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Abstract—The early detection of anomalous behaviors from a
production line is a fundamental aspect of Industry 4.0, facilitated
by the collection of massive amounts of data enabled by the In-
dustrial Internet of Things. Nonetheless, the design and validation
of anomaly detection algorithms, mostly based on sophisticated
Machine Learning models, heavily rely on the availability of
annotated datasets of realistic anomalies, which is very difficult
to obtain in a real production line. To address this problem, we
introduce the Robotic Arm Dataset (RoAD), specifically designed
to support the development and validation of Multivariate Time
Series Anomaly Detection (MTSAD) algorithms. We collect and
annotate a large number of data and metadata to characterize the
motion and energy consumption of a collaborative robotic arm
in a full-fledged production line and annotate a comprehensive
set of healthy as well as realistic anomalies scenarios. To prove
the significance of RoAD and encourage future developments, we
benchmark several state-of-the-art anomaly detection algorithms
on our newly introduced dataset, and we freely release it to the
scientific community.

Index Terms—Data acquisition, Process monitoring, Flexible
manufacturing systems, Anomaly detection

I. INTRODUCTION

Industry 4.0 refers to the digital technologies that are de-
signed to sense, predict, and interact with production systems,
so as to make decisions that support productivity, energy
efficiency, and sustainability. In this context, the monitoring
and early detection of irregular behaviors in a production
line has emerged as a critical aspect in the manufacturing
industries, to avoid disruptions that may result in delays or
even complete stoppage of production.

This process is facilitated by the Industrial Internet of
Things (IIoT), which involves the interconnection of in-
dustrial devices, equipment, sensors, and systems through
the Internet [1]. The generation and collection of massive
amounts of diverse data enabled by IIoT, consisting of multiple
interdependent variables rapidly evolving over time (a.k.a.
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e Resilienza (PNRR) – Missione 4 Componente 2, Investimento 1.5 –
D.D. 1058 23/06/2022, ECS_00000043). This manuscript reflects only the
Authors’ views and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

multivariate time series), opens the way to the design of
sophisticated anomaly detection algorithms able to model the
intricate interdependencies of such data, with the objective
of identifying any events that deviate significantly from the
“normal” distribution. These techniques fall under the category
of Multivariate Time Series Anomaly Detection (MTSAD)
algorithms [2].

While there is a growing demand for MTSAD algorithms in
industrial applications, the development and validation of these
algorithms, mostly based on Machine Learning (ML), heavily
rely on the availability of comprehensive datasets, representing
diverse types of annotated anomalies in the data sensed from
realistic scenarios.

Nonetheless, such datasets are very difficult to obtain in the
context of a real production line, due to the many issues in
the data collection and annotation process [3]. First of all, the
very definition of anomaly is loose and context-dependent:
it can involve either point anomalies, which are single out-
of-range samples, or collective anomalies, where entire data
streams have a distribution that is different from the expected
one. But in both cases, what is considered “normal” can vary
according to the specific context [4]. On top of that, anomalies
are, by nature, rare and difficult to capture, especially when
devices are relatively new and in healthy conditions. As a con-
sequence, the effective design and testing of anomaly detection
algorithms targeting industrial manufacturing systems remain
a very open problem.

To this date, the most popular multivariate time series
datasets used to train and test anomaly detection techniques
typically target different types of applications. Among the oth-
ers: Secure Water Treatment (SWaT) [5], Water Distribution
Testbed (WADI) [6], Server Machine Dataset (SMD) [7], Mars
Science Laboratory (MSL) [8], Soil Moisture Active Passive
(SMAP) [9]. Some of these datasets, though valuable, lack in
their ability to represent a wide range of anomaly scenarios.
SWaT, WADI, and SMD have a limited scope, in that they
focus entirely on point anomalies. MSL and SMAP provide
examples of collective anomalies, but, on the other hand, they
are known to have unlabeled anomalies in the training data,
hampering the effective learning of the ML models [10].



In this paper, we introduce the Robotic Arm Dataset
(RoAD), specifically designed to evaluate Multivariate Time
Series Anomaly Detection (MTSAD) algorithms in an indus-
trial manufacturing setting. As the name suggests, the specific
target of the dataset is a collaborative anthropomorphic ma-
nipulator, a Kuka Lightweight Robot (LR) with seven Degree
of Freedom (DoF), working in a full-fledged production line.

The specific contributions of RoAD are the following:
(i) a significant collection of data sensed by a large number
of heterogeneous sensors, monitoring motion and energy con-
sumption of the robotic arm during a variety of operations;
(ii) the integration of sensed data with synchronized metadata
to fully characterize the performed actions (i.e., pick, place)
and corresponding parameters (i.e., speed, object weight, etc.);
(iii) a realistic representation of different types of fully an-
notated anomalies, incorporating both point and collective
anomalies as separate subsets.

As a secondary contribution, in this paper, we benchmark
several state-of-the-art anomaly detection algorithms on the
RoAD dataset with a two-fold objective. Firstly, to provide
a fair comparison of such algorithms on common ground.
Secondly, to prove the effectiveness and significance of our
newly introduced dataset.

Both RoAD and the benchmarking protocol are freely
released to the research community to encourage future de-
velopment.

II. MONITORING OF A PRODUCTION LINE

In this section, we first provide an overview of the manu-
facturing line used as a testbed. Then, we describe in detail
both the physical structure (depicted in Figure 1) and the
communication infrastructure (depicted in Figure 2) of the
collaborative robotic arm exploited to construct RoAD.

A. Flexible Manufacturing Line

The collaborative robot used as a testbed is a working cell of
the fully-fledged manufacturing line located in the Industrial
Computer Engineering (ICE) Laboratory1, a research facility
of the University of Verona. The production line resembles
a real flexible manufacturing system, enabling the study and
development of research methodologies that can also be ap-
plied in real systems. As such, it does not implement a specific
manufacturing process, but it can be reconfigured by changing
the sequence of processing steps to be performed. It contains
an automatic vertical warehouse, two 3D printers, a milling
machine, a robotic cell with two collaborative robots, a quality
control cell, and an automatic test equipment. A mini pallet
conveyor belt system and two Automated Guided Vehicles
(AGVs) are in place to transport materials between the work-
ing cells. Each machine is controlled by a Programmable
Logic Controller (PLC) or by an industrial PC, implementing
an OPC Unified Architecture (OPC UA) server standardizing
the machine interaction and exposing the machine state vari-
ables and services within the laboratory, following the Service
Oriented Manufacturing (SOM) paradigm.

1The Industrial Computer Engineering Lab: https://www.icelab.di.univr.it/
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Figure 1: KUKA LBR iiwa setup inside the ICE Research
Laboratory. The manipulator is instrumented with different
sensors: 7 accelerometers with 6 axes (one for each joint) and
one single-phase power meter.

The RoAD dataset is focused on the KUKA LBR iiwa
robot, one of the two collaborative robots within the robotic
cell (Figure 1). The system includes: a collaborative robotic
manipulator with 7 DoF with redundant joints (Joint 3 in
Figure 1), a smart gripper with a suction valve, a KUKA
Sunrise Cabinet robot controller, a KUKA smartpad control
panel, and the KUKA software stack that is capable of
receiving the commands and controlling the robot trajectories.

B. KUKA Communication Infrastructure

The hardware components of the KUKA LBR iiwa and the
IIoT communication infrastructure are depicted in Figure 2.
An industrial PC, directly connected to the robot through a
hard-wired field bus (top-left of Figure 2) controls the robot
translating high-level trajectories to low-level movements.
The official KUKA programming interface (KUKA Sunrise
software stack [11]) is installed on top of the industrial
PC to define such trajectories and to program the KUKA.
KUKA Sunrise allows also to define background tasks always
running, such as collision detection and logging tasks; the data
produced by such tasks are published directly to an MQTT
broker. The industrial PC is connected through a Profibus BUS
with a Simatic S7-1200 PLC (bottom-left of Figure 2), which
reads from the robot its state variables and sends start and stop
commands. It also implements a OPC UA server exposing the
robot’s functionalities (i.e., programs) as OPC UA methods
for external components.

Through the KUKA Sunrise programming stack, it is pos-
sible to collect only a subset of the robot’s parameters (either
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Figure 2: Block description diagram the data collection setup.

already collected by the robot or additional ones collected
by sending a query message on the field bus) with limited
frequency. To avoid interfering with the control commands
sent over the field bus, which could cause interruptions of
the robot’s movements, the robot has been instrumented with
additional sensors collecting extra-functional parameters. A
single-phase energy meter (Eastron SDM230) monitors the
energetic consumption of both the robot and the industrial PC.
This energy meter is connected through hard-wired Modbus
with an industrial ESP-32 (Olimex ESP32-EVB), collecting
and sending data to the MQTT broker via Ethernet.

Each robot’s joint’s angle, angular velocity, and accelera-
tion are collected by a series of Inertial Measurement Unit
(IMU) sensors (DFRobot SEN0386) placed on each joint.
The DFRobot SEN0385 module integrates a high-precision
gyroscope, accelerometer, and microprocessor. Before being
published, the raw data collected by the IMU are filtered by a
Kalman filter to reduce the measurement noise. These sensors
are configured to send data at a constant frequency (200 Hz)
on a hard-wired serial.

The software that has been exploited for collecting data
from both the robot and its external sensors, as well as for
sending commands used to construct RoAD, runs on an Nvidia
Jetson Nano directly connected to the sensors and the network
with wired connections (top-right of Figure 2). Each IMU
sensor is connected directly to the Nvidia Jetson Nano through
a USB cable based on the chip CP2102. Data collected are
buffered and written in real-time on an external memory unit
into a compressed data structure to enable reading data at the
maximum frequency.

III. ANOMALY SCENARIOS

The main target of RoAD is to provide a dataset with a
comprehensive set of realistic anomalies that can occur during
the normal operating conditions of the robotic arm, encom-
passing both point anomalies and collective anomalies within
various experimental scenarios. As such, we first identified a
set of robotic actions to monitor, and after, we generated and
annotated a set of anomalies for the chosen actions.

The Kuka Robot is programmed to move materials from
a pallet in front of its working area and its working buffer.
Both the pallet and the robot’s buffer have different positions
that can be used for placing materials identified with different
integer numbers. Specifically, we considered the following
actions (fully described in Table I):

• pickFromPallet(posPlt,posBuf): this action
picks a material from the position posPlt of the pallet
and places it in the position posBuf of the robot’s
buffer;

• placeToPallet(posBuf,posPlt): this action picks
a material from the position posBuf of the robot’s buffer
and places it in the position posPlt of the pallet;

• moveOverPallet(posPlt1,posPlt2): this action
picks a material from the position posPlt1 of the pallet
and places it in the position posPlt2 of the pallet.

We configured the robot to lift a maximum payload of 500 g.
By changing the parameters described above, we defined a
set of operations moving a piece of LEGO DUPLO, with an
average weight of 20 g, from the pallet to the buffer, from
the buffer to the pallet, and over the pallet, for a total of
30 unique actions. Then, we collected data from the robot,
while introducing a number of controlled anomalies into the
process. More specifically, we created three types of scenarios,
exemplified in Figure 3:

(a) Collision recordings. The recordings under this category
contain collision events created by manually interfering
with the action of the robot during its movement in a
very limited time frame. This simulates sudden collisions
between a human worker and a robot, which is a very
hazardous situation in a production line. The so-obtained
anomalies, characterized by abrupt and isolated changes
in the recorded data, fall under the category of point
anomalies, which are the most commonly represented
ones in the MTSAD benchmarking datasets. A portion
of a collision recording is shown in Figure 3(a), together
with the anomaly label associated with each sample. As
can be seen from the plot, the anomaly variable is set to
1 (meaning: one anomaly present) in correspondence to
a collision event, and 0 for the rest of the samples.

(b) Weight recordings. These recordings are acquired after
adding an additional weight of 750 g to the robot’s end
effector, without changing the maximum programmed
payload of 500 g. By doing so, we simulate systematic
issues or long-term trends that need to be addressed.
An example is reported in Figure 3(b), where the added
weight determines acceleration values different than ex-
pected for the whole duration of the recording, which
falls under the definition of collective anomaly. As a
consequence, in this case, the anomaly label is set to
1 (meaning: one anomaly present) for all the samples.
Since they represent slow and steady changes in the data,
collective anomalies may pose a more difficult challenge
for detection algorithms compared to point anomalies.

(c) Velocity recordings. The recordings under this category
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Figure 3: Examples of recordings from the accelerometers
of node 2 with different types of controlled anomalies, and
corresponding anomaly labels.

represent the most complex scenario of anomalies in
RoAD. The anomalies are generated by changing the
trajectory speed of the robot, respectively, to 50% and
75% of the standard velocity. On top of that, the acquisi-
tions also feature sudden collision events, thus creating a
mixed scenario in which purely collective anomalies may
occasionally overlap with point anomalies. An example
is shown in Figure 3(c): in this case, the underlying
collective anomaly determined by the speed change is
represented by the anomaly label 1, and the occasional
occurrence of a collision event is reflected by the anomaly
label suddenly changing from 1 to 2 (meaning: two
anomalies present at the same time).

The number and duration of the recordings falling under
the collision, weight, and velocity categories are reported
in Table III. Details about the other categories will follow.

IV. DATA PROCESSING

After recording, we processed the dataset with the aim
of ensuring that it is suitable for usage with ML models.

After resampling the recordings to 10 Hz, we integrated sen-
sor measurements with information about the specific action
performed by the robot, and we added the anomaly variable
indicating the presence of one or more anomalies, which can
serve as ground truth annotation for training and evaluation
purposes.

We have converted the orientations, originally recorded as
a set of three Euler angles per node to unit quaternions, a
coordinate system consisting of 4-dimensional vectors com-
monly used in robotics. Since the originally recorded orien-
tation is limited to +-180° and movements beyond this limit
wrap around to the opposite side of the available range, this
approach prevents orientation values from suddenly switching
between the previously mentioned extremes when the orien-
tation of a node is near 180°, which may be a source of
confusion for pattern recognition techniques.

In detail, the published data consist of a total of 86 channels.
As represented in Tables I and II, these channels include:

• An ID in the [0,30] range, indicating the current action
of the robot;

• Information about supplied power, current, and voltage;
• Orientation, rotational velocity, acceleration, and temper-

ature for each joint;
• An anomaly label indicating the number of co-occurring

anomalies at a given time (either 0, 1, or 2, as explained
in Section III).

V. BENCHMARKING OF ANOMALY DETECTORS

This section presents the results of benchmarking various
anomaly detection algorithms on the newly introduced RoAD
dataset. On the one hand, the primary objective of this ex-
ercise is to exemplify the application of existing algorithms
and establish their performance in identifying the anomalies
represented in our dataset. On the other hand, the experiments
help demonstrate the significance of RoAD as a benchmark for
designing and validating new anomaly detection algorithms.

A. Models

To achieve our purpose, we have selected a diverse set of
algorithms from the literature, ranging from classical to state-
of-the-art deep learning techniques, in five different groups:

1) Traditional outlier detection methods, where anomalies
are identified based on their higher distance or dissimi-
larity from regular observations in the feature space. In
this category, we tested two classical approaches based
on kNN algorithm [12] and on Isolation Forest [13],
respectively.

2) Reconstruction-based methods, which learn to compress
the data into a latent representation and then reconstruct
it, identifying anomalies by evaluating the reconstruction
error. In this group, we tested different techniques for
the reconstruction: Autoencoder (AE) [14], Variational
Autoencoder (VAE) [15] and Vector Quantized Variational
Autoencoder (VQ-VAE) [16]. All such techniques were
implemented with transformer backbones [17], which
in our preliminary testing, were found to have better



Table I: Dataset metadata description: each action performed
by the robotic manipulator is identified by a unique ID varying
from 0 to 30.

Action Parameters ID

Idle - 0

pickFromPallet(posPlt,posBuf)

posPlt posBuf -
2 1 1
1 1 5
3 1 9
2 2 13
1 2 15
3 2 17
2 3 19
1 3 21
3 3 23
2 4 25
1 4 27
3 4 29

placeToPallet(posBuf,posPlt)

posBuf posPlt -
1 2 2
1 1 6
1 3 10
2 2 14
2 1 16
2 3 18
3 2 20
3 1 22
3 3 24
4 2 26
4 1 28
4 3 30

moveOverPallet(posPlt1,posPlt2)

posPlt posPlt -
2 1 3
1 2 4
1 3 7
3 1 8
3 2 11
2 3 12

performance than convolutional-based ones. This is likely
due to their ability to capture long-range dependencies
in the data, which is a critical aspect of modeling time
series data with periodic components. On top of that, we
performed experiments with Omnianomaly [7], a recent
approach leveraging a combination of stochastic recurrent
neural networks and VAE.

3) Hybrid reconstruction-based methods, where the anoma-
lies are detected by a combination of strategies besides
reconstruction error. In this category, we did experiments
with MAD-GAN [18], where a Generative Adversarial
Network is trained on the data, and the final anomaly
score is a combination of the discriminator score and the
reconstruction score obtained by encoding the data in the
latent generator space.

4) Structure learning methods, where a model tries to ex-
plicitly learn the structure of existing relationships be-
tween variables, identifying anomalies when the learned
relationships are not verified. In this category, we tested
Graph Deviation Network (GDN) [19], a recent technique
exploiting graph neural networks with attention weights
to provide explainability for the detected anomalies.

Table II: Dataset variables description: for each sensor consid-
ered, the related variables are listed. The <X> in the variable
name is a [0,6] label representing the joint where the corre-
sponding IMU sensor is placed on the robotic manipulator.

Dataset Variable Unit Description

action - Robot action ID
apparent_power VA Apparent power
current A Current
frequency Hz Frequency
phase_angle degree Phase angle
power W Power
power_factor - Power factor
reactive_power VAr Reactive power
voltage V Voltage
sensor_id_<X>_AccX m/s2 X-axis acceleration
sensor_id_<X>_AccY m/s2 Y-axis acceleration
sensor_id_<X>_AccZ m/s2 Z-axis acceleration
sensor_id_<X>_GyroX deg/s X-axis angular velocity
sensor_id_<X>_GyroY deg/s Y-axis angular velocity
sensor_id_<X>_GyroZ deg/s Z-axis angular velocity
sensor_id_<X>_q1 - Quaternion orientation comp. 1
sensor_id_<X>_q2 - Quaternion orientation comp. 2
sensor_id_<X>_q3 - Quaternion orientation comp. 3
sensor_id_<X>_q4 - Quaternion orientation comp. 4
sensor_id_<X>_temp ◦C Temperature
anomaly - Anomaly label

5) Sanity-check methods. Besides testing state-of-the-art
techniques, we performed two extra experiments as sanity
checks to demonstrate the validity of the problem posed
by our newly introduced dataset. On the one hand, we
want to verify that the anomalies are not too trivial while
providing a baseline that all methods have to beat. To
do so, we employ the naive algorithm used by Siwon
et al. [20], which consists of a simple method that
models the relationship between data and anomaly score
as the identity function. On the other hand, we want
to verify that identifying the anomalies is possible. We
achieve this by employing a supervised logistic regression
classifier trained on the first half of the test data and
evaluated on the latter half. The ratio is: if the classifier
has an acceptable accuracy, the posed anomaly detection
problem is, in theory, solvable.

All the models implemented from scratch by us (AE, VAE,
and VQ-VAE) have approximately 1 million parameters. This
ensures that they all require a similar amount of time to
train. For the other methods (kNN, Isolation Forest, MAD-
GAN, Omnianomaly, and GDN), we have used their default
hyperparameters provided by the original paper without any
further optimization. We believe this provides a fair evaluation
of the performance of these algorithms out of the box.

B. Benchmarking methodology

In designing the benchmarking process, we carefully con-
sidered the various aspects of evaluating anomaly detection
algorithms, with special regard to the challenges posed by
RoAD.

1) Normalization: Given the diverse nature of the algo-
rithms being benchmarked, it is essential to ensure that the



input data is preprocessed in a consistent manner across all
algorithms. In this regard, we have chosen to apply min-max
normalization fitted on the training data, which scales the
feature values to a specific range (in our case [-1, 1]) and
ensures that all features have equal importance in the compu-
tation of distances and similarity measures. This normalization
technique is compatible with all the algorithms included in our
benchmark and ensures a fair comparison of their performance.

2) Metrics: A critical aspect of evaluating anomaly de-
tection algorithms is the choice of performance metrics.
Traditional approaches in literature have relied on the F1
score, calculated using an empirical threshold. However, this
approach is not ideal for several reasons.

Using data from the test set to optimize a threshold that
separates anomalous from non-anomalous data introduces a
potential bias in the evaluation process, as it allows the algo-
rithm to gain knowledge about the distribution of anomalies
implicitly. The authors of GDN [19] recognize this problem
and try to correct it by designating a validation set on which
to tune the threshold, but this is still a problematic approach,
as it goes contrary to the principle of anomaly detection as
an unsupervised learning task. Since the anomaly detection
framework aims to identify any event that is out of the
expected distribution of data, the threshold, if any, should
be ideally set only based on the characteristics of the non-
anomalous data. This is more representative of the real-world
conditions in which these algorithms would be employed,
where a sizeable and varied dataset of anomalies is either
non-existent or difficult to obtain, and there may be no prior
knowledge of the anomalies.

To address these concerns and evaluate the benchmarked
algorithms’ performance, we calculate the area under the
Receiver Operating Characteristics (ROC) curve, a threshold-
less metric well-suited for comparing algorithms in different
experimental conditions. The ROC curve plots the true positive
rate against the false positive rate at varying threshold values,
and the area under the curve (AUC) provides a single [0, 1]
measure of the algorithm’s ability to identify the anomalous
data points, which in this case represent the positive class. The
higher the AUC, the better the algorithm, irrespective of the
threshold value.

3) Subsets: We have designated a number of distinct sub-
sets to evaluate the performance of the anomaly detection
algorithms. These subsets serve a specific purpose in the
evaluation process, as detailed below.

• Training Set. This subset is used to train the anomaly de-
tection algorithms, allowing them to learn the patterns and
characteristics of the non-anomalous data. The training
set, as the name suggests, does not contain any anomalies
and serves as the foundation for the algorithms to build
their understanding of what constitutes a "normal" data
point.

• Test Sets. These three sets containing anomalies are
used to assess the performance of the anomaly detection
algorithms in terms of obtained AUC-ROC scores. They

are three, one per each of the anomaly scenarios described
in Section III: Collision, Weight, and Velocity.

• Control Set. As already mentioned in Section III, col-
lisions are point anomalies in a data stream of regular
samples, which makes the computation of false positive
rates (i.e., regular samples wrongly classified as anoma-
lies) from which to derive AUC-ROC straightforward.
Conversely, the Weight and Velocity anomalies involve
collective anomalies, where an entire data stream consti-
tutes an anomaly. Thus, to be able to compute AUC-ROC
in such cases, we define an additional Control Set of non-
anomalous data. To avoid any bias in the validation, these
samples are completely independent of the ones of the
Training Set.

Table III reports the number and duration of the recordings
in each described subset.

Table III: Subsets characterization

Subset Recordings Duration (min)

Training Set 9 389.65
Collision Test Set 2 81.92
Weight Test Set 1 31.02
Velocity Test Set 2 69.23
Control Set 1 124.17

C. Results and Discussion

The results of our experiments, in terms of the AUC-
ROC scores obtained by the five groups of models, described
in Section V-A, are presented in Table IV.

Table IV: AUC-ROC scores of the anomaly detection algo-
rithms benchmarked on RoAD

Model Collision Weight Velocity

1) kNN 0.62 0.47 0.54
Isolation Forest 0.65 0.74 0.74

2)

AE 0.51 0.39 0.37
VAE 0.52 0.20 0.23
VQ-VAE 0.56 0.19 0.17
OmniAnomaly 0.67 0.70 0.63

3) MAD-GAN 0.49 0.50 0.52

4) GDN 0.68 0.62 0.67

5) Naive 0.55 0.36 0.27
Logistic Regression 0.92 0.99 0.90

From the results, we can draw several interesting observa-
tions. Firstly, it is evident that the naive algorithm provides
a relatively low baseline, confirming that the RoAD dataset
poses a challenging problem for anomaly detection. The
logistic regression classifier, on the other hand, demonstrates
that the anomalies in the dataset are indeed well-separable
from the non-anomalous data, as indicated by its high AUC-
ROC score in all three subsets. Hence, the anomaly detection
problem posed by the RoAD dataset is non-trivial but yet not
impossible to solve.



The performance of the benchmarked algorithms has signif-
icant variability when applied to RoAD. One of the standout
findings is the consistently good performance of Isolation
Forests. The algorithm demonstrates among the highest AUC-
ROC scores in all subsets, often outpacing even deep learning-
based methods.

Among the other tested algorithms, two that stand out are
GDN and Omnianomaly. These algorithms beat traditional
techniques in the detection of point anomalies, corroborating
similar performance outcomes observed in previous studies.

Autoencoders learn to reconstruct the input data by min-
imizing the reconstruction error during training. Ideally, this
should result in higher reconstruction errors for anomalous
data points compared to non-anomalous ones, allowing the
algorithm to identify anomalies effectively. Yet the lower-than-
random performance of autoencoders on the weights and ve-
locity subsets highlights the limitations of pure reconstruction-
based methods for anomaly detection. The fact that the au-
toencoder achieves lower reconstruction scores for the non-
anomalous data, despite not being part of the training set,
suggests that these data are easier to model due to the lower
moving speed of the robot arm, leading to lower reconstruction
errors compared to the control data.

VI. DATA AVAILABILITY

RoAD, as well as the Python code implementing the nor-
malization methodology described in Section V-B, are freely
available at https://gitlab.com/AlessioMascolini/roaddataset/.
To ease the ML developers, the dataset is a pip-installable
package that can be directly integrated into a Python project.

Besides the ML-ready dataset, which is specifically intended
for the validation of anomaly detection techniques, the same
acquisitions are available on Zenodo (further details in the
repository) at the original sample rate of 200 Hz. This may
help in applications that typically benefit from high-frequency
information, such as simulation and trajectory planning.

VII. CONCLUSIONS

In this paper, we introduced RoAD, a dataset specifically
designed to support the development and validation of Multi-
variate Time Series Anomaly Detection (MTSAD) algorithms
in an industrial manufacturing setting. For this purpose, RoAD
collects a large set of heterogeneous data from a robotic arm
and represents an exhaustive and realistic set of different types
of anomalies, fully annotated to serve as the ground truth for
the validation.

Besides characterizing RoAD, we benchmarked several ex-
isting anomaly detection algorithms on it, including classic
and state-of-the-art ML models. Even the best-performing
algorithms in our benchmarking study do not achieve very high
AUC scores. This suggests that our dataset poses a complex
and challenging problem that cannot be fully addressed by
the existing approaches, providing ample opportunity for the

development of more sophisticated and advanced anomaly
detection algorithms.
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