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A Novel Approach to Extract Embedded Memory
Design Parameter Through Irradiation Test
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Dipartimento di Automatica e Informatica

Politecnico di Torino, Italy

Abstract—With the capability improvements in modern System-
on-Chips (SoCs), the complexity of SoCs is increasing. Thus,
manufacturers are investing heavily in designing and testing their
devices. This complexity is causing a continuous expansion in
the size of embedded memory structures. As a result of the
shrinking dimensions of the transistors, memories are increasingly
susceptible to Multiple Bit Upsets due to cosmic radiations.

Testing memories requires more details about the internal
hardware configurations. However, these details are not provided
to the final customer, who is left with inexplicable effects.

This paper proposes a new method to reconstruct architectural
details from embedded SoC memories. This method extracts
memory design parameters from Multiple Bit Upsets (MBUs)
generated through a single irradiation test. The algorithm was
tested on around 5,500 randomly generated memories. Each
memory was injected with 100 Multiple Event Upsets (MEUs).
The algorithm was set to test for each memory 20, 40, 60, 80,
and 100 MEUs to validate the proposed approach. Alongside
the correct memory design configuration (MDC), the algorithm
found other possible MDCs. The quantity of these equivalent
configurations decreased with the increment of the considered
MEUs. This number decreased to an average of 2 equivalent
MDCs when considering 100 MEUs.

Index Terms—SoC, reliability, memory diagnosis, memory fea-
ture extraction, irradiation test

I. INTRODUCTION

In the past few years, the complexity of modern SoCs has ex-
ponentially grown with each generation. More advanced nodes
and more transistors per area unit are the classic improvements
manufacturers have for their devices. These improvements
affect the customers that make more advanced and memory-
dependant programs and pose additional risks and challenges in
memory testing. Smaller transistors are more prone to process
variations, decreasing the yield of the devices. However, the
problems do not stop during production as, even after that,
there are risks to the reliability of the systems. In safety-critical
applications such as the automotive field, the final SoC cus-
tomers are interested in the reliability of their program. These
customers want to test the SoCs against the most common
issues arising during their systems’ operational life [1]. One
typical phenomenon that electronic devices encounter during
their operation is due to cosmic radiations made of high-energy
charged particles [2]. These particles can interact with the
transistors and flip their state, generating Single Event Upsets
(SEUs) [3] [4]. Countermeasures that span the classic error
correction code (ECC) have been devised to mitigate the effects
of cosmic radiations. For instance, correction mechanisms that
use duplication or triplication of the most critical hardware
or direct transistor modifications take the name of radiation
hardening [5].

The effect of these high-energy particles is most prominent in
the embedded memories of devices. Memory matrix structures
are especially prone to bit flip because of their small transistors
placed in a grid, one next to the other. Even worse, due to
their proximity, multiple-bit flips can be caused by a single
particle generating Multiple Even Upsets (MEUs) [6]. Such
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events may happen, for example, when a charged particle hits
the intersection between two or more cells. These phenomena
are well studied in the literature [7] as they are particularly
problematic in safety-critical environments. For instance, in
automotive [8] applications or in space applications [9] where
there is a higher level of radiation with respect to the sea level.

To study the effects of cosmic radiation, final SoC customers
test their devices in irradiation facilities where devices are
”bombarded” under a heavy radiation flux. These procedures
accelerate the appearance of SEUs and MBUs and allow the
programmers to see the effects on the execution of their
programs. However, this study method is expensive, time-
consuming, and needed for any application. Due to the high
cost of the irradiation tests, alternative methods exist to evaluate
the effect of transient faults in memories in SoCs. One of
the cheapest approaches is to test the memory through fault
injection techniques. These techniques are applied in software
(i.e., using the proposed method), and the test cost is much
lower than the irradiation test. Moreover, these tests can be
applied faster, meaning less test time. In fault injection, the user
must know the architectural details of the memories. However,
these details are currently unavailable, and memories are thus
seen as black boxes. In a black box representation, a memory
can be represented by words made of a certain number of bits,
placed one after the other, with a straightforward organization.
Real embedded memories, however, can be organized with
multiple physical parameters such as column and row mirror-
ing, scrambling, and so on, as described in [10]. Considering
the aforementioned details of different memory representations,
fault injection of memories is only possible when architectural
details are known. Mixed approaches are shown in [2] [11] that
uses real (and limited) irradiation tests data to assess the effect
of Radiation-Induced Soft-Errors in different applications. This
article suggests how to use data from static and possibly short
irradiation experiments to extract the architectural details of
the memories and, once known, perform fully accurate fault
injections. The presented algorithm correctly reconstructs the
internal memory organization by using the effect of the MEUs
from irradiation tests. This algorithm can reconstruct multiple
parameters such as scrambling, mirroring, and column/row
swapping. It operates by exploiting the property of memory
MEUs to be physically close to each other. A thousand memory
tests with multiple organizations and with multiple kinds of
MEUs were used to validate this approach. These tests always
gave the correct memory organization and some functionally
equivalent ones. The paper is organized in the following way:
in Section II, the internal memory structure is presented and
analyzed, followed by the difference between logical and
physical addresses. Then the focus shifts to the irradiation tests
and how they can generate the phenomenon of MEUs with
the dimensions of modern memories. Section III explains the
proposed solution, including all steps needed to reconstruct the
memory parameters starting from the corresponding MBUs.
Section IV highlights the experimental results on a vast series
of tested memories with different organizations. In Section V,



the obtained results are evaluated, and some conclusions are
provided.

II. BACKGROUND
This section analyzes the embedded memories’ most impor-

tant aspects and how they correlate with the irradiation tests
that generate the data that can be used for our approach.

A. Embedded Memories general organization
Embedded memories are organized in regular structures that

are easy to replicate and manage [10]. A general overview
is depicted in Fig. 1. The topmost block comprises several
independent memory banks. These are entirely separate struc-
tures that can be placed around the die surface. Each bank is
then subdivided into several physical sectors (and may contain
a Memory Built-in Self Test (MBIST) to speed up testing
operations). Physical sectors are then subdivided into Logical
sectors that are divided into Wordlines. Wordlines are composed
of multiple words that contain a certain number of Bytes. Bytes
represent the minimum granularity accessible by the final user.

Fig. 1: A general organization of embedded memories.

B. Logical vs. Physical addresses
In the programmers’ view, the logic memory is a progression

of words going from the lowest index to the highest one, as
seen in the left part of Fig. 2. In this view, the memory is a
”black box” in which bits in words are again organized one
after the other from the lowest indexed one to the highest
indexed one. Standard memories, however, are organized in a
more complex structure to improve their reliability and chances
of being repairable with some integrated spare components.

Manufacturers use a set of Memory Design Configurations
(MDCs) to modify the organization of their memories. Refer-
ring to Fig. I, some of the MDCs are:

• WORDS: The total number of words in the memory
• MUX: The number of words in a row (also called word-

line).
• BITS: The number of bits contained in a single word

• BIT ORDER sequence: Describes how the bits of the
words are organized in a wordline.

• Mirroring: This parameter decides if the memory has por-
tions repeated in alternated order. The mirroring comprises
either column (bitline) and/or row (wordline) mirroring.

• BIT SCRAMBLING: Bits in wordlines are divided in
blocks in which each block i is made of bits with index
ith.Fig. 2, 3, 4, 5 and 6 show some possible examples of MDCs.

In the figures, a single wordline is shown per example, and
consequently, only parameters affecting the rows are shown.
However, similar configurations can also be applied to the
bitlines (column) of the memories.

Fig. 2: An example of an MDC with no bitline or bit mirroring.

Fig. 3: An example of an MDC with column mirroring

Fig. 4: An example of an MDC with bit mirroring

Fig. 5: An example of an MDC with column and bit mirroring



Fig. 6: An example of an MDC with bit scrambling

C. Irradiation test and Multiple Bit Upsets

Due to their small transistor dimension, modern circuits
are particularly sensitive to Cosmic radiations [7]. These star-
produced radiations are made of high-energy charged particles
that can interact with the transistors inside our electronic
devices. When interacting with transistors, cosmic radiations
can flip the bit of a memory cell of a logic gate, generating a
Single Event Upset (SEU) [3] [4]. Since the dimension of the
transistors is constantly decreasing, a single charged particle
can hit and flip the status of multiple of them, generating what
is called Multiple Event Upset [6]. For the case of embedded
memories, a MEU directly translates to multiple bit-flips in the
data stored in the memory as represented in Fig.7 that shows
the Straightforward organization of the memory as an example.

Fig. 7: An illustration of MEUs in the bits of multiple cells.

To study the effect of cosmic radiation, manufacturers can
test their devices in irradiation facilities. These testing facilities
irradiate the Devices Under Test (DUT) with a radiation flux
multiple orders of magnitudes higher than the one present in
nature. This testing environment allows manufacturers to collect
years of data in hours/days. Focusing on the memories means
collecting all the SEU and MEU, possibly from a charged
particle hitting a memory cell or an intersection between cells.

D. Fault injections

Software developers are interested in the reliability of their
programs in the case of SEUs and MEUs, as the Irradiation test
is expensive and slow to perform and is usually performed in
a separate facility, requiring additional logistical efforts. Fault
injections, on the other hand, are a classic approach for studying
the effect of faults in a system without actually waiting for
them to happen ”naturally” during the device’s lifetime or to
perform irradiation tests. [12] Faults are ”simulated” by the
software inside a physically healthy device. An example of
fault injection is the bit flip of a location in the memory to
observe the effect on the chosen test program. A fault injection
experiment involving multiple faults takes the name of the
campaign. A fault injection campaign in which the target is
to inject single SEUs at a time is performed in multiple steps
such as:

1) Choose a test program: In this step, a test program is
chosen to see the effect of faults.

2) Perform a golden execution: During this phase, no faults
are injected, and the outputs and timing of the test program
are observed. These parameters will be used as a reference
to understand the effects of the injected faults.

3) Fault generation: The designers choose which circuit
part to perform fault injection in this phase. Moreover,
they choose the criteria for choosing the location and
timing of the faults. Random fault location and timing
represent naturally occurring SEUs and MEUs, but need
many experiments to obtain meaningful data.

4) Fault Injection: A single fault is selected and injected at
the desired location and timing.

5) Result check: The output of the test program is observed.
Depending on the outcome, we can have a go (correct
results), no go (wrong results), and timeout (device in hard
fault, endless loop, etc.).

Steps 4 and 5 are repeated until all the desired faults are
injected. The results are analyzed to understand the most critical
part of the execution of the test program.

III. PROPOSED APPROACH
The proposed approach uses an efficient algorithm to extract

the MDCs by observing the memory MEUs from irradiation
tests. MEUs are generated by the interaction of a charged
particle with multiple memory cells. The affected cells can,
for example, share a corner or be one in front of the other.
For this reason, the algorithm assumes that each set of MEUs
is composed of faults near each other, following the principle
that a charged particle generates failing patterns (MEUs) such
as the ones illustrated in Fig. 8. As can be seen, each bit
in the failing pattern is next to at least another failing bit in
either the same row or column. The proximity of the MEUs is
the central assumption of our algorithm that can test multiple
possible memory organizations to extrapolate the correct ones
and exclude the wrong ones as soon as possible.

Fig. 8: A general view of MEUs in memory cells.

A. Memory reconstruction
The proposed algorithm’s aim is based on the assumption that

each MEU from the irradiation tests generates faults located
near each other, as shown in Fig.8 an. These MEUs stem
from a charged particle hitting the intersection between 2 or
4 memory cells, causing them to be interpreted as failing bits.
So MEU is composed of a variable number of faults. Due to
this assumption, the proposed algorithm performs a series of
steps for each set of MEUs received:

1) Guess an MDC: The aim of the algorithm is set to test
all the possible MDCs systematically. It achieves this goal
by changing the various parameters one at a time until an



exhaustive search is performed. This approach represents
a guess by the algorithm that will then test this MDC to
discover if it can be the source of the MEUs.

2) Fault reconstruction: This reconstruction is performed
considering logical addresses of faults and the selected
MDCs. As each MEU is made of a certain number of
faults, at the output of this step, the algorithm obtains a
set of physical coordinates (one for each fault in the MEU
set).

3) Check the contiguity between the reconstructed faults:
Given the fault coordinates, the distance between each
fault is checked. The main objective is to find all faults’
locations in close proximity. In other words, a group of
fault locations is called MEU when:
• There are at least two fault locations with a Euclidean

distance of 1 from each other.
• The third fault location can be added to this faults’

locations group if it has a Euclidean distance equal to
1 from at least one of two faults’ locations.

• Other faults can be added to the mentioned group if they
have a Euclidean distance equal to 1 from at least one
of the other faults’ locations group. These groups of x
and y coordinates should create some patterns, such as
the one shown in Fig. 8.

For instance, in Fig.9, the location of the MEU is com-
pliant with the chosen MDC because the faults are in the
same neighborhood. However, as can be seen in Fig.10,
the chosen MDC is non-compliant because the faults are
in different neighborhoods and separated.

Fig. 9: A scheme of reconstructed memory with the correct
MDC.

Fig. 10: A scheme of reconstructed memory with the wrong
MDC.

4) Update correct combinations or remove MDC from
possible solutions: If the combination is marked as cor-
rect, the algorithm increases a counter that counts how
many times the current MDC was identified as correct.
Otherwise, no further steps are performed, and the MDC
is removed from possible solutions.

The steps from 2 to 4 are repeated for all the MEU sets
related to a given memory. The algorithm continues to test

until all the MDCs have been tested. Once all the MDCs have
been fully explored, the possible combinations are ordered from
the most probable to the least probable. The correct memory
organization is in the most probable ones. Often the algorithm
reports equivalent. The complete algorithm is provided in
algorithm1. This algorithm has a programmer’s point of view
on the proposed approach.

Fig. 11: The flowchart of the proposed algorithm

IV. EXPERIMENTAL RESULTS
The research aims at extracting the memory design parame-

ters, and the proposed approach uses the Algorithm 1. The final
results can then be used by test engineers to accurately assess
the behavior of their programs in case of radiation-induced
MEUs. In order to corroborate the functionality of the proposed
approach, a complete simulation and validation environment
was developed. This environment comprises multiple scripts
that perform a series of steps provided in Fig. 11 to inject
the MEUs, and then reconstruct the memory parameters. The
Python script responsible for the simulation and injection of
the MEUs is called ”supervisor script.” This supervisor script:

1) Randomly select an MDC made of all the parameters
described in the previous section



Memory Design Configurations
Min Max Steps

Total Number of Words 2 215
Exponential

(Powers of 2)Words Per Wordline 2 2log2(Total number of words)-3

Bits Per Word 2 28

Wordlines Total Number Of Words
Words per Wordline

Wordlines Mirrored Every 20(no mirroring) 2log2(Wordlines) Exponential
(Powers of 2)

Bitlines Bits per word * Words per Wordline

Bitlines Mirrored every 20(no mirroring) 2log2(Bitlines) Exponential
(Powers of 2)

TABLE I: Memory parameters taken into consideration for our experiments

Algorithm 1: Memory parameters extraction algorithm
input : A list of MEUs. Each MEU is composed of N

faults, each with:
The logical word address of the fault: Addr
The failing bit inside the word: Q

output: A set of MDCs that can generate the MEUs in
the list.

foreach MEU in MEUs list do
foreach Memory Dimension in Possible Memory

Dimensions list do
foreach Row Mirroring in list do

foreach Column Mirroring in list do
Take the Addr and Q and calculate

faults’ coordinates (n is the number of
fault locations): (xi,yi), (xi+1,yi+1), ...,
(xi+n,yi+n) And make a group of
coordinates by randomly adding one
coordinate to the group.

while At least a fault coordinate is
added to the group in this iteration. do

foreach Faults’ coordinates do
if The coordinates have a

Euclidean distance of 1 at least
with one of the coordinates in
the group. then

Add the coordinate to the
group.

end
end

end
if The group contains all of the faults’
coordinates then

Mark the MDC as one of the
possible solutions.

end
else

Remove the MDC from the checklist.
end

end
end

end
end

2) Randomly select multiple MEU shapes and their physi-
cal location inside the chosen memory. The shapes are
selected with respect to the ones described in Fig. 8

3) Calls a C++ memory creator script that simulates the
memory and outputs the logical faults addresses

4) Organize the outputs of the memory creator to simplify
the checks of the memory reconstructor script

The previous steps were repeated to create a collection of
memories and their related MEUs.

Now that the memories have been generated, a Python
memory reconstructor script is called. This script performs the
following operations:

1) Select a set of MEUs.
2) For each possible MDC and for each MEU in the set:

a) Reconstruct all the physical locations of the faults inside
the MEU, using their logical address and assumed
parameters.

b) Check the physical location to understand if all faults
are adjacent to each other.

c) If the faults are all adjacent, add the current MDC to
the possible correct ones.

3) Collect all the MDCs that were marked as ”possibly
correct” for all the MEUs in the set.

The output of the aforementioned steps is a list of memory
parameters and the number of MEUs they can contain in the
correct neighborhood as previously explained in Fig.9 and
Fig.10.

A. Memories’ and MEUs’ parameters
The experiments were performed on around 5,500 different

bit-scrambled (as shown in Fig.6) memories with randomly
chosen MDCs presented in table.I. A minimum is decided in
tableI because the number of the equivalents increases in small-
size memories. Because there are few MDCs available, and
most of them are equivalent geometrically. These small-size
memories were not having a dramatic reduction in possible
MDC.

For each memory, a set of 100 MEUs were injected. These
MEUs were randomly generated with the following MDCs, also
reported in Fig.8:

• Base Fault Count: Between 2 and 6
• Shapes: square, rectangle, single line (wordline or bitline

oriented)
• Extra fault: a small probability exists that an extra fault is

added adjacent to a previously inserted fault, such as the
case in the bottom right of Fig.8

Given the aforementioned parameters, the algorithm tested a
total of 550,000 MEUs distributed in 5,500 memories.



Experimental results
MEU sets

per memory (#)
Average equivalent

MDCs (#) Time

20 6 26 minutes
40 3.64 45 minutes
60 2.79 63 minutes
80 2.31 77 minutes

100 2 96 minutes

TABLE II: Experimental results and performances of the pro-
posed algorithm.

B. Stats and performances

The tests were performed on a Macbook Pro 13” equipped
with an Apple M1 processor and 16GB of RAM. Table II
summarizes our experimental results. It can be seen that each
set of MEU had a different number of equivalent MDCs based
on the number of considered MEUs (down to 2 for 100 MEUs).
Notably, in the beginning, no data was available about the
MDC. But among the candidate memories to be the correct
memory with the correct parameters, the correct one is always
present in this list. This cross-validation is based on the fact that
the parameters were already known when random memories
were generated.

C. Equivalent memories

For each MEU set, the algorithm correctly reconstructed
the compliant memory parameters to what they belonged to,
together with some ”equivalent” memories. Fig. 12 and Fig.13
graphically explain why we have such equivalencies. For ex-
ample, in Fig.12, it is possible to see how the same MEU made
of four faults can come from memory with a straightforward
organization (on top) or from memory with a Column mirror
equal to 2 (on bottom). In Fig.13, another MEU of four faults
can come from two different memories. One of the possible
memories is mirrored in the center (top), and the other has a
column mirror equal to 2 (bottom).

Fig. 12: The MEU in the picture may come from a straight-
forward memory organization (top) or a mirroring every two
columns (bottom)

Fig. 13: The MEU in the picture may come from an x-axe
mirrored memory organization (top) or a mirroring every two
columns one (bottom)

The main reason behind these equivalencies is that the
location of two faults can be changed without violating the
fault location shapes provided in Fig.8.

These examples show some of the possible equivalent mem-
ories organizations. The number of equivalent memories can
decrease if the MEU has a greater dimension and is not
symmetrical. In symmetrical shapes, all the faults can be
swapped without violating the memory contiguity, and there are
always memories with parameters that fit these MEU shapes.

V. CONCLUSIONS
This paper presented an optimized algorithm for recon-

structing the memory organization starting from MEUs from
irradiation tests. MEUs were only reported with their logical
addresses, as a standard user performing an irradiation test
would receive them. The experiments illustrated in simulated
memories with a set of injected MEUs show that the algorithm
can always reconstruct the original memory organization and
a certain number of equivalent memory organizations for that
given MEU set. This reconstructed data can then be used to
perform accurate and realistic MEUs injections to assess the
reliability of safety-critical applications.
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