in the required time would be even greater, and P4FL
can positively tolerate the presence of stragglers, i.e., clients
that take much longer to report their output than other nodes.

VOLUME 11, 2023 103655

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

FIGURE 6. Aggregated accuracy comparison on the central server in
15 rounds.

FIGURE 7. Loss trend comparison on the central server in 15 rounds.

To better understand improvements in our approach and
study its behavior, we report the time spent for each client
over 3 rounds in Table 2. In particular, we show both training
time, i.e., the time elapsed between the reception of one
server fit request message and the transmission of client
response, and evaluation time, i.e., the time elapsed between
the reception of one server evaluate request message and the
transmission of client response. The alternate steps in each
round are canonical in FL settings based on neural network
training [5]. Clearly, the evaluation of the model at the end of
each round is much faster than training, but we can observe
a considerable variance in the training time of hosts. To this
end, we argue how having a network switch that preliminary
aggregates the parameters limits such variances and uniforms
the duration of each round (training + evaluation). This
phenomenon is one of the reasons behind the improvements
compared to a traditional approach.

Later, we consider the accuracy and loss at the server side
after 15 rounds of FL (Figure 6 and Figure 7). We did not
consider the hierarchical setting, as it can be very similar
in model performance to our version based on in-network
computing. However, to evaluate the impact of quantization,
we consider the centralized FL version where no quantization
is introduced. From the graphs, we can observe that after
almost three rounds, both accuracy and loss are stable, and
only minor improvements take place before the run stops at
round 15. With respect to the quantization method, instead,
we can also conclude that the chosen algorithm allows an
efficient training of the model FL while maintaining the
final accuracy. The aggregation performed by switches is
effective in reaching such stability, and our solution attains
an accuracy and a loss that are comparable to the model
with no quantization. Aside from the greater accuracy in our
approach, we can observe how the noise in such evolution is

FIGURE 8. Aggregated accuracy comparison on the central server in
100 rounds for clients training a ResNet-56 model over the CIFAR-10
dataset.

TABLE 3. Resource consumption per intermediate node for the three
possible alternatives. The overhead introduced with P4FL is minimal and
demonstrates its feasibility.

limited in P4FL, where FedAvg is then slower to converge in
both accuracy and loss metrics.

Furthermore, we measure the performance when training
a Convolutional neural network (CNN), one of the most
popular deep learning architectures, on the CIFAR-10 dataset,
consisting of color images (32 × 32 RGB with three
channels) classified into 10 classes, e.g., ships, cats, and
dogs, and partitioned into 50, 000 training samples and
10, 000 test samples [37]. Such dataset is divided into five
training batches and one test batch, where each batch has
10000 images and the test batch includes 1000 randomly-
selected images from each class. The CNN architecture is
the ResNet-56, a pre-trained deep learning model having
56 layers [38]. To avoid overfitting to the training set, the
identity mapping used in ResNet allows the model to bypass
a CNN weight layer if the current layer is not necessary.
In detail, the convolutional layers have 56 weighted layers in
total, mostly 3 × 3 filters, which ends with a global average
pooling layer and a 1000-way fully-connected layer with
softmax.

Fig. 8 shows the corresponding accuracy during training
such a model. We can first observe that the FL model with
no quantization leads to slightly higher accuracy, but the
difference with our solution is negligible. Moreover, we can
note that, although the attained accuracy is similar between
FedAvg and P4FL, the partial aggregation in our solution
can speed up the global model convergence. This outcome
is particularly important to demonstrate how our protocol can
scale to deeper neural networks, consisting of multiple hidden
layers, and a larger dataset.

C. SWITCH OVERHEAD
We then measure the CPU consumption and RAM usage
of the intermediate node to understand the impact on the

103656 VOLUME 11, 2023

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

FIGURE 9. (a) RAM and (b) CPU consumption of the considered approach
in a single switch.

P4 switch. We highlight that the intermediate node in FedAvg
and P4FL refers to the switch, which in FedAvg only forwards
packets, while in our solution it also aggregates the gradients.
In FL-hierarchical, instead, it refers to the intermediate edge
server. We report in Table 3 the average resource usage for
all the intermediate nodes of the network. It can be observed
that FedAvg represents the lowest consumption since the
nodes only forward packets, while FL-hierarchical consumes
significant memory as well as processing capacity. With
P4FL, on the other hand, the overhead introduced by the
extern and the gradients aggregation is only minimal. This
positive outcome is the result of an efficient program design,
where the majority of operations are possible in P4 (grouping,
packet offset detection, gradients dispatching) and are thus
effective and fast, while only the average operation occurs
in the external space. This result is therefore important to
validate the efficient program design and the feasibility of
P4FL in a real switching pipeline.

Finally, we consider the impact of our solution in terms
of processing efficiency when background traffic is present
in the network. While P4FL achieves valuable performance,
it is crucial to evaluate whether its implementation requires
a set of specific hardware components. For this reason,
we computed the RAM and CPU consumption of P4FL in
a machine with 4GB RAM and 1-core CPU and compared
it to a P4 program that only performs forwarding (Figure 9).
Furthermore, to study how P4FL behaves at different network
loads, we used the iperf3 tool and changed the bandwidth
according to the network load we wanted to achieve.
As visible from Figure 9a, at low network loads (10%-50%)
P4FL uses around 2MB of memory, while it increases its
consumption only at a higher network load (from 70%).
The same considerations are valid when evaluating the CPU
(Figure 9b). As visible from the figure, P4FL requires
around 1% − 1.5% of CPU usage when the network load
is low (from 10%-40%), while it only requires up to 2.5%
when the network is fully congested (90%). This result
is key in assessing that the amount of RAM and CPU is
easily accessible in real implementations. For example, the
Intel Tofino with the Data Processing Unit (DPU) Module
integrated, can support up to 96 GB of RAM and 26 cores.
Thus, the required memory and processing capabilities are of
little impact, meaning that P4FL can find great applicability
over SmartNICs or Tofinos.

V. CONCLUSION
In this paper, we presented P4FL, an FL architecture that
uses P4 switches to compute intermediate aggregations of the
model parameters. This approach allows reducing network
traffic, alleviating the bottleneck effect on the central FL
Server, and further accelerating the entire training process.
We augmented the standard behavior of network switches
in order to support gradient aggregation, providing external
function support and an in-band parameters transmission pro-
tocol that facilitates the overall operations. Results obtained
over an emulated network topology composed of a central
server, intermediate P4 switches performing aggregations,
and different clients, are promising. The generated network
traffic can be reduced drastically, allowing scaling over larger
networks. The aggregation performed by switches also has
a beneficial impact on the final learned model. We leave
as an open question the investigation of the effect of such
aggregation on the model accuracy, and the exploration of
how our P4FL or other solutions may aggregate efficiently
in more challenging network conditions.

REFERENCES
[1] K. Bonawitz, H. Eichner,W. Grieskamp, and D. Huba, ‘‘Towards federated

learning at scale: System design,’’ inProc. Mach. Learn. Syst., vol. 1, 2019,
pp. 374–388.

[2] A. Sacco, F. Esposito, and G. Marchetto, ‘‘A federated learning approach
to routing in challenged SDN-enabled edge networks,’’ in Proc. 6th IEEE
Conf. Netw. Softwarization (NetSoft), Jun. 2020, pp. 150–154.

[3] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, ‘‘Federated
optimization: Distributed machine learning for on-device intelligence,’’
2016, arXiv:1610.02527.

[4] O. Aouedi, A. Sacco, K. Piamrat, and G. Marchetto, ‘‘Handling privacy-
sensitive medical data with federated learning: Challenges and future
directions,’’ IEEE J. Biomed. Health Informat., vol. 27, no. 2, pp. 790–803,
Feb. 2023.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[6] P. Kairouz, P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, and K. Bonawitz, ‘‘Advances and open problems in
federated learning,’’ Found. Trends Mach. Learn., vol. 14, nos. 1–2,
pp. 1–210, 2021.

[7] J. Mills, J. Hu, and G. Min, ‘‘Client-side optimization strategies
for communication-efficient federated learning,’’ IEEE Commun. Mag.,
vol. 60, no. 7, pp. 60–66, Jul. 2022.

[8] R. Firouzi, R. Rahmani, and T. Kanter, ‘‘Federated learning for distributed
reasoning on edge computing,’’ Proc. Comput. Sci., vol. 184, pp. 419–427,
Jan. 2021.

[9] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, ‘‘Client-edge-cloud
hierarchical federated learning,’’ in Proc. IEEE Int. Conf. Commun. (ICC),
Jun. 2020, pp. 1–6.

[10] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krish-
namurthy, M. Moshref, D. Ports, and P. Richtarik, ‘‘Scaling distributed
machine learning with in-network aggregation,’’ in Proc. 18th USENIX
Symp. Networked Syst. Design Implement. (NSDI), 2021, pp. 785–808.

[11] F. Chen, P. Li, and T. Miyazaki, ‘‘In-network aggregation for
privacy-preserving federated learning,’’ in Proc. Int. Conf. Inf. Commun.
Technol. Disaster Manage. (ICT-DM), Dec. 2021, pp. 49–56.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:
Programming protocol-independent packet processors,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[13] A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, and
S. Gururajan, ‘‘APRON: An architecture for adaptive task planning of
Internet of Things in challenged edge networks,’’ in Proc. IEEE 8th Int.
Conf. Cloud Netw. (CloudNet), Nov. 2019, pp. 1–6.

VOLUME 11, 2023 103657

A. Sacco et al.: P4FL: An Architecture for Federating Learning With In-Network Processing

[14] A. Sacco, F. Esposito, and G. Marchetto, ‘‘Resource inference for task
migration in challenged edge networks with RITMO,’’ in Proc. IEEE 9th
Int. Conf. Cloud Netw. (CloudNet), Nov. 2020, pp. 1–7.

[15] Z. Zhang, Y. Yang, Z. Yao, Y. Yan, J. E. Gonzalez, and M. W. Mahoney,
‘‘Benchmarking semi-supervised federated learning,’’ 2020,
arXiv:2008.11364.

[16] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, ‘‘CorrAUC:
A malicious bot-IoT traffic detection method in IoT network using
machine-learning techniques,’’ IEEE Internet Things J., vol. 8, no. 5,
pp. 3242–3254, Mar. 2021.

[17] M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, ‘‘Selection of effective
machine learning algorithm and bot-IoT attacks traffic identification for
Internet of Things in smart city,’’ Future Gener. Comput. Syst., vol. 107,
pp. 433–442, Jun. 2020.

[18] C. H. van Berkel, ‘‘Multi-core for mobile phones,’’ inProc. Design, Autom.
Test Eur. Conf. Exhib., Apr. 2009, pp. 1260–1265.

[19] J. S. Ng, W. Y. B. Lim, Z. Xiong, X. Cao, J. Jin, D. Niyato, C. Leung,
and C. Miao, ‘‘Reputation-aware hedonic coalition formation for efficient
serverless hierarchical federated learning,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 11, pp. 2675–2686, Nov. 2022.

[20] H. Guo, W. Huang, J. Liu, and Y. Wang, ‘‘Inter-server collaborative
federated learning for ultra-dense edge computing,’’ IEEE Trans. Wireless
Commun., vol. 21, no. 7, pp. 5191–5203, Jul. 2022.

[21] D.-J. Han, M. Choi, J. Park, and J. Moon, ‘‘FedMes: Speeding up federated
learning with multiple edge servers,’’ IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3870–3885, Dec. 2021.

[22] F. P. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and N. Michelusi,
‘‘Semi-decentralized federated learning with cooperative D2D local
model aggregations,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3851–3869, Dec. 2021.

[23] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung, and
C. Miao, ‘‘Decentralized edge intelligence: A dynamic resource allocation
framework for hierarchical federated learning,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 3, pp. 536–550, Mar. 2022.

[24] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch, and
A. L. Wolf, ‘‘NetAgg: Using middleboxes for application-specific on-path
aggregation in data centres,’’ in Proc. 10th ACM Int. Conf. Emerg. Netw.
Experiments Technol., Dec. 2014, pp. 249–262.

[25] J. Fang, G. Zhao, H. Xu, C. Wu, and Z. Yu, ‘‘GRID: Gradient routing with
in-network aggregation for distributed training,’’ IEEE/ACM Trans. Netw.,
early access, Feb. 22, 2023, doi: 10.1109/TNET.2023.3244794.

[26] M. Baldi, G. Marchetto, and Y. Ofek, ‘‘A scalable solution for engineering
streaming traffic in the future internet,’’ Comput. Netw., vol. 51, no. 14,
pp. 4092–4111, Oct. 2007.

[27] M. Baldi, M. Corrà, G. Fontana, G. Marchetto, Y. Ofek, D. Severina, and
O. Zadedyurina, ‘‘Scalable fractional lambda switching: A testbed,’’ J. Opt.
Commun. Netw., vol. 3, no. 5, pp. 447–457, May 2011.

[28] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, ‘‘Integer quan-
tization for deep learning inference: Principles and empirical evaluation,’’
2020, arXiv:2004.09602.

[29] The P4 Language Specification. Accessed: Mar. 13, 2023. [Online].
Available: https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

[30] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný,
S. Kumar, and H. B. McMahan, ‘‘Adaptive federated optimization,’’ 2020,
arXiv:2003.00295.

[31] C. S. Güntürk and W. Li, ‘‘Approximation of functions with one-bit neural
networks,’’ 2021, arXiv:2112.09181.

[32] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R. Prete,
‘‘Using mininet for emulation and prototyping software-defined net-
works,’’ in Proc. IEEE Colombian Conf. Commun. Comput. (COLCOM),
Jun. 2014, pp. 1–6.

[33] P. Bennett, T. Burch, and M. Miller, ‘‘Diabetes mellitus in American
(PIMA) Indians,’’ Lancet, vol. 298, no. 7716, pp. 125–128, Jul. 1971.

[34] S. Silva, B. A. Gutman, E. Romero, P. M. Thompson, A. Altmann, and
M. Lorenzi, ‘‘Federated learning in distributed medical databases: Meta-
analysis of large-scale subcortical brain data,’’ in Proc. IEEE 16th Int.
Symp. Biomed. Imag. (ISBI), Apr. 2019, pp. 270–274.

[35] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, ‘‘Slow and stale
gradients can win the race: Error-runtime trade-offs in distributed SGD,’’
in Proc. Int. Conf. Artif. Intell. Statist., 2018, pp. 803–812.

[36] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
‘‘Federated optimization in heterogeneous networks,’’ in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429–450.

[37] The Cifar-10 Dataset. Accessed: Mar. 13, 2023. [Online]. Available:
https://www.cs.toronto.edu/~kriz/cifar.html

[38] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

ALESSIO SACCO (Member, IEEE) received the
M.Sc. and Ph.D. degrees (summa cum laude) in
computer engineering from Politecnico di Torino,
Italy, in 2018 and 2022, respectively. He is
currently an Assistant Professor with Politecnico
di Torino. His research interests include archi-
tecture and protocols for network management,
implementation and design of cloud computing
applications, algorithms and protocols for service-
based architecture, such as software-defined net-

works (SDN), used in conjunction with machine learning algorithms.

ANTONINO ANGI (Student Member, IEEE)
received the M.Sc. degree in computer engi-
neering (major in data science) from Politecnico
di Torino, Italy, in 2020, where he is cur-
rently pursuing the Ph.D. degree. His research
interests include protocols for network architec-
ture and management; such as natural language
processing (NLP) and machine learning algo-
rithms to software-defined networks (SDN) and
intent-based networks (IBN), used in conjunction
with data-plane programming languages.

GUIDO MARCHETTO (Senior Member, IEEE)
received the Ph.D. degree in computer engineering
fromPolitecnico di Torino, in 2008. He is currently
an Associate Professor with the Department of
Control and Computer Engineering, Politecnico
di Torino. His research interests include dis-
tributed systems, formal verification of systems
and protocols, network protocols, and network
architectures.

FLAVIO ESPOSITO (Member, IEEE) received the
M.Sc. degree in telecommunication engineering
from the University of Florence, Italy, and the
Ph.D. degree in computer science from Boston
University, in 2013. He is currently an Associate
Professor with the Department of Computer Sci-
ence, Saint Louis University (SLU). His research
interests include network management, network
virtualization, and distributed systems. He was
a recipient of several awards, including several

National Science Foundation Awards and the Comcast Innovation Award,
in 2021.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement

103658 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNET.2023.3244794

