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TempoRL: laser pulse temporal shape optimization with
Deep Reinforcement Learning

F. Capuano2, D. Peceli1, G. Tiboni2, R. Camoriano2, and B. Rus1

1ELI Beamlines, Dolńı Břežany, Czechia
2VANDAL Laboratory, DAUIN, Politecnico di Torino, Turin, Italy

ABSTRACT

High Power Laser’s (HPL) optimal performance is essential for the success of a wide variety of experimental
tasks related to light-matter interactions. Traditionally, HPL parameters are optimized in an automated fashion
relying on black-box numerical methods. However, these can be demanding in terms of computational resources
and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a
promising alternative framework for optimizing HPL performance since it allows to tune the control parameters as
a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model
of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration,
particularly suitable for dynamic processes involving sequential decision making. This is particularly relevant
as laser systems are typically characterized by dynamic rather than static traits. Hence the need for a strategy
to choose the control applied based on the current context instead of one single optimal control configuration.
This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems.
We apply this technique to optimize the temporal profile of laser pulses in the L1 pump laser hosted at the
ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning
dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at
half-maximum (FWHM) of ∼1.6 ps. The code base of this work, alongside a live demo of the results obtained,
is available at github.com/fracapuano/TempoRL.

Keywords: Laser temporal shape optimization, High Power Lasers, Deep Reinforcement Learning

1. INTRODUCTION

Ultra-fast light-matter interactions such as laser-plasma physics and nonlinear optics require precise shaping and
exact knowledge of the pulse temporal profile. Optimization of laser pulse temporal shape is one of the most
critical tasks necessary to establish control over these interactions. The highest intensities conveyed by laser
pulses are usually achieved by compressing a pulse to its shortest possible duration, i.e., the transform-limited
(TL) pulse shape, given the spectral intensity profile. However, some interactions may require unique pulse
shapes different from the TL profile to achieve specific desired outcomes and the best efficiency while at the
same time protecting the system from potential damage. In this work, we explore a novel approach based on
Deep Reinforcement Learning (DRL) to control ultra-fast laser pulse shape through an active feedback loop
between the pulse shaper and the pulse duration measurement device.

The high-power laser system L1 Allegra has been developed at ELI Beamlines in the Czech Republic.1 It
is designed to deliver < 20 femtoseconds pulses with energy higher than 100 mJ at a repetition rate of 1 kHz.
The L1 laser contains 7 optical parametric chirped pulse amplification (OPCPA) stages that are pumped by
5 diode-pumped lasers based on commercial Yb-doped thin-disk regenerative amplifiers (RA) DIRA 200-1 (by
TRUMPF Scientific lasers). All pump lasers generate pulses at 1030 nm with a 1 kHz repetition rate. Before
amplification, pump pulses are stretched to about 500 ps and then compressed again before frequency doubling
to 515 nm in LBO crystals for second harmonic generation (SHG). The SHG output efficiency of DIRA 200-1
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can significantly improve by tuning the laser pulse temporal shape. Optimizing the temporal pulse shape to
achieve the best SHG output is accomplished by manipulating the pulse spectral phase imposed by a CFBG
fiber Stretcher (by Teraxion) and monitored using single-shot SH FROG 1030 (by Femtoeasy).

In the L1 system, pulse spectral phase control can be performed by separately tuning three dispersion coef-
ficients on the stretcher —namely d2, d3, and d4— which are linearly related to the second, third, and fourth
term of the Taylor expansion of the spectral phase, ϕ(ω), around its central frequency ω0. In other words, one
could these dispersion coefficients to influence group delay dispersion (GDD ∼ ϕ(2)(ω)), third order dispersion
(TOD ∼ ϕ(3)(ω)) and fourth-order dispersion (FOD ∼ ϕ(4)(ω)). In the scope of this work, the control parameters
for the L1 system are these three Taylor coefficients only (GDD, TOD, FOD), which we collectively refer to with
ψ.

1.1 Related works

Several works have already investigated active feedback optimization of ultra-fast laser systems parameters or
laser-matter interactions via black-box optimization methods.2–8 The most common automated approaches are
based on Bayesian Optimization (BO)7,8 and Genetic Algorithms (GA).2,4, 5 Recent studies by Loughran et
al.7 and Shalloo et al.8 highlight the limitations of performing a simple 1D grid search (often referred to with
the term scan) on the available values for each parameter, even when scans are conducted in the vicinity of
promising configurations. These studies suggest that such an approach can lead to sub-optimal solutions, as it
fails to account for the joint effect that various parameters are likely to have on the overall system performance.

In particular, Loughran et al.7 tackle proton energy maximization by controlling six laser parameters. In
parallel to initially performing grid scans in promising regions, BO is employed to optimize the same parameters
simultaneously. BO is shown to achieve better results than grid scans in a fraction of the time, likely due to BO’s
ability to consider the joint effect of the parameters. At the same time, convergence speed is strongly related to
the way in which BO optimizes laser performance. By probing points mainly in regions judged as promising in
light of an underlying surrogate model of the objective function, BO can discard other parts of the parameter
space that grid scans would explore exhaustively instead. In their work, energy maximization is formulated as a
6D optimization problem related to tuning five Zernike mode coefficients and the tape surface position relative
to the focal plane of the laser, employing online diagnostic tools to adjust the laser parameters using a closed
feedback loop. Upon convergence, this method yields a feasible solution producing proton beams with maximum
energy equivalent to manually-optimized pulses while using 60% of the actual laser energy.

Loughran’s BO-based approach to maximum proton energy mainly stems from the work of Shalloo et al.,8

which applies BO to automate tuning of a 100 MeV-scale accelerator, simultaneously varying up to six parameters,
including the spectral and spatial phase of the laser and the plasma density and length. The authors observe
that tuning the laser pulse shape with BO causes an 80% increase in measured electron beam charge, despite the
pulse length changing by just 1%. Both works7,8 show how BO can be employed in a closed loop to automatically
tune laser parameters within a feasible number of function evaluations, given a scalar objective function, such
as peak intensity.

In a previous paper,9 we explored the application of BO and other numerical methods, such as GA and
gradient-based optimization, to the problem of controlling the temporal pulse shape by only changing the spectral
phase of laser pulses. The performance of our past approach was tested using a so-called “semi-physical” model
of the L1 pump laser system, modeling the main stages of the actual pump chain. The laser pulse shape was
optimized through a feedback loop between the stretcher and various measurement devices, which we used to
estimate the similarity between the controlled and target temporal pulse shapes. Note that in Ref. 9, we adopted
the transform-limited as our target pulse shape.

1.2 Current limitations

Since in the real world, each function evaluation is highly expensive—as it requires an actual laser burst for
a given ψ—we are interested in favoring approaches achieving good results with few evaluations. Out of the
three algorithms implemented in Ref. 9, BO requires the least number of function evaluations. Both GA and
gradient-based (ADAGRAD) optimization require a significantly larger number of experimental samples. As each
individual’s fitness must be computed for the GA to be able to favor the fittest ones, this algorithm typically
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Figure 1: One-step (k−1→ k) absolute percentage

change in control parameters
(
100· |ψi(k)−ψi(k−1)|

ψi(k−1)
)
.

Plots are specific to the actual control parameter.
One-step percentage differences that are over 10%
are colored in red.
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requires significantly more function evaluations than the number of iterations the algorithm is allowed to run.
Furthermore, ADAGRAD employs first-order differential information that, for black-box problems, can only be
estimated using finite differences instead of actual derivatives, thus introducing non-negligible analytical errors
and the cost associated with increasing the number of function evaluations to be performed at every timestep.
Nonetheless, the number of laser shots to be performed before the algorithm converges is not necessarily the only
complication of using numerical methods to optimize laser pulse temporal shape. During the initial exploration
phase (i.e., as long as the surrogate model has not well approximated the underlying objective function), BO
needs to explore the parameter space to collect relevant experience that is then used to adjust its prior model
on the actual objective function. However, while essential for the algorithm, the succession of sampled points
might as well be very erratic: probing consecutive points which fall far away in space from each other may
pose machine-safety concerns, besides being unrealistic on real hardware where knobs are to be controlled. As a
dynamic system, we wish not to apply controls that are too different from the previous ones to avoid excessively
stressing the laser. Fig. 1 shows the one-step absolute-value percentage variation distribution in the controls
applied by BO in Ref. 9 for each dispersion coefficient. Importantly, for all the ψi, a significant fraction of
succeeding generated control signals vary drastically beyond practical and safe implementation on real hardware.
Moreover, Fig. 2 shows how BO controls are more than half of the times larger than 10% of the size of the
laser control bounds, which further confirms that a naive application of BO might be causing the controller to
apply actions with a large magnitude fairly erratically. As real-world function evaluations must be performed,
we must also ensure that automatically generated controls respect basic requirements on the one-step relative
change that the system can safely bear. Furthermore, using simulation-only solutions that are not specifically
designed for transferability to the real world (i.e., optimizing a simulated version of the laser only) can result
in poor performance when knowledge of the system parameters is imprecise or when these they shift over time,
leading to changes in the optimal solution ψ∗.

This work investigates a more general approach to laser pulse shape optimization which does not aim to
produce a fixed set of control parameters ψ. Instead, it focuses on finding a policy to select control parameters
given the system’s current state and a goal to achieve. Importantly, learning a control strategy rather than a fixed
controller configuration improves adaptivity to changes in the experimental setup. In this work, such control
strategy is learned through Deep Reinforcement Learning (DRL), an advanced branch of machine learning that
combines the principles of Reinforcement Learning (RL) and Deep Learning (DL) to address complex sequential
decision making and control problems.



Figure 3: L1 Pump semi-physical model. The model has been built to simulate the process of phase accumulation
in the L1 pump laser chain before Second-Harmonic Generation. An input electric field E(ν) enters the chain from
the left and undergoes a series of linear (stretcher and compressor) and non-linear (DIRA) phase accumulation
processes. Then, the corresponding temporal pulse shape is reconstructed through a FROG device and its second
harmonic efficiency is computed using a proper measurement device.

The main contributions of this work are summarized as follows:

• We demonstrate that model-free DRL can be employed to optimally control HPL systems;

• We propose a DRL agent design integrating machine-safety constraints in its interactive learning strategy;

• We show that a physics-informed controller that only acts based on measurable physical quantities outper-
forms controllers acting based on temporal shapes.

Our extensive experimental evaluation demonstrates the ability of DRL to consistently optimize laser temporal
shapes to nearly transform-limited pulses in less than 10 control timesteps starting from a random ψ initialization.

2. BACKGROUND

2.1 L1 pump semi-physical model

This semi-physical model presented in Fig. 3 shows that our model contains a stretcher, a DIRA amplifier,
and a compressor. Each stage in our model contributes to the overall pulse spectral phase. The stretcher
imposes a spectral linear phase change, while DIRA introduces a nonlinear part of the spectral phase. The linear
DIRA contribution to the spectral phase is instead neglected. The dispersion coefficients of the compressor
were measured beforehand and are kept constant throughout the experiments to simulate our best guess on the
real-world experimental dynamics.

Our model is parameterized by a non-linear phase accumulation term (B, standing for B-integral) and the
compressor parameters (αGDD, αTOD, αFOD). The compressor parameters are well-known and do not typically
change throughout operations. On the contrary, the value of B-integral cannot be precisely measured and we
estimated it to be B ' 2. For the sake of notation simplicity, we refer to any given set of control parameters
(GDD, TOD, FOD) as ψ and to a generic laser parameterization as ξ = (B,αGDD, αTOD, αFOD). We refer to



our best estimate of the real-world parameterization as follows:

ξ∗ =


B∗

α∗GDD

α∗TOD

α∗FOD

 =


2

−267.422 ps2

+2.384 ps3

−954.89 ps4

 .

2.2 Deep Reinforcement Learning

In RL, an agent learns to make optimal decisions by interacting with an environment, receiving feedback in the
form of rewards or penalties, and ultimately using it to adjust its actions. On the other hand, DL is a powerful
technique for learning complex representations and function approximations using Deep Neural Networks. By
integrating these techniques, DRL enables the development of agents capable of handling continuous state and
action spaces and adapting to complex and dynamic environments.

RL involves learning to choose actions in a given situation to maximize a numerical reward signal.10 The
agent does not apply a predefined control strategy but has to leverage its experience to discover actions that
yield the highest reward. Generally speaking, actions may affect not only the immediate reward but also the
subsequent states and, therefore, all rewards in the considered time horizon. The two key features distinguishing
Reinforcement Learning from other types of learning are trial-and-error search and delayed reward, which make
this technique applicable to a wide range of control tasks.
In our case, the goal is to gradually approach the optimal set of control parameters rather than converging to
the single optimum value—as with black-box numerical methods.

In RL, the problem of learning from interactions how to solve a given task is formalized via Markov Decision
Processes (MDPs). The learner (i.e., laser controller) is referred to as agent, while whatever it interacts with
is referred to as environment (i.e., the L1 pump chain). The agent-environment abstraction provides a simple
interface to model the sequential interaction between the agent, selecting what actions to perform, and the
environment, responding to the selected actions with a dynamic state transition and a reward, i.e., a numerical
quantity encoding the utility of the action’s effects on the system.10 Fig. 4 illustrates this sequential decision
making process for the L1 pump laser. This framework is used to reduce the control problem to a problem in
which the agent has to learn how to maximize the reward it collects by choosing better actions over time. In
RL, one typically makes the assumption that the agent interacts with the environment at discrete time steps
t = 0, 1, 2, 3, . . . . When the number of timesteps, the agent is allowed to perform is not upper-bounded, the
MDP is classified as infinite-horizon. On the contrary, when timesteps are limited by a maximum value T , the
MDP is classified as finite-horizon or episodic.

Every MDP M is defined by a tuple M = {S,A, r,D, ρ0}, in which:

• S represents the state space, i.e., st ∈ S ∀t. In those scenarios in which the agent has access to perfect
information about the environment (fully observable problems), the terms state and observation can be
used interchangeably.

• A represents the action space, i.e., the space of all possible actions. That is, at ∈ A ∀t.

• r : S × A × S 7→ R represents the reward function characteristic of the transition (st, at, st+1). As
aforementioned, the agent’s ultimate goal is the maximization of the cumulative reward value, often referred
to as return.

• D describes the environment dynamics (forward dynamics) and represents the probability of the environ-
ment being in state st+1 having performed the action at when in st. That is, D : S × A× S 7→ [0, 1] with
D(st+1, at, st) = P(st+1|at, st).

• ρ0 describes the probability distribution over the initial state, namely ρ0 = P(s0).



RL methods that estimate D by leveraging collected experience are classified as model-based. In contrast,
those without a forward dynamics model are referred to as model-free. Model-based algorithms are typically
more sample-efficient (in the sense that they require fewer actual interactions) because the agent can learn to use
its model of D to plan ahead its actions. However, this type of approach can only be applied when experience
is a valuable source of information to reconstruct the actual dynamics (an example of this are all those cases in
which a good prior on the transition model’s stochastic process is available). While being less sample-efficient,
model-free approaches are instead applicable to a wider set of problems.

Let η indicate the sequence of agent-environment interactions. Then, any sequence of length T , often referred
to as trajectory, takes the form

η = s0, a0, s1, r0, s1, a1, s2, r1, . . . , sT−1, aT−1, sT , rT−1. (1)

In light of the Markov property, it is trivial to prove that the probability mass of any trajectory equates to:

P(η) = P(s0)

T−1∏
t=0

P(st+1|st, at) · P(at|st), (2)

which clearly shows that the probability of the whole trajectory can be reduced to a series of piece-wise products
between the probability of transitioning to state st+1 when performing at in st and the probability of selecting
at when in st. The probability of choosing at when in st is referred to as (stochastic) policy and is indicated
by π(at|st). Stochastic policies are widely adopted in RL because they naturally embed randomicity, fostering
the exploration of the action space conditioned on the current observation. Moreover, as the agent collects more
and more experience it is not rare to observe that stochastic policies converge to deterministic ones anyways.
In light of this, we can express the probability of observing one trajectory with respect to a given (stochastic)
policy π. This implies that Eq. 3 could be re-written as:

Pπ(η) = ρ0

T−1∏
t=0

D(st+1, at, st) · π(at|st). (3)

Let R(η) indicate the (undiscounted) cumulative reward over the trajectory η (referred to as return over η).
Then, the problem can be reduced to finding the policy maximizing the expected return, which in light of Eq. 3
clearly depends on π. More formally, an optimal policy satisfies:

π∗ = arg max
π

Eη∼π
[
R(η)

]
. (4)

RL algorithms either optimize a parameterized version of the actual policy the agent is using to select actions
(policy-based algorithms) or the agent’s estimate of the outcome of its own actions in terms of the return they
yield (value-based algorithms) with the goal of approximating said optimal policy.

3. METHOD

3.1 DRL-based temporal shape optimization

As a flexible and powerful framework, DRL can be applied to a wide range of control problems. In this work, we
present an application of DRL to laser pulse temporal shape optimization. We only adopt model-free algorithms
to keep our approach as general as possible. Fig. 4 shows an application of the agent-environment paradigm
to the control of the L1 Pump Laser. As it is possible to see, the agent selects the spectral phase parameters
controlling the same semi-physical model, presented in Fig. 3, with the goal of maximizing the cumulative reward
it can collect.



Figure 4: Agent-Environment interaction scheme for the L1 Pump Laser

Table 1: Feasible region for Stretcher control parameters
Lower bound Upper bound

GDD (s2) 2.352e-22 2.996e-22
TOD (s3) -1.004e-34 9.556e-35
FOD (s4) 4.774e-50 1.432e-49

In this context, we define our two customized, fully-observable and episodic MDPs:

1. The first MDP (MDP-1) mainly stems from Ref. 9 and serves as a proof of concept that RL can indeed
be used to control laser temporal shape.

2. The second MDP (MDP-2) is a more physics-informed and sophisticated model that pursues the same goal
as MDP-1 while improving the signal-to-noise ratio for the agent using a much more task-oriented reward
signal.

Both MDP-1 and MDP-2 share the same state and action space and only differ by reward function definition
and episode termination conditions. Observations are defined as single control parameters ψ. This is justified
considering the high degree of confidence with which these parameters are known in the real world, differently from
what concerns the actual temporal shape. The latter can only be reconstructed using intermediate measurement
devices (FROG), which introduce a non-negligible amount of noise in the agent’s perception of the environment.
This choice implies that, for what concerns the agent, the laser system only consists of the actual knobs of the
Stretcher. Given the nature of the problem, ψ can only take values inside a feasible region, whose bounds we
report (in SI units) in Tab. 1.

Actions are defined as deltas applied to the set of control parameters. Thus, actions have the scope of
modifying the currently applied control ψ and, in particular, can only increase or decrease its magnitude.
Let ψrange

i =
(
ψmax
i − ψmin

i

)
∀i = 1, 2, 3 be the range of the controls that can be applied on a stretcher. To

ensure machine safety, we constrain the agent to only perform actions with a magnitude up to 10% of the feasible
control range by limiting actions to at(i) ∈ [−0.1ψrange

i ,+0.1ψrange
i ] ∀i = 1, 2, 3. This design choice ensures that

the agent would be allowed to have a comprehensive sense of the actual controls applied (through our design of
the state space) while performing actions concerned with the integrity of the system.

Importantly, MDP-1 and MDP-2 differ in terms of reward function definition and episode termination con-
ditions. Let us denote by τ(st) the pulse temporal shape corresponding to the control st (that is, ψt) and by τ∗

an arbitrary target temporal shape. Then, the reward function for MDP-1 is

r(st, at, st+1) ≡ r(st) = c1 − c2 ·
L(τ(st), τ

∗)

Lmax
, (5)



with c1, c2 being two weighting coefficients and L a loss function measuring how dissimilar the current controlled
temporal shape is with respect to the target one. In light of the results presented in Ref. 9, we adopt the
peak-on-peak sum-L1 loss as L, that is

L1(τ(st), τ
∗) = ‖τshift(st)− τ∗‖1,

where τshift(st) indicates a time-shifted version of τ(st) such that the controlled and target pulse peak in the
same instant. Manually shifting the controlled pulse in time before computing the loss value is justified by the
fact that none of the control parameters influence the temporal position of the pulse peak, while they all influence
the pulse’s shape. The two coefficients c1 and c2 scale down the reward signal to make it more suitable for neural
networks. Moreover, c1 serves as a healthy reward term, whose primary goal is to encourage the agent to reach
the end of the episode. Since at each timestep, the agent is also penalized with the loss value, the combined
effect of the healthy and performance reward terms pushes the agent towards reaching and maintaining pulses
with small values of loss with respect to the target. In MDP-1, episodes have a maximal length of 50 timesteps
and be terminated early whenever L1(τ(st), τ

∗) ≥ Lmax = 500

We propose a more physics-informed approach for the design of MDP-2. In particular, we aim to reward the
agent for actions that increase the peak intensity and reduce the duration of FWHM. Therefore, we propose a
reward of the form

r(st, at, st+1) ≡ r(st) = (2c1)2 + c2 min

(
0.1

1− xt
− 0.1, 7

)
− 0.1 · FWHMt,

xt =
PIt
PITL

, P It =
2E

πw2
0

∫ +∞
−∞ τ(st)dt

,
(6)

with c1, c2 being two coefficients used to align the agent’s perception of its performance and the goal of optimizing
the actual pulse shape. E denotes the pulse energy and w0 the beam radius, equal to 220 mJ and 12 mm,
respectively. We employ the peak intensity of the TL pulse to scale down the peak intensity and positively
reward the agent when producing temporal pulse shapes with a peak intensity similar to TL’s. At the same
time, we discourage the agent from producing pulses with a large FWHM by using a penalty term directly
depending on FWHM. In MDP-2, episodes have a maximum duration of 50 timesteps and are terminated early
when FWHMt ≥ FWHMmax = 20 (ps). In contrast to the former case in MDP-2 we also penalize the agent
with a large negative reward of −20 for terminating early. This is done for the sake of preventing the agent from
developing a behavior in which episode termination is sought early on to reduce the overall penalization it would
get otherwise.

For both environments, once the episode terminates, the initial state s0 is sampled according to ρ0 ∼ N3(µ,Σ),
with ρ0 being a multivariate normal distribution with mean vector equal to the opposite of the compressor
parameters, that is:

µ = (267.22ps2,−2.384ps3, 954.89ps4)

and variance-covariance matrix equal to Σ = 0.1I, with I being the identity matrix.

3.2 Experimental setting

Considering the large amount of experience that RL agents often need to accumulate, we train our agents on
our custom simulated semi-physical model. We evaluate three different RL algorithms on the two environment
versions defined previously (i.e., MDP-1 and MDP-2). In our analysis, we include the on-policy policy-gradient-
based algorithms PPO11 and TRPO12 and the off-policy (policy-gradient-based) entropy-regularized algorithm
SAC.13 TRPO and PPO adopt mechanisms limiting the magnitude of policy updates, thus ensuring that policies
remain close across consecutive iterations. Instead, SAC employs a soft value function and entropy regularization
to optimize policies while exploring diverse actions and operating on continuous action spaces. We test the
above algorithms with 5 different random seeds and discount factors. Given the maximum episode length of
50 timesteps, we tested a range of discount factors to limit the time horizon that most affects the discounted
return. Specifically, we tested γ = 0.9, γ = 0.8, and γ = 0.7, corresponding to limiting the time horizon the
agent is concerned with at decision time to approximately 10, 5, and 3 timesteps, respectively Additionally, we
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Figure 5: Evolution of the average return and terminal state L1 loss for the three algorithms. Here, are presented
curves related to the best performing discount factor for all algorithms in light of Tab. 3 and set of coefficients
equal to (c1, c2) = (0.1, 1). Plots are exponentially smoothed with coefficient α ' 0.18.

experimented with various values of c1 and c2 for the two MDPs. To train the agents, we use the Adam optimizer
with a constant learning rate of 3e-4. To ease policy training with function approximators, we linearly map ψi
in the range [0, 1] for all i = 1, 2, 3.

To evaluate performance, we test all algorithms for 25 episodes and compute several metrics related to the
terminal state of each episode. This evaluation strategy allows us to analyze agent performance in terms of its
ability to reach and maintain a target temporal profile for most of an episode. Over 25 test episodes, we evaluate
the last-timestep average L1(τ(sT ), τ∗) and average cumulative reward for MDP-1. For MDP-2, we compute the
last timestep average FWHMT and average peak intensity ratio xT .

The environments are implemented using the OpenAI Gym API.14 We employed the Stable-Baselines315

implementation of the three RL algorithms using the PyTorch framework for DNNs. Each agent is solely trained
on CPU, with 15 parallel environments (i.e. CPU threads) on an AMD Ryzen Threadripper 5995WX desktop
processor, taking approximately 3 hours to complete 700k timesteps. The training process is periodically paused
every 10K timesteps to perform 25 test episodes and log metrics of interest.

4. RESULTS

Tab. 3 compares the performance of the three DRL algorithms on MDP-1 with different values for the discount
factor γ and reward coefficients (c1, c2). In the interest of meaningful comparison, experiments are repeated five
times with different random seeds to control for environment and agent stochasticity. We report the median and
inter-quantile range (IQR) statistics of the resulting performance metrics.

It can be clearly noticed that healthy reward terms have a positive impact on the final best result obtained,
although not too drastic. Nevertheless, the fact that the best-performing configuration (SAC+γ = 0.7) achieves
comparable values of L1 between the two cases while the IQR when c1 = 0 is almost twice as much as the case
c1 = 0.1 shows that rewarding the agent for being alive stabilizes its behavior at test time.

Fig. 5 shows the evolution of the two performance metrics previously defined during training. Notice that
all algorithms learn how to reduce the value of the loss as the number of interactions increases, even if SAC
significantly outperforms TRPO and PPO on the task at hand.

Interestingly, Fig. 5a suggests that the reward function might benefit from some further shaping. In particular,
PPO achieves rewards similar to those achieved by the other algorithms for what concerns the average return,
while having an average terminal loss value around 4 times larger than the one reached by TRPO, for instance.
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Figure 6: Evolution of the average return and terminal state FWHM, Peak Intensity, and L1 loss for the three
algorithms during training. Here, are presented curves related to the best-performing discount factor (γ = 0.7)
and the reward coefficients (c1, c2) = (0, 1). Plots are exponentially smoothed with coefficient α ' 0.18.

This indicates that the straight-forward reward function formulation adopted for v1 might not be well-suited to
help the agent discriminate between pulses, thus justifying the behavior exhibited in Fig. 5b.

Fig. 6 shows the training curves for MDP-2, while Tab. 2. Since we adopt a penalty for early termination
due to failure at pulse shaping, we set the healthy coefficient to c1 = 0. Remarkably, even though the agent is
completely unaware of the laser characteristics and the very concept of transform-limited pulse when faced with
the task of maximizing the cumulative peak intensity while minimizing FWHM, it learned to control the temporal
profile to maximize similarity with TL. Once more, this demonstrates that transform-limited pulses achieve the
best performance for the minimal duration in time and maximal peak intensity of laser pulses. Furthermore, it
is interesting to observe how, for both our reward functions, the agent performs best when it is less concerned
with far-in-the-future consequences of its own actions This is shown by the fact that better performances are
obtained with smaller discount factors.

Finally, Fig. 6c shows that the best-performing agent does not only achieve quasi-TL pulses but is also able
to maintain them over the entire length of the test episodes. Note that this is a particularly challenging task that
requires the agent to both learn to approach the target temporal shape starting from different initial conditions
and then stabilize it.



Table 2: Experimental results averaged over 25 test episodes on MDP-2 using 5 different random seeds. These
results are solely related to the best-performing discount factor γ = 0.7. The best results are underlined. Each
group of 5 experimental trials is presented via median value and inter-quantile range (IQR), between parentheses.
Best results are underlined.
Algorithm Median Avg(FWHMT ) (ps) (IQR) Median Avg(L1(sT )) (IQR) Median Avg(xT ) (IQR)

PPO 3.813 (1.719) 31.93 (30.01) 0.5689 (0.2083)
TRPO 2.581 (1.793) 17.89 (32.49) 0.8294 (0.07344)
SAC 1.615 (0.03964) 3.844 (0.43) 0.8559 (0.01244)

Table 3: Experimental results averaged over 25 test episodes on MDP-1 using 5 different random seeds. This
table indicates the median over the 5 episodes alongside the interquartile range (IQR), presented in parentheses
for each experiment. Best results are underlined.

(c1, c2) = (0.1, 1) (c1, c2) = (0, 1)
Algorithm γ Median Avg(L(sT )) (IQR) Median Avg(R(η)) (IQR) Median Avg(L(sT )) Median Avg(R(η))

PPO 0.7 30.01 (46.95) 46.93 (3.727) 10.53 (7.848) 48.60 (0.783)
PPO 0.8 11.85 (13.97) 48.34 (0.9436) 10.58 (2.893) 48.51 (0.235)
PPO 0.9 23.30 (20.07) 47.34 (2.273) 41.78 (32.05) 45.81 (2.000)

TRPO 0.7 6.147 (3.360) 48.88 (0.2292) 6.395 (2.800) 48.96 (0.1799)
TRPO 0.8 10.23 (55.49) 48.65 (4.146) 7.122 (19.67) 48.88 (1.895)
TRPO 0.9 9.291 (26.88) 48.49 (2.164) 33.83 (18.06) 46.78 (1.805)
SAC 0.7 6.014 (0.817) 48.95 (0.07063) 6.554 (1.926) 48.94 (0.0517)
SAC 0.8 8.819 (4.376) 48.69 (0.4265) 4.957 (6.436) 48.97 (0.7563)
SAC 0.9 19.14 (14.66) 47.57 (1.052) 18.07 (7.229) 47.77 (0.6519)

Fig. 7 shows that, in keeping with our expectations and the motivations of this work, the agent is capable of
adapting its choices to the different control configurations it encounters. By sequentially updating ψ the agent is
able to reach nearly-TL profiles in less than 10 interactions with its environment, starting in a random s0 ∼ ρ0.
Moreover, we observe a decreasing empirical standard deviation around the average σ̂ over time. This finding
demonstrates the ability of the agent to both reach and maintain the desired target shape. Interestingly, Fig. 7
shows an agent trained on MDP-2.
Furthermore, we evaluated the robustness of our best-performing agent to different initialization conditions. In
particular, we sampled the starting configuration from a much higher variance Σtest = 50 Σ, and report the
results presented in Fig. 7. These results indicate that the agent is capable of reaching almost-TL shapes in the
first 10 interactions, even in those settings in which the starting point is sampled from a significantly different
distribution from the one seen during training. This appears to be particularly relevant, as it clearly shows that
our agent is capable of generalizing over the starting state s0.

5. CONCLUSIONS & FUTURE WORKS

In this work, we present a Deep Reinforcement Learning based approach to laser pulse temporal shape opti-
mization. This technique proved particularly promising for this task, as it allows us to obtain control strategies
capable of gradually approaching desired optimal control rather than converging to static optimal solutions”.
Moreover, it allows the optimization of the laser parameters even when the system is subject to complex nonlinear
temporal dynamics, which are often unfeasible to model explicitly.

We demonstrate that in just three hours of simulation-only interactions it is possible to train a DRL agent
able to optimally control the spectral phase to reach a desired temporal shape. Importantly, this policy also
obeys machine safety constraints by moving in bounded action steps. Starting from random initial conditions
centered around the compressor coefficients, the agent can effectively reach and maintain stable quasi-TL pulses,
achieving pulses with FWHM of ∼ 1.6ps in less than 10 interactions.

We plan to further expand our analysis by incorporating real-world data in future work. We will employ
experimental observations to adjust our semi-physical model via inference and explore the application of DRL
to laser optimization drawing inspiration from the Sim-to-Real paradigm in robot learning. Indeed, we believe
there are various overlaps between Sim2Real in RL for robotics and the problem at hand. Since training robotics
systems in the real world can be risky and costly, it is common to resort to training agents in a simulated



Figure 7: SAC-based agent trained on MDP-2 with γ = 0.7 at test time. The plots show the mean temporal
profile sampled at the 0, 5, 10, and 50 timesteps and the empirical standard deviation around the average σ̂.
Here we also confront two different initial state distributions (parametrized via Σ and Σtest, respectively), and
show that the agent is capable of generalizing over random initial states.

environment. However, policies learned in simulation notoriously suffer from the reality gap—a discrepancy
between simulated and real-world models—ultimately hindering policy transfer. To tackle this issue, several
techniques have been developed to ensure policy transferability. As Sim-to-Real techniques are gaining more
and more relevance in RL for robotics dynamical systems, we aim to investigate their applications to design an
effective DRL-based self-tuning laser system in the real world.
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