POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reporting test programs connectivity in a human-readable format

Original
Reporting test programs connectivity in a human-readable format / Cardone, Lorenzo. - (2023). (Intervento presentato al
convegno IEEE 28th European Test Symposium 2023 tenutosi a Venezia (ITA) nel 22/05/2023 - 26/05/2023).

Availability:
This version is available at: 11583/2982460 since: 2023-09-25T13:52:25Z

Publisher:
IEEE

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

10 April 2024

Reporting Test Programs Connectivity In A
Human-Readable Format

Lorenzo Cardone
Dip. automatica ed informatica, Politecnico di Torino
Turin, Italy
lorenzo.cardone @polito.it

Abstract—Because of the increasing complexity of systems on
chips, our ability to test their proper functioning is decreasing.
Since safety standards, such as ISO-26262 [1], propose very
time-consuming metrics to ensure the safety of the users, new
techniques to achieve high fault coverage are making their way
to speed up this process. In this article, we take a look at the
connectivity metrics proposed last year by Francesco Angione et
al [2]. We will discuss software that we have developed in order
to expose to the user in a more readable and intuitive way the
data produced by the analysis carried out through the previously
presented methodology. We will take functional tests on a chip
developed by STMicroelectronics from the SP58 family as a case
study and show what information can be exposed to the end-user
and what value each of these can provide.

Index Terms—Burn-in test, functional test, heuristics, EDA,
Automotive.

I. INTRODUCTION

The need to manage increasingly complex systems leads
to the creation of chips consisting of an increasing number
of components. As a result, meeting security standards is
becoming an increasingly time-consuming and, consequently,
more expensive process than ever before. Although several
companies have adopted functional approaches to testing their
devices [3], [4], the approach requires significant effort, both
in writing code and in simulation time. In an effort to alleviate
the simulation time of functional methods Francesco Angione
et al. [2] have proposed a new metric, called connectivity,
that allows the programmer to quickly assess program quality
by reducing the need for repeated fault simulations. In this
paper, we will discuss methods for exposing to the end user as
much of the data produced during connectivity computation as
possible in order to make this tool as immediate and intuitive
as possible.

In section II we will explain the original connectivity
metrics to show its uses. In section III we will shortly explain
how our program works and what metrics we are able to
extract. In section IV we will examine every exposed value
and we will discuss how it can be used to obtain the best
results. In section V we will propose improvements to our
current program and which other values can still be computed
and shown to the user.

Thanks to (in alphabetical order): Francesco Angione, Paolo Bernardi,
Andrea Calabrese, Stefano Quer, and the STMicroelectronics’ team.

II. BACKGROUND

Functional testing is a methodology that has seen ample use
in testing, since it can be used both during manufacturing and
after the deployment of the device to check its operation over
time. The idea behind this method is fairly simple: it implies
running a program and checking whether its outputs match the
expected ones, usually defined by the designers or obtained
running the same code on a golden device, an already tested
device of which we assume correct functioning. Functional
tests are usually hand-written or generated by automatic tools,
like microGP [5]. In either case, the standard to check their
ability to cover any given defect is fault coverage. Fault
coverage, although an extremely powerful metric, is very
time consuming to compute and, as such, any help to reduce
the requirement for repeated fault coverage is a welcome
improvement.

During the 2022 International Test Conference [2], the
connectivity metric was proposed to address this problem.
This methodology is not suitable to completely replace fault
coverage, but it proposes a fast and efficient method to grade
the quality of a test program before the need to compute
any fault coverage. The connectivity metric takes in account
the flow of each instruction of the program during a sample
execution. It grades each instruction depending on whether or
not its outputs are propagated to the end of the program or are
overwritten by another instruction. Although this information
was propagated back to the trace of the execution, the ordered
list of executed instructions, its outputs were hard to read and
slowed down any attempt to fix the original program with this
information.

III. PROPOSED APPROACH

The original connectivity measure was written on top of
the execution trace. The execution trace is a file containing
every information pertaining a sample execution of a given
program. It contains the address of the instruction inside
the compiled code and the instruction itself. Exploiting the
information provided during the compilation step we are able
to propagate the output further. Thanks to the address of any
given instruction we can then use the ELF (Executable and
Linkable Format) file of the compiled program to understand
from which source file has been originated, thanks to the
information stored by the linker. We then parsed the source file
to extract every function and macro declared to then be able to

TABLE I

SIMPLIFIED SAMPLE OUTPUT PROGRAM.
Line Instruction Connectivity ~ Shadowing
1 1i r0, 0x0000 100% 0
2 cmp r0, 0x0001 100% 0
3 beq jump 0% 0
4 li rO Ox1111 NaN 0
5 jump:
6 li r1, Oxaaaa 0% 0
7 INCREASE 10
8 /I MACRO: INCREASE 1D in file utils.s
9 addi &rD, 1 100% 0
10 /I END MACRO
11 addi rl, r0, Oxbbbb 100% 1
12 add 2, r1, 10 100% 0
13 li 10, 0x7777 100% 0

reference them and move freely through the source code. To
better follow the execution order of the instructions we opted
to "unroll” macros in the original code, which means that we
wrote out the content of the macro alongside the code where it
was used to better demonstrate its effects on the surrounding
code.

Let’s show a sample output to better explain how the results
will look.

In this section we will introduce only the information that
this program is able to show alongside the source code, we
will leave the explanation in detail of the usefulness of this
information to the next section and indicate how it can be
exploited in order to speed up the process of improving a
program.

Table I shows a simplified code fragment. Instead of a
sequence of executed instructions, the code is formatted in
the same way that the programmer used. As previously stated,
each macro is unrolled within the code to mirror the behavior
of the compiled code.

We can distinguish 3 columns:

1) The first contains the instruction as written by the
programmer himself, so that it can be easily traced back
to the original code.

2) The second contains a percentage between 0 and 100,
or NaN. An instruction can contain intermediate values
only if it writes more than one register or if it is traversed
more than once during execution. The instruction will be
marked with a NaN if it was never executed during the
execution under consideration.

3) The third column contains an integer indicating how
many disconnected instructions have been overwritten
by the current one. It should be noted that a single
instruction could be disconnected due to more than one
other instruction.

Not shown in the table, we have an additional piece of
information that we can add to the code. Next to each
instruction we can indicate its instruction pointer (IP) and,
separately, the instruction pointer of each other instruction that
contributes to the loss of connectivity of the current one.

IV. EXPERIMENTAL RESULTS

We wrote all of our code in C++ and we tested it on func-
tional tests written for the SPC58 automotive autocontroller
provided by STMicroelectronics.

In this section we will discuss how to exploit each of
the information that the previous step overlaid alongside the
source code.

Let us start with the original metric, connectivity. This
metric, although simple, has a rather important function. In
particular, this shows us which instructions do not contribute
to the final state of our execution. In fact, taking the table
from earlier, we can see that whatever value the R1 register
possessed after line 6, the final result would not be varied since
it is overwritten at line 11. This allows us to develop the code
in two directions, either we remove instruction 1 reducing the
code size and execution time, or, we could modify the code
so that that instruction contributes to the final state of the
program.

The third column in the above table, on the other hand,
shows us a value representing the number of instructions we
could make connected by modifying the current instruction.
This, especially in very long code, allows the programmer to
understand how best to modify their code while minimizing
the number of changes they need to make to their work.

The last feature we propose is to associate each institution
with its own instruction pointer and report the IPs of which
other institutions are going to override the result of the
current one. This gives us an immediate understanding of
the relationship between the current instruction and those to
follow. By showing us where in the code the overwriting
occurred, we can then easily follow the execution flow that
led us to this loss of information and tweak it in a timely
manner so as to correct the behavior of a specific instruction.

V. CONCLUSIONS

The tool that we propose improves the feedback to the
programmer, allowing for faster corrections without the need
to cross-reference the execution trace and the original code to
understand where the instructions are overwriting the output of
one another. Although the current method is only applicable to
assembly code, we are working in order to extend the current
results to any program by expoiting tools like Ghidra to trace
single assembly instructions to the original code.

REFERENCES

[1] “Iso 26262-[1-10], road vehicles — functional safety,” 2011.

[2] F. Angione, P. Bernardi, A. Calabrese, L. Cardone, A. Niccoletti,
D. Piumatti, S. Quer, D. Appello, V. Tancorre, and R. Ugioli, “An
innovative strategy to quickly grade functional test programs,” in 2022
IEEE International Test Conference (ITC), 2022, pp. 355-364.

[3] S. M. Thatte et al., “Test generation for microprocessors,” IEEE Trans-
actions on Computers, vol. C-29, no. 6, pp. 429-441, 1980.

[4] D. Brahme et al., “Functional testing of microprocessors,” IEEE Trans-

actions on Computers, vol. C-33, no. 6, pp. 475-485, 1984.

G. Squillero, “MicroGP—An Evolutionary Assembly Program Genera-

tor,” Genetic Programming and Evolvable Machines), 2005.

[5

—_

COVER LETTER for PhD FORUM

First name Lorenzo

Last name Cardone
Affiliation Politecnico di Torino
E-mail lorenzo.cardone@polito.it

Phone number

3917154269

Proposed PhD thesis title

GPU-based Parallel Techniques for the Evaluation of Reliability Measures
of Large System-on-Chip devices

Start PhD date November 2022
Expected End PhD date February 2024
Type of PhD topic’ Applied research

Collaborators?

Politecnico di Torino

PhD motivation®

My interest in computer science started during my high school years due
to my passion for video games and logic problems.

During my studies | became passionate about the field of algorithmic
optimization and, later, about the parallelization of my code over both
multi-core and many-core systems.

This passion of mine led me to the development of my master's thesis and
later prompted me to explore the world of research in order to challenge
my knowledge and expand my horizons.

Scientific results*

F. Angione et al., "An innovative Strategy to Quickly Grade Functional Test
Programs," 2022 IEEE International Test Conference (ITC), Anaheim, CA,
USA, 2022, pp. 355-364, doi: 10.1109/ITC50671.2022.00044

Lorenzo Cardone, Stefano Quer, “The Multi-Maximum and
quasi-Maximum Common Subgraph Problem”, submitted to 2023 MDPI
Computation, Special Issue Graph Theory and Its Applications in
Computing

' e.g., Applied research/ R&D, fundamental research, etc.
% e.g., university, industry, research centre, etc.
* explain why you have decided to pursue a PhD and why in this topic.

“ provide a list of scientific outputs and innovations (accepted, submitted, expected) including: Patents, Books/

book chapters, Journal papers, Conference papers, Workshop papers etc.

