
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling DVFS Side-Channel Attacks for Neural Network Fingerprinting in Edge Inference Services / Malan, Erich;
Peluso, Valentino; Calimera, Andrea; Macii, Enrico. - (2023), pp. 1-6. (Intervento presentato al convegno International
Symposium on Low Power Electronics and Design tenutosi a Vienna (AUT) nel 07-08 August 2023)
[10.1109/ISLPED58423.2023.10244398].

Original

Enabling DVFS Side-Channel Attacks for Neural Network Fingerprinting in Edge Inference Services

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISLPED58423.2023.10244398

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982377 since: 2023-09-21T12:00:39Z

IEEE

Enabling DVFS Side-Channel Attacks for Neural
Network Fingerprinting in Edge Inference Services

Erich Malan, Valentino Peluso, Andrea Calimera, Enrico Macii∗
Department of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

∗Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Turin, Italy
{erich.malan, valentino.peluso, andrea.calimera, enrico.macii}@polito.it

Abstract—The Inference-as-a-Service (IaaS) delivery model
provides users access to pre-trained deep neural networks while
safeguarding network code and weights. However, IaaS is not
immune to security threats, like side-channel attacks (SCAs),
that exploit unintended information leakage from the physical
characteristics of the target device. Exposure to such threats
grows when IaaS is deployed on distributed computing nodes
at the edge. This work identifies a potential vulnerability of
low-power CPUs that facilitates stealing the deep neural net-
work architecture without physical access to the hardware or
interference with the execution flow. Our approach relies on a
Dynamic Voltage and Frequency Scaling (DVFS) side-channel
attack, which monitors the CPU frequency state during the
inference stages. Specifically, we introduce a dedicated load-
testing methodology that imprints distinguishable signatures of
the network on the frequency traces. A machine learning classifier
is then used to infer the victim architecture. Experimental results
on two commercial ARM Cortex-A CPUs, the A72 and A57,
demonstrate the attack can identify the target architecture from
a pool of 12 convolutional neural networks with an average
accuracy of 98.7% and 92.4%

Index Terms—Inference-as-a-Service, Convolutional Neural
Networks, Side-Channel Attacks, DVFS.

I. INTRODUCTION

Inference-as-a-Service (IaaS) is a licensing and delivery
model that lets connected clients get access to pre-trained
deep neural networks while preserving the intellectual property
rights of the service provider. Originally conceived for the
cloud, the IaaS paradigm can be implemented on edge nodes,
like IoT gateways, to improve response times, scalability, and
geographical coverage [1]. The edge-IaaS infrastructure re-
lies on the microservice architectural approach. Microservices
leverage virtualization technologies to build hardware-agnostic
inference engines deployable on a multitude of computing
platforms, including embedded systems commonly equipped
with low-power CPUs, such as the ARM Cortex-A cores. The
clients query the inference service through an Application
Programming Interface (API) that prevents access to the
neural network, protecting code and weights. Unfortunately,
microservices deployed on distributed edge nodes are more
vulnerable to malicious acts [2], like Side-Channel Attacks
(SCAs), which can extract sensitive information about the
neural network from the physical characteristics of the hosting
device.

TABLE I
OVERVIEW OF BLACK-BOX SCAS AGAINST IAAS.

Reference Access Target Device Side-Channel Signal Information

[3] Physical ARM Cortex-A Power consumption Architecture
[4] Physical NVIDIA GPU Memory and PCIe bus Architecture
[5] Physical NVIDIA GPU PCIe bus Weights
[6] Physical ARM Cortex-M EM emission Weights
[7]∗ Remote Intel x86 Cache timing Hyperparams
[8] Remote Intel x86 Latency # of Layers
[9] Remote Intel x86 Performance counters Layers Type
[10]‡ Remote NVIDIA Tegra Resource utilization Family
[11]∗ Remote Intel x86 Cache timing Architecture
[12]† Remote NVIDIA GPU Power consumption Architecture

This work Remote ARM Cortex-A DVFS state Architecture
∗ Manipulate the execution flow. †Require integrated power sensors.
‡ Neural networks belonging to the same family show the same topology and core
organization but differ in the number of layers and/or filters.

Previous studies demonstrated various types of SCAs that
target different hardware platforms and can extract different
details. Table I summarizes state-of-the-art SCAs, and in
particular, black-box SCAs, namely, methods that assume no
prior knowledge of the deep neural network. The table offers
a taxonomy based on four main features: the required access,
the target device, the source of side-channel leakage, and the
recovered information. Physical attacks require direct access
to the target device for measuring physical signals, like power
consumption [3], memory and PCIe bus traces [4], [5], or
electromagnetic emissions (EM) [6]. Those signals contain
fine-grained information from which the attacker can retrieve
the neural network architecture and even reconstruct the net-
work weights, enabling the replica of the neural network.
However, physical probing and costly laboratory equipment
limit applicability in real-life scenarios. On the other hand,
remote attacks are software methods based on monitoring
system metrics and performance counters accessible from
operating system logs without special privileges. However,
they can simply retrieve partial information, like a subset of
architectural hyperparameters (e.g., stride, pooling, padding
in case of convolutional neural networks) [7], the number of
layers [8], the type of layers (without details about the number
of filters) [9], the family to which the neural architecture
belongs [10]. Very few remote attacks allow for the identifica-
tion of the neural architecture [11], [12]. Moreover, remote
attacks show several weaknesses that limit their detection
capability (64.17% Top-1 accuracy, as reported in [12]). For
example, cache attacks [11] require the ability to modify the
execution flow through additional cache instructions, which979-8-3503-1175-4/23/$31.00 ©2023 IEEE

may interfere with the network execution. Alternatively, at-
tacks that probe power consumption using software-readable
on-chip current sensors are affected by low sampling rates
and low resolution of the sensors [13]. To notice that those
current sensors are mounted on development kits but are often
unavailable in production-grade boards.

This work uncovers a vulnerability in ARM Cortex-A CPUs
that can be exploited to bypass IaaS protection via remote
SCA. Specifically, our study investigates the use of Dynamic
Voltage and Frequency Scaling (DVFS) state as a signal for
neural network fingerprinting. We demonstrate that existing
DVFS SCAs are ineffective at extracting signatures that could
lead to the reconstruction of the neural architecture. Hence,
we introduce a novel method based on a load-testing proce-
dure that sends a sequence of queries to the prediction API
according to pre-defined schemes. The procedure regulates the
service load inducing variations in the voltage-frequency state
of the device under attack. The generated frequency traces
are processed through a machine learning (ML) classifier
trained offline to infer the neural architecture. The proposed
methodology is validated on two embedded CPUs from the
ARM Cortex-A family: the A72 and A57. The collected
results show that our approach achieves an average accuracy
of 98.7% (A72) and 92.4% (A57) in detecting the neural
architecture from a pool of 12 state-of-the-art convolutional
neural networks (CNNs) suited for embedded applications.
These findings suggest that DVFS can be exploited as a source
of leakage for neural architecture theft, highlighting the need
for security measures against these types of attacks.

II. BACKGROUND & RELATED WORKS

A. DVFS & Governors

DVFS is a runtime power and thermal management tech-
nique for digital cores. Low-power ARM CPUs based on
the Cortex-A architecture have a predefined set of voltage-
frequency pairs available, and each voltage level is associated
with one specific operating frequency. The CPUFreq is the
software interface integrated into the Linux kernel in charge
of controlling DVFS. It consists of two main components: the
scaling governors and the scaling driver. Scaling governors
implement algorithms to set up the right CPU frequency based
on the system’s workload. The scaling driver is responsible
for accessing the hardware interfaces to change the CPU
frequency as requested by the scaling governors. The standard
workflow of a governor involves continuous monitoring of the
CPU utilization, computed as the ratio between the number of
busy (non-idle) CPU time and the total time elapsed since
the last evaluation. The time interleaving two consecutive
workload estimations defines the sampling period, which can
range from microseconds to milliseconds.

The Linux kernel embeds four standard scaling governors,
i.e., conservative, ondemand, schedutil, interactive [14], differ-
ently available depending on the hosting platform. The conser-
vative policy gradually adjusts the frequency level following
a hysteresis scheme. When the CPU utilization exceeds a pre-
defined upper threshold (e.g., 80%), the operating frequency

EfficientNet-lite4MobileNet-V1-1.0MobileNet-V1-0.25

0 2 4 6 8
Time (s)

0.5

1.0

1.5

2.0

F
re

qu
en

cy
 (

G
H

z)

(a) conservative

0 2 4 6 8
Time (s)

(b) ondemand

0 2 4 6 8
Time (s)

(c) schedutil

0 2 4 6 8
Time (s)

(d) interactive

Fig. 1. Examples of frequency traces collected on A57 with the standard
procedure for DVFS SCAs.

is increased to the next available level; when it falls below the
lower threshold (e.g., 20%), the frequency is decreased to the
previous level. The ondemand, schedutil, and interactive gov-
ernors implement a workload-proportional scaling approach,
where the frequency is set to values linearly proportional to the
CPU utilization. The ondemand policy maps 0%/100% CPU
utilization to the lowest/highest frequency available, whereas
the schedutil policy applies an over-scaling factor of 1.25×
to prevent the frequency from being too low, which could
lead to poor performance. Furthermore, schedutil boosts the
frequency to the maximum level in case of a deadline event.
The interactive governor favours frequency up-scaling and
penalizes down-scaling. It reacts to sudden increases in CPU
utilization by instantly forcing the maximum frequency level,
and it waits a short period before decreasing the frequency
to prevent costly performance fluctuations. That makes the
interactive governor more responsive to intensive workloads
but also more conservative in saving power.

Users with root privileges can alter the governor settings and
parameters, e.g. the thresholds. Generic users without special
permissions are limited to reading the governor policy and
monitoring the operating frequency.

B. DVFS Side-Channel Attacks

DVFS SCAs collect frequency traces from the victim device
and use ML models trained offline to steal sensitive data or to
detect the applications in use. Extensive investigations on the
efficacy of DVFS SCAs for data theft have been conducted
in [15], showing that it is possible to identify the websites
visited by users and even retrieve passwords entered on their
smartphones. In [16] and [17], the authors showed the use
of DVFS SCAs in the context of application detection. The
general idea relies on profiling DVFS states during continuous
loops of the same application. The approach was validated
in [16] for a collection of 22 Android benchmarks running
on an ARM Cortex-A CPU. A more exhaustive assessment
conducted in [17] presented a benchmarking over two repre-
sentative application suites: PARSEC 3.0 and SGX-bench. The
report proved that DVFS SCAs are effective for applications
with long execution times and varying CPU usage (PARSEC
3.0) but are prone to fail for short and intensive workloads
(SGX-bench), where the F1 score reaches a mere 10% over ten
applications. As discussed in the next section, neural networks
fall into the latter category, which motivates this work.

C
P

U
 U

ti
liz

a
ti

o
n

Time

80%
100%

Average UtilizationNetwork 1 Network 2

0.5 GHz 0.5 GHz0.3 GHz

80%
100%

Time

0.5 GHz 0.7 GHz0.3 GHz

Fig. 2. CPU Frequency evolution during the execution of two different
networks with the proposed approach.

III. METHODOLOGY

A. Understanding the Limitations of DVFS SCAs

In standard DVFS SCAs, the target application is run repeat-
edly while monitoring how the CPU frequency evolves. The
same approach can be applied to IaaS by making continuous
requests to the prediction API. Unfortunately, the deep neural
networks backed by embedded applications are optimized
through extensive algorithmic and code optimizations [18],
resulting in dense workloads that are short in time and highly
resource-demanding. This forces DVFS governors to set the
highest frequency available and keep it constant until the
end of the inference, no matter the network architecture.
We deployed three networks of different sizes and algorith-
mic complexity (i.e., MobileNet-V1-0.25, MobileNet-V1-1.0,
EfficientNet-lite4) on an A57 CPU (more technical details
in Sec. IV-A) and we profiled the frequency traces during
8 seconds of continuous queries using the four governors
introduced in Sec. II-A. The results reported in the line
plots of Fig. 1 show overlaps that prevent discriminating the
neural architecture under attack. The high resource demand
quickly drives and keeps the frequency to the maximum level
(2.0GHz) even for the conservative governor.

B. Altering the Frequency Profiles

We propose a simple yet effective strategy to alter the CPU
frequency updates driven by DVFS governors. The idea is to
introduce pause intervals between consecutive API requests.
Longer (shorter) idle periods result in lower (higher) CPU
utilization and eventually lower (higher) frequency levels.
The number of such pauses will be inversely proportional
to the response time, a metric tightly coupled with (i) the
neural architecture deployed for serving the request and (ii)
the CPU frequency. Different frequency profiles over long
observation periods serve as a signature to discriminate the
neural architecture.

Fig. 2 graphically depicts how different frequency states
could originate from two different neural architectures (Net-
work 1 and Network 2, with Network 1 less resource-
demanding than Network 2). For the sake of simplicity,
the example assumes a conservative governor: the frequency
is increased when the average CPU utilization during the
observation period exceeds 80%. The coloured bars (light
grey for Network 1, dark grey for Network 2) refer to the
processing stage of an inference request. The bars’ width
reflects the CPU time to process the request, which is a

Frequency Monitor

ML Classifier Frequency Trace

Pause

Neural
Architecture

A
P

I

Inference-as-a-Service

Neural Network

Attacker Device Victim Device

{5, 20, 50, 100} ms
Load Tests

Fig. 3. Extraction phase overview.

function of the neural architecture and the CPU frequency.
The bars’ height reflects the CPU utilization during the request
processing, which is another metric dependent on the neural
architecture. Both response time and CPU utilization of each
inference request affect the workload estimation during an
observation window. At the end of each window, indicated by
the vertical dotted lines, the governor evaluates the average
CPU utilization (red lines in the plots) and decides on the
frequency update. In the first window, the CPU operates at the
lowest frequency of 0.3GHz for both networks. Since the av-
erage CPU utilization exceeds the 80% threshold, the governor
increases the frequency to 0.5GHz for both networks. In the
second window, the pause intervals (white spaces in the plots)
inserted between the requests alter the workload estimation.
With the increased frequency, the requests are processed faster
(thinner bars for both networks). The number of pauses also
increases (more white spaces), leading to a decrease in average
CPU utilization, potentially falling below the threshold. This
is the case for the lighter network (Network 1), for which
the CPU utilization falls below the threshold (<80%) and
the governor does not change the frequency. The same is
not true for the more complex network (Network 2), where
the average utilization is still over-threshold (>80%) and the
governor drives a frequency increase to 0.7GHz. Therefore,
the frequency traces for the two networks exhibit distinct
patterns. Without the pause intervals, the governor would
have made the same frequency update for both networks
in the third window, resulting in no discernible difference
between their frequency traces. It is worth noticing that the
length of the pause intervals is a hyper-parameter that can
be leveraged to enhance the differentiation capability among
different neural networks and CPUs. Further implementation
details are provided in the following subsections.

C. Load testing

Load testing is a type of performance testing that aims at
assessing how a system behaves under (i) specific workloads
or (ii) requests volume. A standard approach is to generate a
large amount of traffic by creating a pool of concurrent virtual
users that query the service according to a predefined request
rate. The number of virtual users and the request rate are
parameters that can be fine-tuned to emulate different scenarios
and test the stability and scalability of the service.

We borrowed a typical load testing infrastructure to im-
plement the pausing mechanism introduced in the previous

TABLE II
HARDWARE PLATFORMS, OPERATING SYSTEM (OS), MAXIMUM (MAX.

FREQ.) AND MINIMUM (MIN. FREQ.) FREQUENCY, AND NUMBER OF
FREQUENCY LEVELS OF THE TARGET CPUS.

CPU Platform OS Min. Freq. Max. Freq. Levels

A72 Raspberry Pi 4 Ubuntu 22.04 600MHz 1.500GHz 10
A57 NVIDIA TX2 Ubuntu 18.04 345MHz 2.035GHz 12

TABLE III
GOVERNORS AND THEIR SAMPLING PERIOD (ms) ON THE TARGET CPUS.

CPU conservative ondemand schedutil interactive

A72 10.0 10.0 10.0 N/A
A57 300.0 300.0 0.5 20.0

subsection, specifically a single virtual-user setup with the
pause interval as the only testing parameter. The pause interval
is defined as the time distance between the service response
and the next client request and can be used as a knob to
improve the SCA efficiency. More in detail, it is a knob to
increase and reduce CPU utilization. The optimal values, i.e.,
those which produce enough frequency variations, may depend
on non-controllable factors, such as the governor in use at the
endpoint hosting the inference service and the neural network
characteristics (latency and utilization). We thereby resorted
to multiple load tests where the pause length is swept over a
predefined set of values, as detailed in the next subsection.

D. Attack Overview

The SCA plan involves performing four load tests in se-
quence, each with a duration of 10 s and a growing pause
length of 5, 20, 50, and 100ms.

We consider a threat model based on the following assump-
tions. First, the attacker owns a device, referred to as the tem-
plate device, with characteristics and specifications identical
to those of the victim device; this falls into the broad category
of profiled attacks [19]. Second, the attacker has access to
the victim’s device to install malware for monitoring and
transmitting the CPU frequency traces. This kind of malware
can gather raw data without requiring root permissions. Third,
the target neural network belongs to a pool of well-known
neural network architectures (although network weights may
differ). This assumption is quite realistic in most use cases. It
is standard practice today to leverage transfer learning [20],
a deep learning strategy where a neural architecture is taken
from a collection of publicly available networks and fine-tuned
on a proprietary dataset.

Following the standard organization of a profiled attack, our
method consists of a profiling phase and an extraction phase.

In the profiling phase, we collect frequency traces of the
target neural architectures to train an ML classifier capable
of inferring the target architecture from traces. To collect the
dataset, we execute the load tests described in Sec. III-C
on each target neural architecture deployed on the template
device. During the execution of the load tests, a background
process records the frequency profiles by reading the frequency

TABLE IV
POOL OF NEURAL NETWORK ARCHITECTURES.

Architecture Layers Size Latency (ms) Util. (%)
(MB) A72 A57 A72 A57

MobileNet-V1-0.25 28 0.49 4.71 3.57 85.6 92.0
MobileNet-V1-0.50 28 1.31 9.68 7.44 91.9 95.1
MobileNet-V1-0.75 28 2.51 17.80 13.53 95.0 97.0
MobileNet-V1-1.0 28 4.09 27.86 21.03 96.8 98.0
MobileNet-V2 53 3.42 23.39 17.85 96.2 97.7
MobileNet-V3-small 54 2.52 10.20 8.06 92.5 95.6
MobileNet-V3-large 64 5.35 25.80 20.26 96.4 97.9
EfficientNet-lite0 50 5.18 21.62 16.48 90.7 90.3
EfficientNet-lite1 65 6.12 32.32 23.87 92.4 92.6
EfficientNet-lite2 65 6.83 44.96 33.37 93.6 93.6
EfficientNet-lite3 74 9.15 68.97 51.46 95.2 95.2
EfficientNet-lite4 92 14.34 119.60 89.04 96.8 96.9

level every 10ms using the CPUFreq interface. The same load
test is processed 50 times to account for small fluctuations
in the frequency traces caused by operating system routines
running in the background. This procedure is repeated four
times, one for each pause length. The resulting dataset thus
includes multiple frequency traces annotated with a label cor-
responding to one neural architecture. The classifier consists
of a MiniRocket [21] feature extractor, commonly used for
time-series data, followed by a multinomial logistic regressor;
it is trained in a supervised manner using the lbfgs solver
and 5-fold stratified cross-validation for hyper-parameters op-
timization. The training loop consists of 200 iterations. It is
worth emphasizing that the data collection campaign and the
training pipeline are repeated for all governors and template
devices considered in our experiments, resulting in a dedicated
ML classifier for each governor and hardware configuration.

In the extraction phase, the attack is deployed to steal the
target neural architecture, as illustrated in Fig. 3. The victim
device is one of the template devices analyzed in the profiling
phase, but the target neural architecture is unknown. The
attacker runs the four load tests on the prediction endpoint,
recording the victim device’s CPU frequency through the pre-
installed malware. After the load tests, the collected frequency
trace and the active governor are sent to the attacker and fed
into the ML classifier trained for that specific governor. The
ML classifier returns the neural architecture used by the victim
inference service.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We operated two commercial platforms as test benches: the
Raspberry Pi 4 and the NVIDIA Jetson TX2. These platforms
are powered by different versions of the ARM Cortex-A CPU,
i.e., A72 and A57 respectively, whose technical specifications
are reported in Table II. Both CPUs are quad-core but differ in
terms of frequency range, frequency levels, and governors’ se-
tups. Table III shows the available governors and the sampling
period (defined by the CPU vendor). Notice that the sampling
period of a governor may vary by one order of magnitude
depending on the CPU architecture, affecting the speed of the
DVFS state update.

TABLE V
RESULTS ON A72.

Architecture conservative ondemand schedutil

1 MobileNet-V1-0.25 100.0% 100.0% 99.0%
2 MobileNet-V1-0.50 99.0% 93.8% 84.5%
3 MobileNet-V1-0.75 99.0% 100.0% 100.0%
4 MobileNet-V1-1.0 99.0% 100.0% 100.0%
5 MobileNet-V2 100.0% 100.0% 100.0%
6 MobileNet-V3-small 100.0% 94.2% 86.5%
7 MobileNet-V3-large 100.0% 100.0% 100.0%
8 EfficientNet-lite0 100.0% 100.0% 100.0%
9 EfficientNet-lite1 99.0% 100.0% 100.0%
10 EfficientNet-lite2 100.0% 100.0% 100.0%
11 EfficientNet-lite3 100.0% 100.0% 100.0%
12 EfficientNet-lite4 100.0% 100.0% 100.0%

Macro-F1 99.7% 99.0% 97.5%
Top-1 Accuracy 99.7% 99.0% 97.5%
Top-2 Accuracy 100.0% 100.0% 99.8%
Misclassifications - 2-6 2-6

Table IV collects the CNNs used as benchmarks, all taken
from TensorFlow HuB [22] in TFLite format; it shows the
average values of latency and CPU utilization over 100 consec-
utive inference runs processed at the maximum frequency with
4-thread execution. The picked networks, pre-trained on the
ImageNet dataset and quantized to 8-bit, belong to four distinct
families: MobileNet-V1 [23], MobileNet-V2 [24], MobileNet-
V3 [25], and EfficientNet [26]. The pool includes architectures
with very similar characteristics. For example, networks of
the MobileNet-V1 family have the same number of layers but
differ in the number of filters. Furthermore, some architectures
exhibit similar latency and utilization, such as Mobilenet-V1-
0.50 and MobileNet-V3-small. These similarities can affect
the detection accuracy of the attack. Our experiments aim
to evaluate the capability of our methodology to identify the
different networks, even under these challenging conditions.

B. Results

We evaluate the performance of the attacker classifier us-
ing standard metrics for multi-class classification. First, we
report the F1 score, which is defined as the harmonic mean
of precision and recall. Precision measures the fraction of
correctly predicted positive instances (true positives) over the
total number of instances predicted as positive (true positives
plus false positives). Recall measures the fraction of correctly
predicted positive instances over the total number of positive
instances (true positives plus false negatives). Higher F1 scores
indicate more accurate classifications. We also compute per-
class F1 scores, which measure the performance of the model
for each class individually. The per-class F1 score is computed
by considering each class as positive and the remaining classes
as negative, resulting in a score for each class. The average
F1 score (Macro-F1) is computed by taking the arithmetic
mean of the per-class F1 scores, providing an overall measure
of the model’s performance across all classes. Additionally,
we report the Top-1 Accuracy, which is the ratio between
the number of correct predictions and the total number of
instances in the dataset. With the Top-2 Accuracy, we consider
a prediction correct if any of the two classes with the highest
prediction probabilities matches the expected label. All these

TABLE VI
RESULTS ON A57.

Architecture conservative ondemand schedutil interactive

1 MobileNet-V1-0.25 99.0% 100.0% 100.0% 100.0%
2 MobileNet-V1-0.50 62.6% 100.0% 100.0% 100.0%
3 MobileNet-V1-0.75 93.9% 100.0% 100.0% 99.0%
4 MobileNet-V1-1.0 80.8% 59.3% 95.9% 90.7%
5 MobileNet-V2 68.0% 99.0% 99.0% 99.0%
6 MobileNet-V3-small 63.4% 100.0% 100.0% 100.0%
7 MobileNet-V3-large 77.9% 72.9% 95.1% 94.0%
8 EfficientNet-lite0 67.9% 100.0% 100.0% 99.0%
9 EfficientNet-lite1 93.2% 100.0% 100.0% 98.0%
10 EfficientNet-lite2 95.9% 100.0% 100.0% 98.0%
11 EfficientNet-lite3 100.0% 100.0% 100.0% 65.4%
12 EfficientNet-lite4 100.0% 100.0% 100.0% 65.3%

Macro-F1 83.6% 94.3% 99.2% 92.4%
Top-1 Accuracy 83.5% 94.5% 99.2% 92.3%
Top-2 Accuracy 97.3% 99.7% 99.8% 99.8%
Misclassifications 2-6, 5-8, 4-7 4-7 4-7 11-12

metrics were evaluated on a test set having the same size as
the training set, i.e. 600 traces (50 traces per network) for each
CPU/governor configuration.

The experimental results presented in Tables V and VI
prove the efficacy of the proposed SCA method. The reported
Macro-F1 scores range from 97.5% to 99.7% for the A72
and from 83.6% to 99.2% for the A57, depending on the
selected governor. These results indicate that the classifier
deployed on the attacker side can accurately identify the
target network, despite the different CPU architectures and
the governor settings.

The target network and the governor sampling period pri-
marily affect the prediction quality. Concerning the target
network, we observed that most misclassifications occur be-
tween network pairs with similar characteristics, as highlighted
in the last row of the results tables. This observation is
consistent with the Top-2 accuracy, which reveals that even in
cases where the Top-1 accuracy is low, the Top-2 accuracy is
significantly higher. For instance, the A57 with a conservative
governor has the lowest Top-1 accuracy at 83.5%, yet its Top-2
accuracy is much higher at 97.3%. Overall, the Top-2 accuracy
is close to 100% in all cases, and misclassifications are limited
to only a few governors and network pairs.

Regarding the sampling period, higher values lead to fewer
CPU frequency switches, resulting in less information leakage
in the traces. This effect is evident for the ondemand and
the conservative governors, which show prediction scores
on the A57 (sampling period 300ms) lower than that on
the A72 (sampling period 10ms). In conservative mode, the
Macro-F1 score is 99.7% for the A72, compared to 83.6%
for the A57. For the schedutil governor instead, the scores
on the A57 (sampling period 0.5ms) get higher than that
recorded on the A72 (sampling period 10ms). Intuitively,
under larger sampling periods, the probability of frequency
switches reduces, and variations in CPU utilization might
get missed, making it more challenging to profile the neural
architecture.

Fig. 4 provides visual evidence of the effectiveness of the
proposed methodology. The figure shows frequency traces

EfficientNet-lite4MobileNet-V1-1.0MobileNet-V1-0.25

5 ms 20 ms 50 ms 100 ms

0 10 20 30 40
Time (s)

0.5

1.0

1.5

2.0

2.5

F
re

qu
en

cy
 (

G
H

z)

(a) conservative

5 ms 20 ms 50 ms 100 ms

0 10 20 30 40
Time (s)

0.5

1.0

1.5

2.0

2.5

F
re

qu
en

cy
 (

G
H

z)

(b) ondemand

5 ms 20 ms 50 ms 100 ms

0 10 20 30 40
Time (s)

0.5

1.0

1.5

2.0

2.5

F
re

qu
en

cy
 (

G
H

z)

(c) schedutil

Fig. 4. Examples of frequency traces collected on the A57 with the proposed
load testing methodology. The four load tests are delimited by dashed arrows,
with pause lengths indicated above the arrows.

collected for three networks deployed on the A57 CPU,
i.e., MobileNet-V1-0.25, MobileNet-V1-1.0, and EfficientNet-
lite4, with the conservative, ondemand, and schedutil gover-
nors (interactive omitted for the sake of space). These are
the same networks of Fig. 1. Unlike standard DVFS SCAs,
the frequency traces are distinguishable, enabling a successful
attack. The improvement is due to the testing procedure, which
emphasizes the characteristics of the governors. With conser-
vative, the frequency gradually increases and stops at different
levels. With ondemand, it switches to a value proportional
to the workload with small fluctuations due to system noise.
With schedutil, it oscillates with sudden surges due to the low
governor sampling period (0.5ms).

Moreover, the plots demonstrate the need for multiple load
tests with different pause intervals. This can be seen in the
traces collected during the load test with a pause of 5ms for
the conservative and schedutil governors (Figs. 4a and 4c). In
these cases, the traces of MobileNet-V1-1.0 and EfficientNet-
lite4 do overlap, while they get distinguishable with longer
pause intervals (20ms, 50ms, and 100ms). We observed
similar cases for other instances not reported in the figure.
In summary, only a combination of multiple load tests can
create distinguishable traces for all networks and governors.

V. CONCLUSION

This work has shown that DVFS SCAs can perform network
fingerprinting in edge inference services, bypassing IaaS pro-

tection via software-based procedures. Our methodology based
on load testing has proven capable of generating frequency
traces that serve as signatures, enabling the detection of neural
architectures with high accuracy. Our findings highlight the
need for security measures to counteract such attacks, which
can expose a concrete source of leakage for neural architecture
stealing with severe implications for security and privacy in the
context of IaaS. In particular, malicious actors with knowledge
of the neural architecture can launch more efficient adversarial
attacks to mislead the output prediction or white-box attacks
aiming to replicate the network functionality.

REFERENCES

[1] V. Peluso et al., “Inference on the edge: Performance analysis of
an image classification task using off-the-shelf cpus and open-source
convnets,” in SNAMS, 2019.

[2] J. Hou et al., “Model protection: Real-time privacy-preserving inference
service for model privacy at the edge,” IEEE Trans. Dependable Secur.
Comput., vol. 19, no. 6, pp. 4270–4284, 2022.

[3] Y. Xiang et al., “Open DNN box by power side-channel attack,” IEEE
Trans. Circuits Syst., vol. 67-II, no. 11, pp. 2717–2721, 2020.

[4] X. Hu et al., “Deepsniffer: A DNN model extraction framework based
on learning architectural hints,” in ASPLOS, 2020.

[5] Y. Zhu et al., “Hermes attack: Steal DNN models with lossless inference
accuracy,” in USENIX Security Symposium, 2021.

[6] L. Batina et al., “SCA strikes back: Reverse-engineering neural network
architectures using side channels,” IEEE Des. Test, vol. 39, no. 4, pp.
7–14, 2022.

[7] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in USENIX Security
Symposium, 2020.

[8] V. Duddu et al., “Stealing neural networks via timing side channels,”
CoRR, vol. abs/1812.11720, 2018.

[9] B. A. D. Kumar et al., “Inferring DNN layer-types through a hardware
performance counters based side channel attack,” in AIMLSystems, 2021.

[10] K. Patwari et al., “DNN model architecture fingerprinting attack on
CPU-GPU edge devices,” in EuroS&P, 2022.

[11] Y. Liu and A. Srivastava, “GANRED: gan-based reverse engineering of
dnns via cache side-channel,” in CCSW, 2020.

[12] S. E. Arefin and A. Serwadda, “Deep neural exposure: You can run, but
not hide your neural network architecture!” in IH&MMSec, 2021.

[13] A. Büşra and Y.-M. Ayse, “A study on power and energy measurement
of nvidia jetson embedded gpus using built-in sensor,” in UBMK, 2022.

[14] Linux Governors. Accessed on 2023/03/20. [Online]. Available:
https://docs.kernel.org/admin-guide/pm/cpufreq.html

[15] D. R. Dipta and B. Gülmezoglu, “DF-SCA: dynamic frequency side
channel attacks are practical,” in ACSAC, 2022.

[16] N. Chawla et al., “Application inference using machine learning based
side channel analysis,” in IJCNN, 2019.

[17] C. Liu et al., “Methodology of assessing information leakage through
software-accessible telemetries,” in HOST, 2021.

[18] C. Wu et al., “Machine learning at facebook: Understanding inference
at the edge,” in HPCA, 2019.

[19] M. Taouil, A. Aljuffri, and S. Hamdioui, “Power side channel attacks:
Where are we standing?” in DTIS, 2021.

[20] A. Kolesnikov et al., “Big transfer (bit): General visual representation
learning,” in ECCV, 2020.

[21] A. Dempster, D. F. Schmidt, and G. I. Webb, “Minirocket: A very fast
(almost) deterministic transform for time series classification,” in KDD,
2021.

[22] TensorFlow Hub. Accessed on 2023/03/20. [Online]. Available:
https://tfhub.dev

[23] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[24] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018.

[25] A. Howard et al., “Searching for mobilenetv3,” in ICCV, 2019.
[26] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for

convolutional neural networks,” in ICML, 2019.

