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a b s t r a c t

In recent years, domain randomization over dynamics parameters has gained a lot of traction as a
method for sim-to-real transfer of reinforcement learning policies in robotic manipulation; however,
finding optimal randomization distributions can be difficult. In this paper, we introduce DROPO, a
novel method for estimating domain randomization distributions for safe sim-to-real transfer. Unlike
prior work, DROPO only requires a limited, precollected offline dataset of trajectories, and explicitly
models parameter uncertainty to match real data using a likelihood-based approach. We demonstrate
that DROPO is capable of recovering dynamic parameter distributions in simulation and finding a
distribution capable of compensating for an unmodeled phenomenon. We also evaluate the method
in two zero-shot sim-to-real transfer scenarios, showing successful domain transfer and improved
performance over prior methods.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past decade, there have been significant research
dvances in reinforcement learning (RL), resulting in a variety
f success stories, from playing Atari games [1] to defeating
he world champion in Go [2]. These successes have sparked
lot of interest in RL among roboticists; however, due to low

ample efficiency of most algorithms, the challenge of accessing
ignificant data collections at training time, as well as the need
or random exploration resulting in the risk of hardware damage,
pplications of RL in robotics have been lagging behind.
A promising approach to solve the problem of limited data

vailability is to use simulated environments for training the RL
gents, and to later deploy them on real-world physical sys-
ems [3–5]. However, while this solves the problem of fast and
afe data collection, inaccuracies in simulation caused by, e.g., un-
ertainty over physical parameters and unmodeled phenomena,
ay result in policies that do not transfer well to the real system.
uch discrepancy is commonly known as the reality gap.
One can aim for more generalizable RL agents by performing

he training over multiple variants of the environment, varying in
ppearance [5–8], dynamics parameters [4,9–13], or both [14,15].
his technique, known as domain randomization (DR), has proven
o be successful in a range of robotics setups. However, finding
ell-performing domain randomization distributions over physi-
al parameters can be difficult [16]—the distributions need to be
ide enough to encompass the plausible true parameter values in

∗ Corresponding author.
E-mail address: karol.arndt@aalto.fi (K. Arndt).
ttps://doi.org/10.1016/j.robot.2023.104432
921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
the real world, or make up for phenomena which are specific to
the real system but are not modeled in the simulator [17]. At the
same time, the DR distribution needs to allow for convergence
while training a single policy that performs well across all the
randomized environments, especially in the zero-shot transfer
scenario. Therefore, there has been an increasing research interest
in developing approaches to automate DR [18–22].

In this paper, we introduce Domain Randomization Off-Policy
Optimization (DROPO), a novel method for automatically infer-
ring domain randomization distributions. DROPO fits a dynamics
parameter distribution to an offline dataset using a likelihood-
based metric, which explicitly maximizes the probability of ob-
serving real-world data in simulation. The simulator can thus
be thought of as a stochastic forward model whose randomness
arises from variability in the physical parameters of the scene.
Our approach, outlined in Fig. 1, departs the trend of online-
adaptive DR—where data from the target domain is collected
on-policy during the parameter optimization process, requiring
iterative access to the real-world setup [15,18,21,23]—and follows
the recently introduced offline setting [20], while using a proba-
bilistic metric to encourage variance in the converged parameter
distributions. This allows DROPO to optimize DR distributions us-
ing only precollected data (e.g. human demonstrations) without
suffering from the distributions collapsing to point estimates due
to L2-based loss functions. In contrast to previous claims [19], our
findings support that a likelihood-based method can be effort-
lessly implemented with a non-differentiable black-box simulator
and gradient-free optimization techniques.

The contributions of this work are: (1) introducing DROPO, a

novel method for offline optimization of domain randomization

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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istributions given safely collected data, (2) an experimental eval-
ation of DROPO to show convergence to ground truth dynam-
cs distributions, (3) demonstrating that domain randomization
istributions obtained with DROPO can be used to successfully
rain control policies in the presence of unmodeled phenomena,
4) showing that RL policies can be directly transferred to the
eal world when trained in simulation on DROPO’s dynamics
istributions. The source code for running DROPO with arbitrary
ffline datasets is publicly available.1

. Related work

Domain randomization as a method for training generalizable
einforcement learning policies has been widely studied over the
ast few years, both in the context of computer vision [5–8],
ynamics models [4,9–13] and both at the same time [14,15]. A
ajor challenge, however, is that domain randomization requires

he randomization distributions for each parameter to be speci-
ied when the model is trained. DR essentially trades optimality
or robustness: using too wide ranges may have negative impact
n the training, making it difficult for the agent to learn a single
olicy that generalizes to such a wide range of dynamics, while
sing too narrow ranges would bias the model towards a small
et of dynamics values and thus possibly hinder generalization
o the real world, as in the case of system identification of
oint-estimate dynamics [24,25].
To this end, multiple methods for automatically tuning the

andomization ranges were proposed, such as minimizing dis-
repancy between simulated and real trajectories [21] or di-
ectly maximizing the expected real-world return [23]; however,
s these methods explicitly ask for real-world feedback during
he process, they require access to and careful supervision of
he physical setup in order to run the policy trained on the
ntermediate DR distributions.

To relax these requirements, DROID [20] proposed a setting
here the DR distribution is optimized using a fixed, offline
ataset pre-collected in the target domain, aiming to improve
ata-efficiency and reduce safety risks coming from rolling out
olicies trained in unconverged dynamics in contact-rich tasks.
his framework reduced the real-world interaction to a single
ata collection step performed before parameter optimization;
dditionally, this setting does not make any assumptions about
he data collection procedure, allowing it to be collected with an-
ther policy, or through human demonstrations. Our method fol-
ows the same problem setting, but differs from DROID in that it
ses a likelihood-based objective function and optimizes the dis-
ribution variance in addition to the mean. We provide a thorough
omparison between our method and DROID in Section 4.
A variation of this offline setting, where the real-world data

ollection policy is assumed to be available, was addressed in
ayesSim [19]. Under this assumption, BayesSim trains a neural
etwork to predict dynamics parameter posteriors using trajec-
ories collected in simulation by the given policy under a variety
f dynamic conditions. Trajectories collected by the same policy
n the real world setup are then passed to the trained net-
ork to predict the dynamics parameter distributions in the real
orld. Similar to our work and DROID, BayesSim does not require
ccess to the real hardware during optimization; however, it
till assumes the data collection policy to be available during
ptimization. In contrast, we propose a maximum likelihood-
ased framework which does not require the data collection
olicy to be known, making it more suitable for use with human
emonstrations. We provide a detailed comparison between our
ethod and BayesSim with human demonstrations in Section 4.

1 https://github.com/gabrieletiboni/dropo.
2

Fig. 1. DROPO uses off-policy data or human demonstrations to learn a domain
randomization distribution, which is later used to train a policy that can be
directly transferred to the real world.

Other works followed a different approach for applying do-
main randomization, by keeping a fixed range of the physical pa-
rameters and, instead, relying on intelligent sampling techniques
to improve generalization: [22] guides training on increasingly
harder environment variations, while [26] increases the number
of sampled simulated environments until satisfactory transfer
behavior is reached.

Finally, approaches based around differentiable physics sim-
ulators were also devised [27]. While DROPO could in principle
be used with a differentiable simulator, allowing for the use of
a gradient-based optimizer, we do not make any assumptions
about the differentiability of the simulator in this work.

3. Method

3.1. Background and problem formulation

A Markov decision process (MDP) M is described by its state
space S , action space A, initial state distribution p(s0), state
transition distribution p(st+1|st , at ) and the reward distribution
(rt |st , at , st+1). Each episode begins with an agent starting in
tate s0 ∼ p(s0). At each step, the agent selects an action a fol-
lowing a policy π (a|s). The problem addressed in reinforcement
learning is then to find an optimal policy π∗(a|s), such that the
xpected cumulative reward (the return) is maximized.
In the domain transfer scenario, we can view the real world as

n MDP with state transition probabilities preal(st+1|st , at ), with
he simulation additionally parameterized by the dynamics pa-
ameter vector ξ : psim(ssimt+1|st , at , ξ ). We assume that both MDPs
hare the state and action spaces, the initial state distribution, and
he reward function.

Under this formulation, the problem we address in this work
an be stated as follows: given a dataset of real-world state–
ction trajectories D = {s0, a0, s1, . . . , sT }, find the distribution
∗(ξ ) such that the likelihood of transitioning to the real state st+1
hen taking action at while in st is maximized over the dataset:

∗(ξ ) = argmax
p(ξ )

E
st ,at ,st+1∼D

psim(st+1|st , at , ξ ). (1)

ξ∼p(ξ )

https://github.com/gabrieletiboni/dropo
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Fig. 2. Overview of the main stages of DROPO. The dynamics parameter dis-
tribution is optimized to maximize the probability of observing the collected
dataset in simulation.

3.2. Method overview

DROPO consists of three main steps: dataset collection on the
eal hardware, dynamics distribution fitting, and policy training.
n overview of the method is presented in Fig. 2 with a step-
y-step walkthrough of dynamics distribution fitting presented
n Algorithm 1.

Algorithm 1: DROPO
Result: Parameters φ∗ of pφ∗ (ξ )

1 Initialize φ to (µinit , Σinit ) ;
2 Initialize empty dataset D ;
3 Fill D with trajectories from the target domain ;
4 while not converged do
5 Sample a set Ξ of K random dynamics ξ ∼ pφ(ξ ) ;
6 forall st , at..t+λ−1, st+λ ∈ D do
7 forall ξk ∈ Ξ do
8 Set simulator parameters to ξk ;
9 Set the simulator state to st ;

10 Execute actions at..t+λ−1 ;
11 Observe sξkt+λ ∼ psim(ssimt+λ|st , at..t+λ−1, ξk) ;
12 end
13 Compute the mean s̄φt+λ and covariance Σ

φ

t+λ (Eq.
(2));

14 Evaluate the log-likelihood Lt of st+λ under
N (s̄φt+λ, Σ

φ

t+λ) (Eq. (3));
15 end
16 Compute the total log-likelihood L =

∑
t Lt ;

17 Update φ towards maximizing L ;
18 end
19 Train a policy with DR using the converged pφ∗ (ξ ) ;

The data collection step is where the dataset D, used for
parameter optimization, is collected on the physical hardware.
This can be done either by running any previously trained pol-
icy (e.g., a policy for another task) or by manually guiding the
robot through kinesthetic teaching. Since DROPO uses offline, off-
policy data, there is no need to collect additional data at later
stages. This is also the only step where the physical hardware
is necessary—all later steps of the method are performed in
simulation, up until the final deployment.

The core part of DROPO is the second step, where the domain
randomization distribution pφ(ξ )—parameterized by φ—is opti-
mized to maximize the likelihood of real-world data. In particular,
the likelihood is computed w.r.t. the next-state distribution under
φ, which can be expressed as the marginal probability density
psim(ssimt+1|st , at , φ) =

∫
psim(ssimt+1|st , at , ξ )pφ(ξ )dξ . To approximate

this integral, the state–action pair (s , a ) in question is executed
t t t

3

multiple times through simulators with different dynamics pa-
rameters ξk sampled from pφ(ξ ) (steps 7–12 in Algorithm 1). By
doing so, the resulting next-state distribution psim(ssimt+1|st , at , φ)
ay be estimated, which captures uncertainty induced by both

he simulator dynamics and the given DR distribution. The pa-
ameters φ of pφ(ξ ) are then adjusted to maximize the likelihood
f the real st+1 under psim(ssimt+1|st , at , φ).
We can further generalize the algorithm by allowing to step

he simulator by more than a single step during the inference
rocess. This mechanism allows to pick a desired evaluation
requency—regardless of the sampling rate of collected data—and
o increase the signal-to-noise ratio in the difference between
uccessive states. This results in an additional hyperparameter
∈ N+, which controls how many successive actions are exe-

uted in the environment before evaluating the log-likelihood of
he real st+λ under psim(ssimt+λ|st , at..t+λ−1, φ). This generalization is
eflected in step 10 of Algorithm 1.

Once the parameter optimization process has converged, the
esulting distribution pφ∗ (ξ ) is used to train a policy in the third
tep of DROPO. This policy can then be deployed on the setup that
he data was collected from in the first step.

.3. Data collection

The first step of DROPO is to collect the state–action trajectory
ataset D, which is going to be used for domain randomization
arameter optimization. This dataset can either be collected from
uman demonstrations, or by running a previously trained, safe
olicy in the environment. Regardless of the method used, the
ata should be collected in such a way that allows for identifica-
ion of the relevant dynamics parameters; for example, it will not
e possible for DROPO to infer the friction coefficient of an object
hat does not move during demonstrations.

In case demonstrations are provided, the true actions are not
irectly known and need to be inferred based on the measured
tate sequence using an inverse dynamics model. While learning
nverse dynamics may be a challenging problem in itself, in cer-
ain environments—such as position- or velocity-controlled robot
rms—this inference can be simplified under the assumptions
hat the robot’s on-board controllers are perfect. While this is
ever the case in real-world systems, we found that DROPO was
ble to handle this discrepancy.
Once collected, the dataset is preprocessed in order for the

tates to be directly replicable in simulation. First, data from
ifferent sensor modalities needs to be synchronized; this is
ecause data from position measuring devices, such as motion
apture systems, is likely to be delayed w.r.t. robot joint posi-
ion measurements. Additionally, it is necessary to ensure that
he data is sampled with the same frequency as the simulated
nvironment timesteps. To achieve this, we fit an Akima spline
o all sensor measurements and evaluate it at each environment
imestep. We chose the Akima interpolation method over a cubic
pline, as it prevents the values from overshooting in-between
ampled points.

.4. Distribution fitting

Once a preprocessed dataset is available, we move on to the
ore part of DROPO—estimating the dynamics probability distri-
ution pφ(ξ ).
In our method, the optimized parameter vector φ includes

oth the means and variances of each univariate distribution,
ssuming uncorrelated parameters. Therefore, with a dynam-
cs parameter vector ξ ∈ Rd, the parameterization is repre-
ented by a 2d-dimensional vector φ ∈ R2d. This is in contrast

o DROID [20], where only the means are optimized while the
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tandard deviations are taken from the CMA-ES optimization
istribution instead. This change allows to explicitly learn the
ariability of each simulated physical parameter to best explain
eteroschedasticity and uncertainty in real-world data. DROPO
an thus be thought as a random coefficient statistical model,
here the optimized coefficients are themselves assumed to be
andom variables, as opposed to the more standard fixed-effects
egression analysis.

The distribution fitting process starts with an arbitrary initial
uess φinit = (µinit , Σinit ) on the dynamics distribution, roughly
nformed by looking at the replayed trajectory in sim. The main
nference part follows by sampling K dynamics parameters from
φ(ξ ). Then, for each parameter vector ξk, we set the simulator
tate to the original real state st , execute the real action sequence
t..t+λ−1 and observe the next state sξkt+λ. This process allows us
o estimate the next-state distribution psim(ssimt+λ|st , at..t+λ−1, φ),
odeled as a Gaussian distribution. In particular, we infer the
orresponding mean and covariance matrix as follows:

s̄φt+λ =
1
K

∑
k

sξkt+λ

Σ
φ

t+λ = Ĉov(psim(ssimt+λ|st , at..t+λ−1, φ)) + diag(ϵ),

(2)

where Ĉov(·) is the unbiased sample covariance matrix estimator.
Here, ϵ is a hyperparameter used to compensate for observation
noise and regularize the likelihood computation in case singular
covariance matrices would appear—e.g. due to directions of vari-
ance in the state space unexplainable by the simulator dynamics.
Tuning this hyperparameter will, effectively, adjust how much
next-state variance is to be modeled by variance in dynamics
parameters, relative to observation noise. As demonstrated in
our experiments, setting this parameter to too low values may
result in obtaining an overly wide randomization distribution:
in the extreme case of ϵ = 0, DROPO would attempt to model
all phenomena that cannot be reproduced in a single simula-
tion by variability in the dynamics, potentially overfitting to
noise or unmodeled effects. However, increasing ϵ to excessively
large values will eventually lead to over-regularization and point-
estimate dynamics, as all unexplained variance would be modeled
as observation noise, falling back to pure system identification.
To ensure stability while promoting variance in the dynamics
parameters, we propose to tune ϵ by increasing it until the Mean
quared Error (MSE) between real and sim trajectories no longer
eaningfully decreases—similarly to the Elbow method popularly
sed in machine learning. We present a thorough analysis of the
mpact of the ϵ parameter in the Experiments section.

After observing the resulting simulator states, we make the
assumption that the true, real-world observation st+λ originates
from the next-state distribution induced by dynamics randomiza-
tion: st+λ ∼ N (s̄φt+λ, Σ

φ

t+λ)
The log-likelihood of st+λ under this distribution can be then

calculated following the standard Gaussian formula (ignoring the
constant term)

Lt =
1
2
(log detΣφ

t+λ + (s̄φt+λ − st+λ)⊤Σ
φ

t+λ

−1
(s̄φt+λ − st+λ)) (3)

The log-likelihoods of each individual transition can then be
summed to obtain the total log-likelihood of the dataset D under
pφ(ξ ): L =

∑
t Lt

We finally adjust the parameters φ to maximize the total log-
likelihood L. As we do not make any assumptions about the
differentiability of the simulator, we optimize L using a gradient-
free optimization method. DROPO can, in principle, work with an
arbitrary optimization method; we use CMA-ES [28] throughout
the experiments, with initial scale of 1 and optimization param-
eters normalized linearly (means) or in log scale (variances) to
4

the interval [0, 4]. Note that, in order to further improve stability,
we model pφ(ξ ) as an uncorrelated truncated normal distribution
bounded to values within two standard deviations away from the
mean, with consecutive resampling when unfeasible parameters
are drawn (e.g. negative masses).

3.5. Policy training

The policy π (a|s) is trained for the given target task entirely in
simulation using the converged domain randomization distribu-
tion pφ(ξ ). This is achieved by sampling new dynamics parame-
ters ξ ∼ pφ(ξ ) at the start of each training episode. The RL policy
can then be trained with an arbitrary reinforcement learning
algorithm; we use Proximal Policy Optimization (PPO; [29]) and
Soft Actor–Critic (SAC; [30]) in our experiments. The trajectories
coming from the offline dataset are not used in any way during
the policy training process; as such, the demonstrations are not
required to be specific to the particular task, as long as they allow
the relevant dynamics parameters to be identified.

4. Experiments

The experimental evaluation aims to answer the following
questions:

1. is DROPO capable of recovering the original dynamics pa-
rameters and randomization distributions in simulated en-
vironments?;

2. is DROPO capable of training a policy that can solve the task
and transfer when unmodeled phenomena are present in
simulation?;

3. how does the value of the ϵ hyperparameter affect the
obtained domain randomization distribution?;

4. what is the real-world performance of policies trained with
DROPO compared to DROID [20], BayesSim [19], and uni-
form domain randomization (UDR)?

4.1. Benchmark methods

Throughout our experiments we benchmark UDR similarly
to [23], as we assess the average performance of several policies
trained on different uniform bounds. More precisely, we train
10 policies with DR on 10 uniform bounds respectively, which
are randomly sampled from the search spaces reported in the
corresponding tables. This would reflect how manually picking
uniform distributions within a reasonable search space affects the
final performance.

Furthermore, in contrast to the original paper on DROID [20],
we replaced torque measurements with the raw state vectors
when implementing the DROID baseline. This modification makes
more sense for the pushing and sliding tasks that we use for
evaluation, as joint torques do not express enough information
about the object being manipulated by the robot, especially for
the sliding task—in contrast to the door opening task used in
the original DROID paper. The CMA-ES implementation used in
DROPO and DROID is provided by Nevergrad [31].

Finally, in order to adapt BayesSim to the offline setting with
human demonstrations (where the data collection policy is not
available), we repeat the original action sequence during data
collection. Besides this modification, we make use of the original
open-source repository provided by [19]. In most experiments,
we evaluate both neural network (MDNN) and quasi-random
Fourier (MDRFF) features and report the better result for brevity.
An exception to this is the sim-to-real experiment with the Panda
robot, where results with both features are reported in order
to compare the generalization capability of both variants. Since
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ayesSim uses mixture Gaussian distributions, the distribution in-
erence results reported in the tables and plots in this section are
ndependent Gaussian approximations of the complete results,
or the sake of brevity. The complete BayesSim posteriors can be
ound in Appendix D.2.

.2. Hopper

In the Hopper environment [32], a one-legged robot is tasked
o learn to jump forward as fast as possible without falling down.
his environment has been used as a standard control benchmark
n a variety of papers [18,29,30,33]. We introduce parameter
andomization to this environment by varying the mass of each
ink. We use this environment as a simple benchmark to test
ROPO’s capability of identifying the dynamic parameters of the
ystem and recovering the parameter distribution that was used
o generate the dataset. We later introduce an unmodeled effect
n the form of a misspecified mass (which is not included in the
ptimization problem), similarly to [18]. Given the simple sim-
o-sim scenario, the offline trajectories for running DROPO have
een collected by rolling out semi-converged policies trained
irectly in the target domain.

.2.1. Point-dynamics system identification
When the offline dataset is collected on a single Hopper en-

ironment instance, DROPO is expected to identify the target
hysical parameters and to converge to point-estimate dynamics
ather than distributions. We tested this behavior on the Hopper
nvironment by collecting two trajectories (1000 state transitions
orresponding to 8 s of wall time) on the ground truth dynamics
hown in Table 1, both with and without noise of variance 10−5

njected in the offline observations. The results are reported in
he same table, as DROPO achieved convergence to the original
ynamics regardless of the presence of noise and effectively de-
reased the standard deviation of learned parameters to 10−5, set
as the lowest bound during the optimization problem.

In the point-estimate dynamics estimation, DROID also con-
verged to the ground-truth parameter values, with a lower stan-
dard deviation than DROPO (as CMA-ES does not impose any
lower bounds on the variance). Thus, both DROPO and DROID
perform virtually the same in this benchmark.

On the other hand, BayesSim overestimates the distribution
variance and does not accurately recover the mean parameter
value. This is in line with the results reported in the original pa-
per [19], where the resulting posterior distribution is much wider
than the ground-truth values used for data generation. While
wider distributions may benefit generalization, BayesSim falls
short of DROID and DROPO in terms of pure system identification
capabilities.

4.2.2. Recovering the dynamics distribution
In this experiment, the dataset D was collected while varying

the target dynamics according to some ground truth distribution
p(ξ ), which we want to recover. We collected two trajectories on
the Hopper environment, varying all masses as mi ∼ N (µi, 0.252)
around their original values µi every 25 state transitions, except
or the torso mass which was kept fixed. Since BayesSim expects
he input to be trajectories collected from a single dynamics
etting rather than a set of transitions, we had to use a different
est procedure for this baseline; namely, we sample multiple
ynamics conditions from the true distribution and run BayesSim
ndividually for each of them. The resulting distribution is then
btained by marginalizing the output distribution over the input
ynamics distribution.
The results are reported in Fig. 3, which shows DROPO suc-

essfully learning the original variance of the randomized masses,
5

Fig. 3. Dynamics distributions optimized by DROPO, DROID and BayesSim on
offline data collected from a distribution of Hopper environments (indicated by
the shaded areas). The distributions are displayed with 2σ -wide ranges centered
on their means.

in addition to their means. We believe that such explainability
is only possible when explicitly optimizing parameters through
probabilistic distance metrics, as DROID’s L2-based cost function
fails at providing wide distribution ranges on the randomized
masses. Note how BayesSim, while preserving some variance
in the converged distributions, resulted in much less accurate
dynamics distribution estimates. Analogously to the previous ex-
periment, a noisy version of the dataset has also been tested,
yielding similar results.

4.2.3. Unmodeled phenomena
Finally, we also tested DROPO’s ability to compensate for

unmodeled phenomena in simulation by assessing the complete
transfer to a target simulator from an under-modeled source
domain. We introduced such unmodeled effect by misspecifying
the Hopper torso mass by 1 kg in the source simulator and
excluding it from the optimization space. Hence, each method
may only optimize the means and variances of the remaining
three masses to match the target transitions, and cannot adjust
the incorrect torso mass.

To perform this evaluation, we first ran each method to infer
the dynamics distribution given the same noiseless data as in
Section 4.2.1. Since there are no ground-truth domain parame-
ter values that could be used as a reference when unmodeled
phenomena are present, the domain randomization distributions
cannot directly be used to quantitatively compare the estimated
dynamics parameters. Instead, we used the obtained distributions
for policy training in the environment with a misspecified mass,
and evaluated the resulting policies in the original environment
where data was collected. We repeated this process 3 times for
each method, with different random seeds. The policies were
trained with SAC [30].

The results of this evaluation are presented in Fig. 4, to-
gether with a policy trained directly in the target environment
to provide a notion of the upper bound. We observe that policies
trained with DROPO’s randomization distributions outperform
all baseline methods, almost matching the policy trained in the
ground-truth environment in terms of performance. At the same
time, the policies obtained with DROID and BayesSim perform
much worse. Note how some UDR policies are at times able to
generalize well to the target environment, suggesting that the
task could be solved by manual trial and error with different
uniform bounds.

To provide more insight into these results, we can look at
the converged domain randomization distribution reported in
Table 1. Note how, even though the target dataset has been
collected on point-dynamics parameters, DROPO converges to a
distribution over the three randomized masses. This behavior is
indeed expected, as due to the unmodeled phenomenon intro-

duced, a single point-estimate parameter vector is not able to
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Fig. 4. Sim-to-sim: episode returns in the target Hopper environment, com-
paring policies trained directly in the target environment, and trained in
the environment with a misspecified torso mass using domain randomization
distributions inferred by DROID, DROPO and BayesSim.

accurately reproduce all transitions in the target dataset. There-
fore, DROPO widens the dynamics distribution to maximize the
likelihood of target-domain data to be observed in simulation. In
addition, the optimized means are now much different from the
ground truth parameters. On the other hand, the results show
that—just like in the distribution recovery experiments—DROID is
eager to converge to point-estimate parameters, in order to min-
imize the L2-distance based objective function (see Appendix A
for an intuitive explanation of this phenomenon). Such a policy
performs well in the training environment, but fails to generalize
to the test conditions.

Furthermore, notice how BayesSim produced distributions
ith means located close the center of the search space with large
tandard deviations. As such, it was able to learn a successful
olicy that works over a range of dynamics parameters, including
he environment where the unmodeled phenomenon is present.
owever, excessively large standard deviations result in overly
onservative policies that produce a slower forward motion than
ROPO, resulting in a lower return. We suspect that this might
e caused by the domain shift between the training data collected
rom the simulation with misspecified mass and the data from the
eal environment used to infer the randomization distribution.
n BayesSim, the inference network is trained on trajectories
btained from the simulator, each collected in different dynamics
onditions. As a result, any trajectory that cannot be reproduced
y single dynamics conditions in simulation will effectively lie
utside of the inference network’s training domain. Thus, we
laim that any task involving unmodeled phenomena or un-
odeled noise is substantially difficult for the BayesSim neural
etwork, as the evaluation domain does not match the training
omain anymore. Later, we obtained similar results in the Panda
im-to-real experiments, as described in Section 4.3.2.
To summarize, we observe that a combination of both system

dentification and domain randomization is essential to solve the
ask under this unmodeled effect, as neither UDR—pure unopti-
ized domain randomization—nor DROID—which converged to a
oint-estimate—result in a successful zero-shot transfer.

.2.4. The domain variance–observation noise tradeoff
Throughout our experiments, we observed that introducing

he ϵ hyperparameter is generally beneficial to obtain more stable
nd sound results (see Section 3). This turned out to be particu-
arly effective when optimizing the estimated likelihood function
n presence of noise or unmodeled effects. However, overly large
alues of ϵ should be avoided to prevent DROPO from converging

to point-estimate dynamics parameters. To study this trade-off,
we report a thorough sensitivity analysis on this hyperparame-
ter, showing its impact on the final performance of DROPO for
6

Table 1
Optimized dynamics distributions on Hopper OpenAI Gym environment. The
ground truth values indicate the simulator instance used during data collection

Masses (kg) m1 m2 m3 m4

Ground truth 3.534 3.927 2.714 5.089

min 1.767 1.963 1.357 2.545Search
space max 7.069 7.854 5.429 10.18

µ∗ 3.534 3.927 2.714 5.089DROPO
ϵ=1e−8 σ ∗ 1.0e−5 1.1e−5 1.1e−5 1.0e−5

µ∗ 3.534 3.927 2.714 5.089DROID
σ ∗ 1.2e−12 2.1e−12 2.0e−12 1.1e−12

Noiseless

µ∗ 3.350 5.342 3.994 5.560BayesSim
σ ∗ 0.697 0.707 0.686 0.541

µ∗ 3.531 3.931 2.717 5.093DROPO
ϵ=1e−5 σ ∗ 8.1e−3 1.3e−3 1.3e−3 2.4e−4

µ∗ 3.534 3.927 2.714 5.089DROID
σ ∗ 1.2e−12 2.4e−11 2.0e−12 1.2e−12

µ∗ 6.295 4.002 3.486 3.771

Noisy

BayesSim
σ ∗ 0.218 0.257 0.245 0.256

µ∗ 4.707 3.181 4.385DROPO
ϵ=1e−3 σ ∗

2.534
(fixed) 0.667 0.206 0.826

µ∗ 4.021 3.591 4.845DROID
σ ∗

2.534
(fixed) 6.0e−6 1.7e−6 4.2e−6

µ∗ 3.493 2.901 4.596

Unmodeled

BayesSim
σ ∗

2.534
(fixed) 1.576 1.471 1.537

the previously described Hopper experiments and describing our
tuning procedure in more detail.

The results of point-dynamics recovery in Hopper with varying
ϵ are presented in Fig. 5. We observe that, for a low value
of ϵ, DROPO overestimates the standard deviation in the noisy
setting, as it attempts to explain the random variation in next-
states by variance in dynamics. However, for ϵ values equal to
the noise variance (or higher), DROPO converges to very low
standard deviations, corresponding to a point-estimate of dynam-
ics parameters and leading to a significant drop in MSE. The
MSE is computed w.r.t. the converged distribution φ∗ obtained
y DROPO, as follows: MSE(φ∗) =

∑
t ∥(s̄

φ∗

t+1 − st+1)∥2. This
etric resembles the trajectory discrepancy function adopted by
revious works [20,21], and we propose to use it as a reference to
each a stable optimization process and account for observation
oise when tuning ϵ. Note how, in the same figure, the MSE
rop is not as clear for the noiseless setting: here, ϵ only serves
he purpose to regularize the log-likelihood computation, which
ould be ill-conditioned with too low values (e.g. ϵ = 10−10

n Fig. 5(b)) as close-to-singular covariance matrices may appear
hen estimating the next-state distribution.2
We observe a similar phenomenon in the dynamics distri-

ution recovery scenario (Fig. 6). Small ϵ values result in an
xcessively large variance in masses in presence of noise, while
orrectly identifying the ground-truth distribution in the noise-
ess case. As ϵ grows larger, more of the variety in next-states
ets attributed to noise and the estimated dynamics distributions
ove towards point dynamics, both in the noisy and noiseless
ase. The best ground-truth distribution recovery is observed
hen ϵ matches the true noise variance, which also corresponds
o the sharp drop in MSE observed in Fig. 6(b)—thus validating
he proposed tuning process.

Finally, we report similar observations for the unmodeled
henomenon experiment (Fig. 7), where—as ϵ increases—unexpl-

2 Adding a small value ϵ to the diagonal of an ill-conditioned covariance
matrix has the effect to increase all eigenvalues by ϵ, thus making the likelihood
computation more stable.
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Fig. 5. Epsilon sweep on point-estimate dynamics recovery: (a) shows the
converged distributions in the noiseless and noisy (σ 2

= 10−5) cases, (b) shows
ow the MSE changes with ϵ (results averaged over 4 random seeds).

Fig. 6. Epsilon sweep on dynamics distribution recovery: (a) shows the con-
verged distributions in the noiseless and noisy (σ 2

= 10−5) cases, (b) shows
how the MSE changes with ϵ (results averaged over 4 random seeds).

ainable effects in state space due to under-modeled dynam-
ics get attributed to noise, stabilizing the optimization problem.
Once again, we tuned ϵ based on the MSE observed in Fig. 7(b),
and picked ϵ = 10−3, which is where the MSE values stop
to meaningfully improve. As observed in Fig. 7(a), this value
closely approximates the mean obtained with higher ϵ values,
while preventing the distribution from collapsing due to exces-
sive regularization. To this end, we would like to emphasize that
a conservative choice may always be made with DROPO when
tuning the value of ϵ: higher values will only shift DROPO towards
lower standard deviations (eventually providing similar results to
DROID), while allowing a desirably low MSE to be obtained.

Note how the proposed tuning procedure draws similarities
to the elbow method popularly used in machine learning, e.g. to
find the best number of clusters in clustering analysis or the
number of principle components to retain in principal component
analysis.

4.3. Robotics experiments

We further evaluate DROPO on two sim-to-real robotics se-
tups: a hockey puck sliding and a box pushing task.

4.3.1. HockeyPuck
In the HockeyPuck setup, the Kuka LWR4+ is equipped with

a hockey stick and tasked with hitting a hockey puck such that
it stops at the given target location. For this setup, we use an
ice hockey puck and a whiteboard as a low-friction surface for
the puck to slide on. The simulation environment is built in
MuJoCo [34] akin to the real-world setup. Both setups are shown
in Fig. 9. The yellow puck and the purple area in Fig. 9(a) show
the initial position of the puck and the range of possible goal
positions.

In this setup, the actions are whole hitting trajectories; this
is achieved by first training a variational autoencoder (VAE) on
7

Fig. 7. Epsilon sweep on the unmodeled phenomenon experiment: (a) shows
the converged distributions, (b) shows how the MSE changes with ϵ (means
and variances averaged over 8 seeds).

a range of task-specific trajectories, and later using the decoder
as a trajectory generator, with actions given in the latent space
of the VAE, following [6,35]. This simplifies the reinforcement
learning problem by turning it into a contextual multi-armed
bandit problem.

The demonstrations for optimizing the parameter distribution
are obtained by rolling out 5 random trajectories of 750 tran-
sitions (or 7.5 s) each, sampled from the latent space of the
VAE (z ∼ N (0, I)). The joint positions are obtained using the
obot’s internal sensors, while the positions of the hockey puck
re obtained with OptiTrack, a motion capture system, with the
requency of 120 Hz. During the post-processing, the data is
ynchronized, the positions are resampled to match the simulated
imesteps of the simulated environment, and the velocities are
btained by taking the derivative of the spline used to resample
he signal.

The state space used for dynamics fitting with DROPO contains
he positions and velocities of the robot joints and the hockey
uck. The use of a trajectory generator allows us to use original
ommanded velocities as actions when replaying trajectories in
he simulator, and—on this particular setup—removes the need
f action inference from demonstrations.
We randomize a total of 18 dynamics parameters: the mass of

he puck, the puck-surface friction coefficients, the time constant
f the stick-puck contact—regulating the stiffness and damping
hile keeping the interaction critically damped—and the gains
f the position controller used in simulation. Note that, while
ore parameters may be added to the optimization problem to

ncrease the model’s explanatory power, complex correlations
etween the parameters may arise in addition to a generally
igher complexity.
We use the reward function of [36]: r = −d2 − log(d + α),

where d is the distance to the target and α is a constant (we use
α = 10−3 throughout the experiments).

The results comparing DROPO, DROID and UDR are shown
in Fig. 10. We see that, on this setup, both DROPO and DROID
significantly outperformed UDR, and that there was no significant
difference between the two methods, despite DROID essentially
converging to point estimates (see Table 2). This is likely caused
by the bandit formulation and the resulting feed-forward nature
of the task; once the action is selected, the agent does not receive
any feedback from the environment. Under this setup, it is thus
optimal for the policy to select the action (or the trajectory) which
minimizes the expected final distance from the target position
under the dynamics distribution used in training. This closely
resembles the optimization criterion used by DROID (minimiz-
ing the expected L2 norm between trajectories). Additionally,
under this formulation the policy lacks the ability to make up
for possible deviations from the trajectory obtained in point-
estimate dynamics. In a sequential decision making problem with
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Fig. 8. Sim-to-sim: episode returns in the target simulated environment when
trained on domain randomization distributions inferred by DROID, DROPO and
BayesSim and on the ground-truth dynamics distribution (GT) in the Panda
pushing task.

Fig. 9. The hockeypuck setup in simulation (a) and in the real-world (b). The
purple area in (a) shows the range of possible goal positions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Sim-to-real performance in terms of the final distance to the target
osition on the hockeypuck setup (in centimeters; lower is better).

ncertain dynamics, the agent needs to be able to recover from a
ider range of states, due to the uncertainty in state transitions
hat stems from the uncertainty in dynamics. In a bandit problem,
owever, the system operates in a feedforward manner, and thus
s not able to handle such situations at all. As a result, the benefits
f having a distribution of dynamics are diminished.

.3.2. Pushing
We finally evaluated DROPO on a pushing task with the Franka

anda robot. In this setup, shown in Fig. 11, the goal of the robot
as to push a box to a fixed target position. To make this task
ore challenging, the box center of mass was altered by filling

t up with heavy steel bolts on one side and bubble wrap on
he other, as shown in Fig. 11(c). Therefore, we randomize a
otal of 5 dynamics parameters to shorten the reality gap in this
etup: mass of the box, box-table friction coefficients fx and fy,
nd center of mass offset from the geometric center (com , com ).
x y

8

Fig. 11. The push setup in simulation (a) and in the real world (b), with the
insides of the box shown in (c).

Table 2
Optimized dynamics distributions on 5 trajectories collected on the Hockeypuck
environment. The converged mass m, friction coefficients fx and fy along the two
xes, and timeconst parameter tconst are reported.

m fx fy tconst
Search
space

min 0.08 0.2 0.2 0.001
max 0.2 0.75 0.75 0.02

DROPO
ϵ=1e−2

µ∗ 0.111 0.349 0.231 0.019
σ ∗ 2.2e−04 3.4e−05 4.7e−04 6.7e−05

DROID µ∗ 0.100 0.334 0.226 0.019
σ ∗ 1.5e−07 8.9e−06 9.7e−06 1.7e−05

Due to the offset center of mass, we additionally included the
orientations and angular velocity of the box in the state space
used for fitting DROPO.

In order to model log-likelihood of orientations with DROPO,
we used quaternion representations and evaluated the angle be-
tween the quaternion in the real-world dataset and the one in
simulation; this angle, α, then replaced the orientation inside the
next state sξt+1, with α inside the real-world state vector set to
0. Since such a distribution would not be well-modeled with a
Gaussian, for each transition we insert two resulting next states
(with α and −α), resulting in a symmetric distribution of angles
centered around 0.

We first tested our method in a sim-to-sim version of the
task: synthetic data was collected by a forward-pushing policy as
demonstrations for DROPO, DROID and BayesSim, sampling new
dynamics parameters from the ground-truth distribution after
every rollout, for a total of 50 trajectories of 30 transitions each,
amounting to 30 s of wall-time interaction. The resulting DR
distributions are presented in Table 3. Like before, the reported
BayesSim results are independent Gaussian approximations of the
actual results, which can be found in Appendix D.2. We again
observe that DROID converged to a point estimate, with standard
deviations in the order of 10−10–10−11, while DROPO results in
a distribution that is relatively close to the ground truth, albeit
not the same. The largest discrepancy can be observed in the
inferred friction value along the x direction. Since the trajectory
used for this demonstration was pushing the box primarily away
from the robot (along the y axis), accurately inferring friction
along the lateral axis is challenging, and the variations in box
motion resulting from variations in this friction are minor and
can be reasonably well modeled by variation in other parameters.
Similarly, the mass of the box can also be relatively difficult to
identify, given that the inference is performed with a position
controller and the mass of the box is much smaller than the mass
of the robot.

We then used these DR distributions to train a policy for
pushing the box to a goal on the front-left side of the robot. We
used the same reward function as for the Hockey experiments,
with additional control penalties added to regularize the motions
and to deter the simulated robot from going over the velocity and
acceleration limits of the physical robot arm. The performance
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f each policy is shown in Fig. 8. We observe that, despite the
onverged distribution being slightly different than the ground
ruth, the policies trained with DROPO performed close to the
round truth policies, while DROID policies performed notice-
bly worse, likely due to overfitting to point-estimate dynamics.
nterestingly, the UDR baseline outperformed DROID too. This
uggests that, for the underlying task, DR is a more effective
ransfer technique than system identification even when the dis-
ribution is not carefully tuned; in other words, wider but less
ccurate dynamics parameter distributions provide better results
han converged point estimate parameter values.

We then evaluated DROPO’s ability to transfer to the real-
orld setup, in comparison to DROID, BayesSim, and UDR. A
ingle task-agnostic trajectory of about 13 s was collected through
inesthetic guidance and preprocessed in a similar way to hockey
uck—we used robot’s joint encoders to get the joint positions
nd OptiTrack to track the object.
The converged DR distributions obtained from this data by

ll benchmarked methods are presented in Table 4, averaged
ver three seeds. Once again, we point out the smaller standard
eviations DROID converged to, compared to DROPO. However,
s the real-world dynamics parameters are not known, the final
valuation has to be carried out by means of policy performance
n the real system, displayed in Fig. 12 (5 rollouts per policy, per
eed).
In this task, DROPO consistently outperformed previous meth-

ds and pushed the box as close as 2 cm away from the target
ocation, showing another successful zero-shot transfer. We ob-
erve how BayesSim, which resulted in less accurate parameter
nference across our experiments, achieved inconsistent perfor-
ance and obtains similar results to DROID and UDR on average.
his result further motivated the need to infer dynamics such as
o account for both accurate system identification and domain
andomization at the same time, even for a simple pushing task.
ayesSim with neural network features (MDNN) predicted the
ox center of mass to be over 20 cm away from the center in each
irection, with a standard deviation of over 50 cm, which results
n the center of mass being located way outside of the object.
ike in the Hopper experiment with an unmodeled phenomenon,
his likely originates from the rather poor generalization to real-
orld data, which lies outside of the BayesSim network’s training
istribution—consisting of simulated data only. However, since
he environment implementation clips the center of mass values
o be within object boundaries, the agent was still able to learn a
omewhat sensible policy for some random seeds. BayesSim with
andom Fourier features (MDRFF) shows slightly better general-
zation to real world data, producing a more sensible center of
ass value, albeit with an excessive standard deviation of over
cm in both directions and (as visualized in the detailed results

n Appendix D.2) with negative mass being predicted on some
ccasions. In terms of task performance, the trained policy still
erforms worse on average than DROPO or DROID.

. Conclusions

In this paper we introduced DROPO, a method for crossing
he reality gap by optimizing domain randomization distributions
ith limited, offline data. We demonstrated that, unlike previous
ethods, DROPO is capable of accurately recovering the dynamics
arameter distributions used to generate a dataset in simulation.
e also showed how DROPO may compensate for a misidenti-

ied value of a physical parameter, leading to well-performing
einforcement learning policies in the target domain.

We then moved on to real-world robotics setups—a hockey
uck sliding and a box pushing tasks. We demonstrated that a
olicy trained in simulation with DROPO can be directly trans-
erred to the real world on both setups, while previous methods
9

Fig. 12. Sim-to-real performance in terms of the final distance to the target
position on the pushing setup (in centimeters; lower is better).

Table 3
Results of the sim-to-sim pushing task experiment with randomized box mass
m, table-box friction coefficients (fx, fy) and box center of mass in meters
comx, comy).

m fx fy comx comy

Search
space

min 0.08 0.20 0.20 −0.032 −0.032
max 2.00 2.00 2.00 0.032 0.032

Ground
truth

µ∗ 0.7 0.8 0.8 0.01 0.01
σ ∗ 0.3 0.2 0.2 0.001 0.001

DROPO
ϵ= 0

µ∗ 0.788 0.603 0.683 0.015 0.009
σ ∗ 0.108 0.033 0.18 0.001 0.003

DROID µ∗ 0.774 0.737 0.716 0.014 0.011
σ ∗ 3.1e−11 1.3e−10 1.2e−11 7.6e−11 2.4e−11

BayesSim µ∗ 0.703 0.894 0.840 −0.011 0.004
σ ∗ 0.269 0.224 0.257 0.309 0.234

Table 4
Optimized dynamics distributions on a single offline trajectory collected on the
real pushing environment. The converged box mass m, friction coefficients fx
and fy , and box center of mass comx and comy (in meters) are reported.

m fx fy comx comy

Search
space

min 0.08 0.20 0.20 −0.032 −0.032
max 2.00 2.00 2.00 0.032 0.032

DROPO
ϵ=1e−4

µ∗ 1.065 0.387 0.921 0.012 −0.032
σ ∗ 1.3e−04 3.0e−03 5.3e−04 5.2e−05 7.5e−04

DROID µ∗ 0.826 0.444 0.665 −0.028 −0.028
σ ∗ 1.4e−07 2.3e−08 2.6e−08 7.7e−08 6.6e−08

BayesSim
MDNN model

µ∗ 1.548 3.889 0.964 −0.322 −0.240
σ ∗ 2.017 0.805 0.953 0.577 0.632

BayesSim
MDRFF model

µ∗ 0.796 1.181 1.013 −0.023 −0.040
σ ∗ 0.252 0.218 0.316 0.090 0.075

fail on the box pushing task. We conclude that our method is able
to effectively perform domain randomization and system identi-
fication at the same time, finding the right balance of parameter
uncertainty by adjusting ϵ.

In the current work, we used a variety of data collection strate-
gies to collect the offline dataset—a partially-trained task policy
(Hopper), random sliding trajectories (Hockeypuck) and human
demonstrations obtained through kinesthetic teaching (Pushing).
Future works may investigate how the data collection strategy
impacts the accuracy of parameters obtained by offline methods
such as DROPO and DROID; in particular, prior work on explo-
ration in meta-learning would make an interesting extension
[37,38].

Under the current formulation, DROPO is limited to relatively
low-dimensional parametric distributions. This limitation stems
from the rather costly non-differentiable optimization procedure;
using less restrictive sampling procedures, such as Stein varia-
tional gradient descent used in [22], could be a promising way
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f further improving the accuracy. We showed that DROPO is
apable of performing optimization in up to 18-dimensional pa-
ameter spaces; while this was enough for simple manipulation
asks, complex scenarios involving interactions between multiple
bjects may involve many more parameters, which could make
ROPO prohibitively expensive. Furthermore, in addition to larger
ynamics parameter spaces, we encourage future works to ex-
end our method for likelihood computation in high-dimensional
tate spaces, e.g. allowing DROPO to work on vision-based poli-
ies and plain images collected offline. In this case, the general
dea behind DROPO could be used not only to optimize the dy-
amics parameters of the system, but also to adjust visual domain
andomization distributions for image rendering, for instance by
djusting parameters used for procedural generation of textures.
Domain randomization methods require the user not only to

pecify the dynamics parameter distributions, but also to select
hat parameters need to be randomized. In our experiments,
hose parameters were indeed selected manually based on do-
ain knowledge. While this approach works well with simple
nd well-understood environments, it can present a challenge
n situations where expert knowledge of the application domain
s limited. Even though randomizing as much as possible may
ppear to be a good idea on paper, it often leads to a significant
ncrease in the computation cost. Additionally, some parameter
ombinations may be physically impossible, leading to simulator
nstabilities.

Aside from that, sim-to-real transfer with domain randomiza-
ion often requires a significant development effort, requiring an
ccurate physics engine, object meshes and parametric simula-
ion models to be available. As of now, there is no automated way
f designing simulation models that accurately mimic real-world
etups; such methods would make the initial software devel-
pment effort much lower, allowing sim-to-real transfer with
omain randomization to be used more widely in the industry,
or example in digital twin applications. Recent developments
n automated design open up the possibility of automating the
onstruction of simulation models beyond parametric inference.
ore specifically, the object shapes and the general kinematic
tructure of the scene could be inferred based on the appearance
f the real world system, and have its dynamics parameters tuned
ased on pre-collected physical observations using a method like
ROPO.
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ppendix A. Least squares for offline DR optimization

In this appendix section we attempt to give a more thor-
ugh explanation to why DROID converged to point-estimate
ynamics parameters across all our experiments. In particular,
e aim to provide an intuition for why we discourage the use
f least squares-like methods for trajectory alignment during
ffline optimization of DR distributions. This discussion is further
otivated by the results reported in [39], where SimOpt’s [21]
bjective function was used in the offline setting by replaying
10
actions from off-policy data in simulation. Similarly to our results
with DROID, this approach resulted in point-estimate dynamics
estimates, leading the authors to consider offline SimOpt as a
point-estimate system identification method.

Based on the notation used throughout our work, let us con-
sider the optimization problem aiming to minimize the following
objective function:

J(ξ ) =
1
K

K∑
i=1

∥f (si, ai; ξ ) − si+1∥
2 (A.1)

ith f (·; ξ ) being the simulator dynamics—assumed to be deter-
inistic for simplicity—parameterized by parameters ξ .
Note that, since the objective function is defined for a given

ynamics parameter vector ξ , minimizing it by acting on the full
istribution is not straightforward. For example, DROID [20] uses
MA to minimize the squared residuals and then retains the final
nner CMA covariance matrix to ultimately build the DR distribu-
ion. Similarly, SimOpt [21] uses a sampling-based gradient-free
lgorithm based on relative entropy policy search [40] allowing
o minimize residuals using only samples ξ ∼ pφ(ξ ).

Regardless of the specific method, since the final goal is the
inimization of J(ξ ), we can reason about its expected value w.r.t.

pφ(ξ ), which we are ultimately interested in minimizing. Intu-
itively, when optimizing the objective in (A.1) under no additional
assumptions or constraints, it is indeed reasonable to believe that
no benefit is gained by ending up with a higher expected value
of J(ξ ) in exchange for a certain desired variance.

We then claim that optimization problems aiming to optimize
the expected value of quantity in (A.1) by acting on the random
component itself, inevitably converge to point-estimates. Inter-
estingly enough, this draws similarities to the weighted average
of a finite sequence of numbers: no matter how you pick the
weights (e.g. the probability distribution), the average will always
be greater than or equal to the minimum of the sequence; only
when moving all the probability mass to the minimum value itself
we get the lowest possible average value.

We attempt to give a concise mathematical demonstration for
this in our continuous case, under a few assumptions for the sake
of simplicity. Let us bound the search space of the optimization
problem to an arbitrary region in the dynamics space. Let jmin =

(ξmin) be the global minimum of J(ξ ) in the region delimited
y the support of the current pφ(ξ ), potentially trimmed by the
redefined search space in case of unbounded support. There-
ore, note how the random variable Y = J(ξ ) − jmin is always
reater than or equal than zero. Following the non-negativity and
inearity properties of expected values, we consequently get:

[Y ] = E[J(ξ ) − jmin] ⩾ 0 (A.2)

E[J(ξ )] ⩾ jmin (A.3)

This final result indicates that regardless of how we design the
distribution pφ(ξ ), we cannot do better than simply minimizing
the objective function w.r.t. ξ only — indeed, we can only do
worse. Therefore, the optimization problem should converge to
the point-estimate ξmin even if acting on the full distribution,
assuming that our optimizer converges to the global minimum.

We then encourage future works to take these considerations
into account when designing optimization of dynamics distribu-
tions with fixed offline data. For example, one could add custom
constraints to promote variance in the dynamics parameters or,
as shown by our work and BayesSim [19], move to probabilistic
metrics to infer target parameters.

Finally, it is worth noting that these considerations do not
apply to the original SimOpt method (as presented in [21]), as

its objective function is conceptually different in the online
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Table B.5
The amount of data used for each experiment, broken down into trajectories, state transitions, and the total time.
Experiment Number of trajectories Transitions per trajectory Time per transition Total transitions Total time

Hopper 2 500 8 ms 1000 8 s
Hockeypuck 5 750 10 ms 3750 37.5 s
Sim-to-sim push 50 30 20 ms 1500 30 s
Sim-to-real push 1 1286 10 ms 1286 12.86 s
setting: SimOpt optimizes φ so that a policy trained on such dis-
ribution gets minimum squared residuals between its observed
im and real states; i.e., the objective is directly to get a policy that
erforms the same in both domains, as opposed to simple trajec-
ory alignment. Thus, having policy training and data collection
rom the real-world system in the loop prevents the optimization
rom converging to a point estimate, as a policy trained on a
oint estimate would—in most cases—fail to generalize to the
eal world, resulting in a larger discrepancy between simulated
nd real trajectories than a policy trained on a non-degenerate
ynamics distribution.

ppendix B. The impact of ϵ

To further analyze the impact of ϵ on DROPO’s performance
n presence of noise, we performed a secondary analysis where
e corrupt the collected Hopper datasets with different levels of
oise.
The results for the point-dynamics Hopper dataset described

n Section 4.2.1 are depicted in Fig. B.13. In line with the main
xperimental evaluation, we observed a consistent drop in MSE
here ϵ matches the noise level σ 2. In addition, the results in
erms of the converged mean (Fig. B.13(b)) are consistent for
≥ σ 2, and the standard deviations are very low, corresponding
o a correct identification of point dynamics parameters.

We finally performed a similar analysis for the distribution
ecovery case, which produced similar results: the dynamics dis-
ribution recovery is most accurate at ϵ close to the noise variance
2, which also corresponds to the sharp drop in MSE. In par-
icular, note how the converged standard deviations of the four
asses resemble the ground truth distributions defined in Sec-

ion 4.2.2, as long as ϵ does not increase to overly large values
.r.t. the current noise level.

ppendix C. Sensitivity to the amount of data

As observed in our experiments section, DROPO succeeded
o transfer RL pushing policies to the real world with as little
s a single demonstrative trajectory for parameter inference. In
his section, we aim to quantify the sensitivity of DROPO to the
mount of offline data collected. To this end, we analyzed the
onverged means of the dynamics distributions with different
mount of state transitions in different noise levels, for the Hop-
er environment in the point-dynamics setting of Section 4.2.1. In
articular, we tested DROPO with 10, 30, 100, 300, 1000 and 3000
tate transitions sub-sampled from the offline dataset, and kept
fixed at the value of 10−5. We report the confidence interval
f the converged mean of each mass of the Hopper in Fig. C.15,
btained from 4 runs for each evaluation.
We observe that, when noise variance is around 10−8 or lower,

s little as 10 state transitions are enough for DROPO to converge
o values very close to the ground truth values. For higher noise
evels, this number increases to several hundreds of state tran-
itions. However, note the relatively small scale on the y-axis,
here confidence intervals get as wide as 10 grams at most.
For the sake of clarity, we finally combine and report in Ta-

le B.5 the amount of data used in all our experiments. Target
ata has been collected in less than a minute of interaction for
11
Fig. B.13. Relationship between noise level, epsilon and the resulting (a) MSE
and (b, c) distribution, expressed by mean and standard deviation in the Hopper
point-dynamics system identification case (results averaged over 4 random
seeds).

all tasks, motivating the adoption of offline DR optimization for
critical-to-operate environments. Noticeably more data has been
used to infer dynamics for the Hockeypuck environment, due to
the nature of the task and the robot arm moving through the air
before hitting the hockey puck, with the puck moving only for
about a second in each trajectory (thus, only a small subset of
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Fig. B.14. Relationship between noise level, epsilon and the resulting (a) MSE
nd the (b, c) distribution, expressed by mean and standard deviation in the
opper dynamics distribution recovery case (results averaged over 4 random
eeds).

tate transitions could be used to infer the dynamics of the hockey
uck).

ppendix D. Complete BayesSim results

BayesSim parameterizes the resulting dynamics distributions
s a mixture of multivariate Gaussians, while other methods
sed simple Gaussian distributions. In order to clearly present
he inferred distributions in comparison with the other meth-
ds in the Experiments section of the paper, we simplified the
ayesSim results by only reporting the diagonal uncorrelated
pproximation of the Gaussian mixture. While this gives a good
ntuition about the accuracy of the results, it loses some of the
 y

12
Fig. C.15. Hopper dynamics parameter estimated mean with its 95% confidence
interval (estimated by bootstrapping over 4 random seeds).

information; hence, we here provide plots of the full mixture
Gaussian distributions.

In this section, we provide the full BayesSim inference results
by plotting histograms and joint distributions over all pairs of
dynamics parameters. Each color corresponds to an independent
training run of the BayesSim inference network.

D.1. Hopper

Here, we present the complete dynamics estimation results in
Hopper. The ground-truth values for the point dynamics recov-
ery experiment were reported in Table 1 and for the dynamics
distribution recovery in Fig. 3.

The parameters (from param0 to param3) represent the
masses of consecutive Hopper links—torso, thigh, leg and foot.
In the unmodeled phenomenon experiment (Fig. D.18), the torso
mass is excluded as it is fixed to an incorrect value and is not
inferred during optimization. In this case, as previously argued,
the test environment does not lie within the distribution of
environments used for training data generation. As a result,
the evaluation data lies outside of the training domain of the
BayesSim inference network. This is likely the reason why the
network produces a distribution with a large standard deviation
centered around the mean of the search bounds.

We observe that in all distribution recovery experiments
(shown in Fig. D.16, Fig. D.17, and Fig. D.18), BayesSim correctly
returns a mixture model that is effectively a unimodal Gaus-
sian distribution (with the weights of the remaining mixture
components very close to zero).

In Fig. D.17, we also observed a significant discrepancy be-
tween different repetitions of the experiment, i.e. independent
training runs of the BayesSim inference network.

D.2. Panda

Here, we present the full BayesSim results for the Panda push-
ing task. The estimated dynamics parameters are, in order, the
mass of the box, the friction coefficient values along axes x and
y, and the x and y position of center of mass of the box.

In the sim-to-sim inference experiment (Fig. D.19) we observe
hat, despite there being some variance between random seeds,
he models generally agree that the center of mass along x and

should be shifted in the positive direction, and that the mass
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Fig. D.16. Complete dynamics identification results in Hopper with BayesSim.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. D.17. Complete dynamics distribution recovery results in Hopper with
BayesSim. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

of the object is rather hard to identify (as expressed by the large
standard deviation for param0).

However, when operating on real-world data, the model’s per-
ormance degrades significantly, especially with the neural net-
ork features (MDNN), shown in Fig. D.20. In this case, the model
roduces very large standard deviations, potentially hindering
he training process and often leading to unfeasible physical
13
Fig. D.18. Complete dynamics estimation results in Hopper with unmodeled
phenomena with BayesSim. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. D.19. Complete dynamics distribution recovery results in Panda with
BayesSim. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

parameters—e.g. negative masses or box center of mass that lies
outside the box boundaries. To address this issue, all values were
clipped inside the simulator and kept within the pre-identified
search space, which made the policy training possible. Like in the
unmodeled Hopper experiment, we suspect that this behavior is
the result of the network being evaluated on out-of-distribution
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Fig. D.20. Complete real-world dynamics estimation results in Panda with
BayesSim (MDNN features). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. D.21. Complete real-world dynamics estimation results in Panda with
BayesSim (MDRFF features). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

data. This hypothesis appears stronger when looking at the re-
sults obtained with the quasi-random Fourier features, where the
inferred distributions look more sensible, although in some cases
the mixture components still predict the mass to be negative
(Fig. D.21). The feature extraction process reduces the dimension-
ality of the input data, making it easier for the model to generalize
to new data, as it is more likely that the noisy, unmodeled
14
real-world trajectory would appear close to data seen during
training.
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