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Mask2Anomaly: Mask Transformer for
Universal Open-Set Segmentation

Shyam Nandan Rai , Fabio Cermelli , Barbara Caputo , and Carlo Masone , Member, IEEE

Abstract—Segmenting unknown or anomalous object instances
is a critical task in autonomous driving applications, and it is
approached traditionally as a per-pixel classification problem.
However, reasoning individually about each pixel without con-
sidering their contextual semantics results in high uncertainty
around the objects’ boundaries and numerous false positives.
We propose a paradigm change by shifting from a per-pixel
classification to a mask classification. Our mask-based method,
Mask2Anomaly, demonstrates the feasibility of integrating a mask-
classification architecture to jointly address anomaly segmentation,
open-set semantic segmentation, and open-set panoptic segmenta-
tion. Mask2Anomaly includes several technical novelties that are
designed to improve the detection of anomalies/unknown objects:
i) a global masked attention module to focus individually on the
foreground and background regions; ii) a mask contrastive learning
that maximizes the margin between an anomaly and known classes;
iii) a mask refinement solution to reduce false positives; and iv) a
novel approach to mine unknown instances based on the mask- ar-
chitecture properties. By comprehensive qualitative and qualitative
evaluation, we show Mask2Anomaly achieves new state-of-the-art
results across the benchmarks of anomaly segmentation, open-set
semantic segmentation, and open-set panoptic segmentation.

Index Terms—Anomaly segmentation, open-set semantic segm-
entation, open-set panoptic segmentation, mask architecture.

I. INTRODUCTION

IMAGE segmentation [16], [54], [56], [61], [64] plays a
significant role in self-driving cars, being instrumental in

achieving a detailed understanding of the vehicle’s surround-
ings. Generally, segmentation models are trained to recognize a
pre-defined set of semantic classes (e.g., car, pedestrian, road,
etc.); however, in real-world applications, they may encounter
objects not belonging to such categories (e.g., animals or cargo
dropped on the road). Therefore, it is essential for these models
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Fig. 1. Mask2Anomaly: We present a mask-based architecture that can jointly
perform open-set semantic segmentation, open-set panoptic segmentation, and
anomaly segmentation. In the figure, the objects enclosed in red boxes are
anomaly/unknown.

to identify objects in a scene that are not present during training
i.e., anomalies, both to avoid potential dangers and to enable con-
tinual learning [9], [10], [20], [46] and open-world solutions [8].
The segmentation of unseen object categories can be performed
at three levels of increasing semantic output information (see
Fig. 1):
� Anomaly segmentation (AS) [6], [23], [35], [60] focuses

on segmenting objects from classes that were absent dur-
ing training, generating an output map that identifies the
anomalous image pixels.

� Open-set semantic segmentation (OSS) [27] evaluates a
segmentation model’s performance on both anomalies and
known classes. OSS ensures that when training an anomaly
segmentation model, its performance on known classes
remains unaffected.

� Open-set panoptic segmentation (OPS) [34] simultane-
ously segments distinct instances of unknown objects
and performs panoptic segmentation [36] for the known
classes.

In the literature, AS, OSS and OPS are typically addressed
separately using specialized networks for each task. These net-
works rely on per-pixel classification architectures that individ-
ually classify the pixels and assign to each of them an anomaly
score. However, reasoning on the pixels individually without
any spatial correlation produces noisy anomaly scores, thus
leading to a high number of false positives and poorly localized
anomalies or unknown objects (see Fig. 2).
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Fig. 2. Per-pixel versus per-mask architecture: We show significant short-
comings in the performance of state-of-the-art methods employing per-
pixel architectures for anomaly segmentation or open-set segmentation tasks.
These methods prediction have significant false positives and noisy out-
comes. Mask2Anomaly(ours), an architecture based on mask-transformer prop-
erties that effectively addresses both anomaly segmentation and open-set
segmentation tasks, leading to a substantial reduction in false positives and
enhancing overall prediction quality.

In this paper, we propose to jointly address AS, OSS, and
OPS with a single architecture (with minor changes during
inference) by casting them as a mask classification task rather
than a pixel classification task (see Fig. 1). The idea of employ-
ing mask-based architecture stems from the recent advances
in mask-transformer architectures [14], [15], which demon-
strated that it is possible to achieve remarkable performance
across various segmentation tasks by classifying masks rather
than pixels. We hypothesize that mask-transformer architectures
are better suited to detect anomalies than per-pixel architec-
tures because masks encourage objectness and thus can capture
anomalies as whole entities, leading to more congruent anomaly
scores and reduced false positives. However, the effectiveness
of mask-transformer architectures hinges on the capability to
output masks that captures anomalies well. Hence, we pro-
pose several technical contributions to improve the capability
of mask-transformer architectures to capture anomalies or un-
known objects and minimize false positives:
� At the architectural level, we propose a global masked-

attention mechanism that allows the model to focus on both
the foreground objects and on the background while retain-
ing the efficiency of the original masked-attention [14].

� At the training level, we have developed a mask contrastive
learning framework that utilizes outlier masks from addi-
tional out-of-distribution data to maximize the separation
between anomalies and known classes.

� At the inference level, for anomaly segmentation, we pro-
pose a mask-based refinement solution that reduces false
positives by filtering masks based on the panoptic seg-
mentation that distinguishes between “things” and “stuff”
and for open-set panoptic segmentation, we developed

an approach to mine unknown instances based on mask-
architecture properties.

We integrate these contributions on top of the mask architec-
ture [14] and term this solution Mask2Anomaly. A few concur-
rent works have proposed methods that segment anomalies at the
mask level by relying on the Mask2Former architecture [1], [28],
[49], [52] but, to the best of our knowledge, Mask2Anomaly is
the first universal architecture that jointly addresses AS, OSS,
and OPS. We tested Mask2Anomaly on standard anomaly seg-
mentation benchmarks (Road Anomaly [42], Fishyscapes [6],
Segment Me If You Can [11], Lost&Found [51]), open-set se-
mantic segmentation benchmark (Streethazard [31]), and open-
set panoptic MS-COCO [34] dataset, achieving the best results
among all methods for all task by a significant margin. All the
code and pre-trained models are available here.

This work is an extension of our previous paper [52] that was
accepted to ICCV 2023 (Oral) with the following contributions:
� We extend Mask2Anomaly to open-set segmentation tasks,

namely open-set semantic segmentation and open-set
panoptic segmentation.

� For the open-set panoptic segmentation task, we developed
a novel approach to mine unknown instances based on
the properties of the mask-architecture and provide related
ablation studies to show its efficacy.

� Extensive qualitative and quantitative experiments demon-
strate that Mask2Anomaly is an effective approach to
address open-set segmentation tasks. Notably, Mask2
Anomaly gives a significant gain of 30% on Open-IoU
metrics w.r.t best existing method.

� We extend Mask2Anomaly experimentation for the
anomaly segmentation task by showing results on the
Lost&Found dataset. Also, we show global mask attention
can positively impact semantic segmentation by investigat-
ing its generalizability to other datasets.

II. RELATED WORK

Mask-based semantic segmentation. Traditionally, semantic
segmentation methods [13], [40], [44], [65], [66] have adopted
fully-convolutional encoder-decoder architectures [2], [44] to
address the task as a dense classification problem. However,
transformer architectures have recently caused us to question this
paradigm due to their outstanding performance in closely related
tasks such as object detection [7] and instance segmentation [29].
In particular, Cheng et al. [15] proposed a mask-transformer
architecture called MaskFormer that addresses segmentation as
a mask classification problem. It adopts a transformer and a
per-pixel decoder on top of the feature extraction. The gener-
ated per-pixel and mask embeddings are combined to produce
the segmentation output. Building upon MaskFormer [15], the
same authors later introduced a new transformer decoder called
Mask2Former [14] adopting a novel masked-attention module
and feeding the transformer decoder with one pixel-decoder
high-resolution feature at a time.

While these mask-transformers have been originally con-
sidered exclusively in a closed-set setting, i.e, when there are
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no unknown categories at test time, a few recent works have
demonstrated their application also for AS in driving scenes [1],
[28], [49], [52], thus empowering them with the capability to
recognize anomalies in real-world setting.

Anomaly segmentation methods can be broadly divided into
three categories: (a) Discriminative, (b) Generative and (c)
Uncertainty-based methods. Discriminative Methods are based
on the classification of the model outputs. Hendrycks and
Gimpel [32] established the initial AS discriminative base-
line by applying a threshold over the maximum softmax
probability (MSP) that distinguishes between in-distribution
and out-of-distribution data. Other approaches use auxiliary
datasets to improve performance [35], [39], [57], by calibrating
the model over-confident outputs. Along this line of works,
Zhang et al. [63] demonstrate that the auxiliary data may be com-
bined with style transfer techniques. Alternatively, Lee et al. [38]
learns a confidence score by using the Mahalanobis distance,
and Chan et al. [12] introduces an entropy-based classifier
to discover out-of-distribution classes. Recently, discriminative
methods tailored for semantic segmentation [6] directly segment
anomalies in embedding space. Generative Methods provides an
alternative paradigm to segment anomalies based on generative
models [18], [42], [59], [60]. These approaches train generative
networks to reconstruct anomaly-free training data and then
use the generation discrepancy to detect an anomaly at test time.
All the generative-based methods heavily rely on the generation
quality and thus experience performance degradation due to
image artifacts [23]. Grcić et al. [27] combine aspects of both
generative and discriminative methods in a hybrid algorithm.
Finally, uncertainty-based methods segment anomalies by lever-
aging uncertainty estimates via Bayesian neural networks [48].

Mask-based anomaly segmentation. The literature of anomaly
segmentation has been dominated for a long time by meth-
ods that rely on per-pixel classification architectures to indi-
vidually classify the pixels and assign to each of them an
anomaly score [12], [18], [27], [35], [57], [59]. Few recent
methods have challenged this structure by re-formulating the
process of anomaly scores at the mask level rather than the
level of individual pixels. This new methodology, enabled by
universal segmentation architecture like MaskFormer [15] and
Mask2Former [14], has led to solutions that achieve better
anomaly localization and reduce the number of false posi-
tives, setting new standards over all the anomaly segmentation
benchmarks. Originally, the concept of mask-based anomaly
segmentation was introduced in Mask2Anomaly [52], a method
that leverages Mask2Former to score anomalies on masks.
Mask2Anomaly, further introduces a global-masked attention
mechanism to attend to anomalies both in the background
and foregound, a mask-refinement strategy tailored for driving
scenes and a mask-contrastive loss to improve AS capabilities.
Concurrently, Nayal et al. [49] leverages the same Mask2Former
architecture and introduces a novel per-mask outlier scoring
function, called RbA, based on the observation that the object
queries in mask classification tend to behave like one versus
all classifiers. Both Mask2Anomaly and RbA leverage outlier
exposure to improve predictions. Alternatively, Maskomaly [1]
uses a simple inference-time post-processing step in mask archi-
tecture to segment anomalies without any outlier exposure. This

post-processing strategy combines two separate predictions, one
that assigns low scores within inlier masks or across their shared
borders, and another that assigns high probability to pixels
included in masks which were found to predict anomalies on
a validation set. Finally, Grcić et al. [28] experimentally show
the advantages of using plain mask-based architecture for AS,
and propose a formulation that combines the uncertainties of
pixel-level mask assignment and mask-level recognition. This
formulation leads to a new scoring function, denoted as EAM,
that is given by the ensemble over all the anomaly scores
(obtained for example via a max-logit detector) of mask-wide
predictions. This method also uses negative examples to enhance
performance.

Although these concurrent approaches leverage the same
Mask2Former architecture, they implement subtly different en-
gineering choices (e.g., in the encoder size or training data)
that make their results not directly comparable. In this work,
we establish a fair comparison among these new solutions, by
using a common architectural and training data setup. Moreover,
we fully exploit the universal capabilities of the Mask2Former
architecture by extending Mask2Anomaly to perform AS, OSS,
and OPS. To the best of our knowledge, this is the first mask-
based method to do so.

Open-set segmentation is the task of segmenting both
the anomalies and in-distribution classes for a given image.
Anomaly segmentation methods [33], [60] can be adapted
to perform open-set semantic segmentation by fusing the
in-distribution segmentation results. However, these methods
show poor performance in open-set metrics because their in-
distribution class segmentation capabilities degrade after train-
ing for anomaly segmentation. Bevandic et al. [3] formally
introduces the problem of open-set semantic segmentation that
uses multi-task model segment anomaly and predicts semantic
segmentation maps. Later, Bevandic et al. [4] improved the prior
method using noisy outlier labels. Recently, Grcic et al. [27]
proposed a hybrid approach that combines the known class pos-
terior, dataset posterior, and an un-normalized data likelihood to
estimate anomalies and in-distribution classes simultaneously.
Another challenging problem in the space of open-set segmenta-
tion is open-set panoptic segmentation [34]. In open-set panoptic
segmentation, the goal is to simultaneously segment distinct
instances of unknown objects and perform panoptic segmen-
tation for in-distribution classes. Hwang et al. [34] proposed
an exemplar-based open-set panoptic segmentation network
(EOPSN) that is based on exemplar theory and utilizes Panoptic
FPN [36] which is a per-pixel architecture to perform open-set
panoptic segmentation.

All the methods discussed so far for anomaly and open-set
segmentation rely on per-pixel classification and evaluate indi-
vidual pixels without considering local semantics. This approach
often leads to noisy anomaly predictions, resulting in significant
false positives and reduced in-distribution class segmentation
performance. Mask2Anomaly overcomes this limitation by seg-
menting anomalies and in-distribution classes as semantically
clustered masks, encouraging the objectness of the predictions.
To the best of our knowledge, this is the first work to use
masks both to segment anomalies and for open-set semantic
and panoptic segmentation.
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III. PRELIMINARIES

Notations: Let us denote X ⊂ R3×H×W the space of RGB
images, where H and W are the height and width, respectively,
and with Y ⊂ NZ×H×W the space of semantic labels that as-
sociate each pixel in an image to a semantic category from a
predefined set Z , with |Z| = Z. At training time we assume to
have a dataset D = {(xi, yi)}Di=1, where xi ∈ X is an image
and yi ∈ Y is its ground truth having pixel-wise semantic class
labels. Alternatively, Y can also be described as the semantic
partition of the image into Z regions that are represented as a
set of binary masks Mgt, where the ground-truth labels of xi

can be represented as Mgt = {mi|mi ∈ [0, 1]H×W }Zi=1. From
the perspective of panoptic segmentation [36], if mi ∈ things
category, it can be further divided as mi =

⋃J
j=1 m

j
i . Where, J

represents the total number of instances present in mi.
Mask architectures: The prototypical mask architecture con-

sists of three meta parts: a) a backbone that acts as feature
extractor, b) a pixel-decoder that upsamples the low-resolution
features extracted from the backbone to produce high-resolution
per-pixel embeddings, and c) a transformer decoder, made of
L transformer layers, that takes the image features to output a
fixed number of object queries consisting of mask embeddings
and their associated class scores C ∈ RN×Z . The final class
masks M ∈ RN×(H×W ) are obtained by multiplying the mask
embeddings with the per-pixel embeddings obtained from the
pixel-decoder.

During training, we use the Hungarian algorithm to match
ground truth masks Mgt with the predicted masks M . Since the
Hungarian algorithm requires one-to-one correspondences and
M ≥ Mgt, we pad the ground truth mask Mgt with “no object”
masks, which we indicate as φ. The cost function for matching
M and Mgt is given by

Lmasks = λbceLbce + λdiceLdice, (1)

where Lbce and Ldice are, respectively, the binary cross entropy
loss and the dice loss calculated between the matched masks. The
weights λbce and λdice are both set to 5.0. Additionally, we also
train the model on cross-entropy loss Lce to learn the semantic
class of each mask that is denoted by C. The total training loss
is given by

L = Lmasks + λceLce, (2)

with λce set to 2.0 for the prediction that is matched with the
ground truth and 0.1 for φ, i.e., for no object. At inference time,
the segmentation output g(x) is inferred by marginalization over
the softmax of C and sigmoid of M . Formally, the pixel-wise
class scoresS(x) ∈ [0, 1]Z×H×W for the input imagex are given
by

S(x) = softmax(C)T · sigmoid(M). (3)

The tensor of class scores can be represented as a concatenation
of (H ×W )-dimensional slices associated to the Z semantic
categories in Z , i.e., S(x) = [SZ1

, . . . , SZZ
]. Therefore, the

segmentation output at a pixel (h,w) is given by

g(x)|h,w = argmax
z∈Z

Sz(x)|h,w , (4)

where the operator ·|h,w indicates that the function is taken at the
spatial coordinates (h,w). Hereinafter, we will combine (3)–(4)
with the following shorthand notation

g(x) = argmax
Z

(
softmax(C)T · sigmoid(M)

)
. (5)

For more details about the mask architecture, please refer to
the Mask2Former paper [14]. In the subsequent sections, we will
address the tasks of anomaly segmentation (Section IV), open-
set semantic segmentation (Section V), and open-set panoptic
segmentation (Section VI) using our proposed Mask2Anomaly
architecture and delve into its novel elements.

IV. ANOMALY SEGMENTATION

A. Problem Setting

Anomaly segmentation can be achieved in per-pixel se-
mantic segmentation architectures [13] by applying the Max-
imum Softmax Probability (MSP) [32] on top of the per-pixel
classifier. Formally, given the pixel-wise class scores S(x) ∈
[0, 1]Z×H×W obtained by segmenting the image x with a per-
pixel architecture, we can compute the anomaly score f(x) as

f(x) = 1−max
Z

(S(x)), (6)

where we used the same shorthand notation already adopted
in (5) to indicate the max operations along the first dimension
of the tensor. In this paper, we propose to adapt this framework
based on MSP for mask-transformer segmentation architectures.
Given such a mask-transformer architecture, we calculate the
anomaly scores for an input x as

f(x) = 1−max
Z

(
softmax(C)T · sigmoid(M)

)
. (7)

Here, f(x) utilizes the same marginalization strategy of class
and mask pairs as [15] to get anomaly scores. Without loss
of generality, we implement the anomaly scoring (7) on top
of the Mask2Former [14] architecture. However, this strategy
hinges on the fact that the masks predicted by the segmentation
architecture can capture anomalies well. We found that simply
applying the MSP on top of Mask2Former as in (7) does not
yield good results (see Fig. 1 and the results in Section VII-E).
To overcome this problem, we introduce improvements in the
architecture, training procedure, and anomaly inference mech-
anism. We name our method Mask2Anomaly, and its overview
is shown in Fig. 3. Now, we will discuss the proposed novel
components in Mask2Anomaly.

B. Global Masked Attention

One of the key ingredients to Mask2Former [14] state-of-the-
art segmentation results is the replacement of the cross-attention
(CA) layer in the transformer decoder with a masked-attention
(MA). The masked-attention attends only to pixels within the
foreground region of the predicted mask for each query, under
the hypothesis that local features are enough to update the query
object features. The output of the lth masked-attention layer can
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Fig. 3. Mask2Anomaly Overview. Mask2Anomaly meta-architecture consists
of an encoder, a pixel decoder, and a transformer decoder. We propose GMA:
Global Mask Attention that is discussed in Section IV-B and Fig. 4. φ is image
features.φi, φi+1, φi+2 are upsampled image features at multiple scales. Mask
contrastive Loss LCL (Section IV-C) utilizes outlier masks to maximize the
separation between anomalies and known classes. During anomaly inference,
we utilize refinement mask RM (Section IV-D) to minimize false positives.

be formulated as

softmax(MF
l +QKT )V +Xin, (8)

where Xin ∈ RN×C are the N C-dimensional query features
from the previous decoder layer. The queries Q ∈ RN×C are
obtained by linearly transforming the query features with a
learnable transformation whereas the keys and values K,V are
the image features under learnable linear transformations fk(·)
and fv(·). Finally, MF

l is the predicted foreground attention
mask that at each pixel location (i, j) is defined as

MF
l (i, j) =

{
0 if Ml−1(i, j) ≥ 0.5
−∞ otherwise,

(9)

where Ml−1 is the output mask of the previous layer.
By focusing only on the foreground objects, masked attention

grants faster convergence and better semantic segmentation per-
formance than cross-attention. However, focusing only on the
foreground region constitutes a problem for anomaly segmenta-
tion because anomalies may also appear in the background re-
gions. Removing background information leads to failure cases
in which the anomalies in the background are entirely missed,
as shown in the example in Fig. 5. To ameliorate the detection of
anomalies in these corner cases, we extend the masked attention
with an additional term focusing on the background region (see
Fig. 4). We call this a global masked-attention (GMA) formally
expressed as

Xout = softmax(MF
l +QKT )V

+ softmax(MB
l +QKT )V +Xin, (10)

where MB
l is the additional background attention mask that

complements the foreground mask MF
l , and it is defined at the

pixel coordinates (i, j) as

MB
l (i, j) =

{
0 if Ml−1(i, j) < 0.5
−∞ otherwise.

(11)

Fig. 4. Global Mask Attention: independently distributes the attention between
foreground and background. V, K, and Q are Value, Key, and Query.

Fig. 5. Limitation of Mask-Attention: Masked-attention [14] selectively at-
tends to foreground regions resulting in low attention scores (dark regions) for
anomalies. Anomalies are in red. Best viewed with Zoom.

The global masked-attention in (10) differs from the masked-
attention by additionally attending to the background mask
region, yet it retains the benefits of faster convergence w.r.t.
the cross-attention.

C. Mask Contrastive Learning

The ideal characteristic of an anomaly segmentation model
is to predict high anomaly scores for out-of-distribution (OOD)
objects and low anomaly scores for in-distribution (ID) regions.
Namely, we would like to have a significant margin between
the likelihood of known classes being predicted at anomalous
regions and vice-versa. A common strategy used to improve
this separation is to fine-tune the model with auxiliary out-of-
distribution (anomalous) data as supervision [6], [26], [27].

Here we propose a contrastive learning approach to encourage
the model to have a significant margin between the anomaly
scores for in-distribution and out-of-distribution classes. Our
mask-based framework allows us to straightforwardly imple-
ment this contrastive strategy by using as supervision outlier
images generated by cutting anomalous objects from the aux-
iliary OOD data and pasting them on top of the training data.
For each outlier image, we can then generate a binary outlier
mask MOOD that is 1 for out-of-distribution pixels and 0 for
in-distribution class pixels. With this setting, we first calculate
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Fig. 6. Mask Refinement Illustration: To obtain the refined prediction, we
multiply the prediction map with a refinement mask that is built by assigning zero
anomaly scores for pixels that are categorized as “stuff”, except for the “road”.
The refinement eliminates many false positives at the boundary of objects and
in the background. The region to be masked is white in the refinement mask.

the negative likelihood of in-distribution classes using the class
scores C and class masks M as

lN = −max
Z

(
softmax(C)T · sigmoid(M)

)
. (12)

Ideally, for pixels corresponding to in-distribution classes lN
should be −1 since the value of softmax(C)T and sigmoid(M)
would be close to 1. On the other hand, for the anomalous pixels,
lN should be 0 as the likelihood of these pixels belonging to any
in-distribution classes is 0 resulting softmax(C)T to be 0. Using
lN , we define our contrastive loss as

LCL =
1

2
(l2CL),

lCL =

{
lN if MOOD = 0
max(0,m− lN ) otherwise,

(13)

where the margin m is a hyperparameter that decides the
minimum distance between the out-of-distribution and in-
distribution classes. During mask contrastive training, we also
preserve the in-distribution accuracy by training on Lmasks and
Lce which formulates our total training loss as

Lood = LCL + Lmasks + λceLce. (14)

D. Refinement Mask

False positives are one of the main problems in anomaly seg-
mentation, particularly around object boundaries. Handcrafted
methods such as iterative boundary suppression [35] or dilated
smoothing have been proposed to minimize the false positives
at boundaries or globally, however, they require tuning for
each specific dataset. Instead, we propose a general refinement
technique that leverages the capability of mask transformers [14]
to perform all segmentation tasks. Our method stems from the
panoptic perspective [36] that the elements in the scene can
be categorized as things, i.e., countable objects, and stuff, i.e.,
amorphous regions. With this distinction in mind, we observe
that in driving scenes, i) unknown objects are classified as things,
and ii) they are often present on the road. Thus, we can proceed
to remove most false positives by filtering out all the masks
corresponding to “stuff”, except the “road” category. We imple-
ment this removal mechanism in the form of a binary refinement
mask RM ∈ [0, 1]H×W , which contains zeros in the segments
corresponding to the unwanted “stuff” masks and one otherwise.
Thus, by multiplying RM with the predicted anomaly scores f
we filter out all the unwanted “stuff” masks and eliminate a large
portion of the false positives (see Fig. 6). Formally, for an image

x the refined anomaly scores fr is computed as

fr(x) = RM � f(x), (15)

where � is the Hadamard product.
RM is the dot product between the binarized output mask

M̄ ∈ {0, 1}N×(H×W ) and the class filter C̄ ∈ {0, 1}1×N , i.e.,
RM = C̄ · M̄ . We define M̄ = sigmoid(M) > 0.5 and the class
filter C̄ is equal to 1 only where the highest class score of
softmax(C) belongs to “things” or “road” classes and is greater
than 0.95.

Inference: During inference, we pass the input image through
Mask2Anomaly to get anomaly scores (7). Then, we refine the
anomaly scores via refinement mask (15).

V. OPEN-SET SEMANTIC SEGMENTATION

A. Problem Setting

Anomaly segmentation methods solely focus on segment-
ing road scene anomalies. However, a strong performance for
in-distribution classes is equally important. For instance, an
anomaly segmentation model deployed in an autonomous vehi-
cle that fails to identify a person crossing the road can result in a
fatal accident. Hence, it is crucial that while recognizing anoma-
lies, the performance of the model on in-distribution classes
remains preserved. Open-set semantic segmentation addresses
this problem by jointly assessing the model’s performance on
in-distribution and out-of-distribution classes. We utilize the
mask properties of Mask2Anomaly to perform open-set seman-
tic segmentation by only modifying its inference process with
respect to the Anomaly Segmentation task.

Inference: Our open-set semantic segmentation network has
identical mask architecture as anomaly segmentation that con-
tains global mask attention. During the inference, we first thresh-
old the anomaly scores obtained from (7) at a true positive rate
of 95%, similar to [27]. We denote the thresholded anomaly
scores by f̂(x). Next, we calculate the in-distribution class
performance g(x) by (5). Finally, we formulate the open-set
semantic segmentation foss prediction of an image x as

foss(x) = argmax(concat(g(x), f̂(x))). (16)

VI. OPEN-SET PANOPTIC SEGMENTATION

A. Problem Overview

Panoptic segmentation [36] jointly addresses the dense pre-
diction task of semantic segmentation and instance segmenta-
tion. In this task, we divide an image into two broad categories: i)
stuff, i.e., amorphous areas of an image that have homogeneous
texture, such as grass and sky, and ii) things, i.e., countable
objects such as pedestrians. Every pixel belonging to a things
category is assigned a semantic label and a unique instance id,
whereas, for stuff regions, only semantic labels are given, and
the instance id is ignored. However, constructing and annotating
large-scale panoptic segmentation datasets is expensive and
requires significant human effort. Hwang et al. [34] address this
problem by formulating it as an open-set panoptic segmentation
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(OPS) problem where a model can perform panoptic segmenta-
tion on a pre-defined set of classes and identify unknown objects.
This ability of the OPS model could accelerate the process of
constructing large-scale panoptic segmentation datasets from
existing ones.

B. Problem Setting

The key difference between panoptic and open-set panoptic
segmentation is the presence of unknown objects while testing.
However, handling the classification of unknown object in OPS
is quite challenging. First, in comparison to open-set image clas-
sification, OPS requires the classification of unknown objects at
the pixel level. Second, the absence of semantic information
about unknown objects means that they are generically labeled
as background during training. In order to make the problem
tractable, we follow Hwang et al. [34] and make three assump-
tions:

1) we categorize all the unknowns into things categories (i.e.,
the unknowns are countable objects);

2) elements of known categories cannot be classified as un-
known classes;

3) the unknown objects are always found in the back-
ground/void regions. This avoids confusion between
known and unknown class regions.

We address open-set panoptic segmentation by utilizing the
mask properties of Mask2Anomaly and leveraging its global
mask attention. We first mask out the known stuff and things
regions of an image, and then within the remaining background
area, we mine the instances of the unknown objects. We will
now formally discuss the method in more detail. For an input
image x, Mask2Anomaly outputs a set of masks M and its cor-
responding class scores C. Among these, we denote the joint set
of known stuff and things class masks as Mk ∈ [0, 1]Nk×H×W

and its corresponding class scores as Ck ∈ RNk×Z . Finally, we
denote the number of known class masks as Nk. We obtain the
background region B of x by using the weighted combination
of Mk and Ck given by

B = 1−max
Nk

(max
Z

(softmax(Ck)) · sigmoid(Mk)). (17)

In light of our assumptions, B consists of background stuff
classes and unknown things classes.

C. Mining Unknown Instances

Generally in panoptic segmentation datasets such as MS-
COCO [41] the background class consists of only back-
ground stuff classes. However, in open-set panoptic segmenta-
tion, the background class consists of background stuff classes
and unknown things classes. So, we mine the unknown instances
from backgroundB obtained from (17) using the following steps:

1) In the first step, we employ the connected component
algorithm [5] to cluster and identify unique segments in
B.

2) Next, we calculate each connected component’s overlap
with the individual masks of M . Intersection over union
is used for calculating the overlap.

3) If there is a significant overlap between a connected com-
ponent and a mask M i ∈ M , we calculate the average
stuff class entropy ES and average things class entropy ET
using the corresponding class scores Ci ∈ C.

4) Finally, if ES > ET we can conclude that the connected
component is more likely to belong to the things class.
Hence, we classify the connected component to be an
unknown instance.

Inference: During the inference, we first calculateB from (17).
Then, we identify the unknown instances in B by following the
above described steps of mining unknown instances.

VII. EXPERIMENTATION

A. Datasets

Anomaly Segmentation: We train Mask2Anomaly on the
Cityscapes [16] dataset, which consists of 2,975 training and
500 validation images. To evaluate anomaly segmentation, we
use Road Anomaly [42], Lost & Found [51], Fishyscapes [6],
and Segment Me If You Can (SMIYC) benchmarks [11].

Road Anomaly: is a collection of 60 web images with anoma-
lous objects on or near the road.

Lost & Found: has 1068 test images with small obstacles for
road scenes.

Fishyscapes (FS): consists of two datasets, Fishyscape static
(FS static) and Fishyscapes lost & found (FS lost & found).
Fishyscapes static is built by blending Pascal VOC [22] objects
on Cityscapes images containing 30 validation and 1000 test
images. Fishyscapes lost & found is based on a subset of the
Lost and Found dataset [51], with 100 validation and 275 test
images.

SMIYC: consists of two datasets, RoadAnomaly21 (SMIYC-
RA21) and RoadObstacle21 (SMIYC-RO21). The SMIYC-
RA21 contains 10 validation and 100 test images with diverse
anomalies. The SMIYC-RO21 is collected to segment road
anomalies and has 30 validation and 327 test images.

Open-set panoptic segmentation: We perform all the open-set
panoptic segmentation experiments on the panoptic segmenta-
tion dataset of MS-COCO [41]. The dataset consists of 118 thou-
sand training images and 5 thousand validation images having 80
thing classes and 53 stuff classes. We construct open-set panoptic
segmentation dataset by removing the labels of a small set of
known things classes from the train set of panoptic segmentation
dataset. The removed set of things classes are treated as unknown
classes. We construct three different training dataset split with
increasing order of difficulty with (5%, 10%, 20%) of unknown
classes. The removed classes in each split that are removed
cumulatively is given as: 5%: {car, cow, pizza, toilet}, 10%:
{boat, tie, zebra, stop sign }, 20%: {dining table, banana, bicycle,
cake, sink, cat, keyboard, bear}.

Open-set semantic segmentation: We use StreetHazards [31],
a synthetic dataset for open-set semantic segmentation. Street-
Hazards is created using the CARLA simulator [19] and lever-
aging the Unreal Engine to render realistic road scene images
in which diverse anomalous objects are inserted. The dataset
consists of 5,125 training images and 1,031 validation images
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having 12 classes. The test set has 1,500 images along with an
additional anomaly class.

B. Evaluation Metrics

Anomaly Segmentation: We evaluate all the anomaly segmen-
tation methods at pixel and component levels that are described
next.

Pixel-Level: For pixel-wise evaluation, Y ∈ {Ya, Yna} is
the pixel level annotated ground truth labels for an image x
containing anomalies. Ya and Yna represents the anomalous and
non-anomalous labels in the ground-truth, respectively. Assume
that Ŷ (γ) is the model prediction obtained by thresholding at γ.
Then, we can write the precision and recall equations as

precision(γ) =
|Ya ∩ Ŷa(γ)|

|Ŷa(γ)|
(18)

recall(γ) =
|Ya ∩ Ŷa(γ)|

|Ya| , (19)

and the AuPRC can be approximated as

AuPRC =

∫
γ

precision(γ)recall(γ). (20)

The AuPRC works well for unbalanced datasets making it par-
ticularly suitable for anomaly segmentation since all the datasets
are significantly skewed. Next, we consider the False Positive
Rate at a true positive rate of 95% (FPR95), an important criterion
for safety-critical applications that is calculated as

FPR95 =
|Ŷa(γ

∗) ∩ Yna|
|Yna| , (21)

where γ∗ is a threshold when the true positive rate is 95%.
Component-Level: SMIYC [11] introduced component-

level evaluation metrics that solely focus on detecting anomalous
objects regardless of their size. These metrics are important to be
considered because pixel-level metrics may not penalize a model
for missing a small anomaly, even though such a small anomaly
may be important to be detected. In order to have a component-
level assessment of the detected anomalies, the quantities to be
considered are the component-wise true-positives (TP), false-
negatives (FN), and false-positives (FP). These component-wise
quantities can be measured by considering the anomalies as
the positive class. From these quantities, we can use three metrics
to evaluate the component-wise segmentation of anomalies:
sIoU, PPV, and F1∗. Here we provide the details of how these
metrics are computed, using the notation K to denote the set of
ground truth components, and K̂ to denote the set of predicted
components.

The sIoU metric used in SMIYC [11] is a modified version of
the component-wise intersection over union proposed in [53],
which considers the ground-truth components in the computa-
tion of the TP and FN. Namely, it is computed as

sIoU(k) =
|k ∩ K̂(k)|

|k ∩ K̂(k)\A(k)| , K̂(k) =
⋃

k̂∈K̂, k̂∩k 	=∅
k̂,

(22)

where A(k) is an adjustment term that excludes from the union
those pixels that correctly intersect with another ground-truth
component different fromk. Given a threshold τ ∈ [0, 1], a target
k ∈ K is considered a TP if sIoU(k) > τ , and a FN otherwise.

The positive predictive value (PPV) is a metric that measures
the FP for a predicted component k̂ ∈ K̂, and it is computed as

PPV(k̂) =
|k̂ ∩ K̂(k)|

|k̂| . (23)

A predicted component k̂ ∈ K̂ is considered a FP if
PPV (k̂) ≤ τ . Finally, the F1∗ summarizes all the component-
wise TP, FN, and FP quantities by the following formula:

F1∗(τ) =
2TP(τ)

2TP(τ) + FN(τ) + FP(τ)
. (24)

Open-set semantic segmentation: We use open-IoU [27] to eval-
uate open-set semantic segmentation. Unlike, IoU, open-IoU
takes into account the false positives (FPOOD) and false negatives
(FNOOD) of an anomaly segmentation model. To measure open-
IoU, we first threshold the output of the anomaly segmentation
model at a true positive rate of 95% and then re-calculate the
classification scores of in-distribution classes according to the
anomaly threshold. Now, FPOOD and FNOOD for a class α can
be calculated as

FPOOD
α =

Z+1∑
i=1,i 	=α

FPi
α, FNOOD

α =
Z+1∑

i=1,i	=α

FNi
α. (25)

Using FPOOD
α and FNOOD

α , we can calculate the open-IoU for
class α as

open-IoUα =
TPα

TPα + FPOOD
α + FNOOD

α

. (26)

TPα denotes the true-positive of classα. An ideal open-set model
will have open-IoU to be equal to IoU.

Open-set panoptic segmentation: We measure the panoptic
segmentation quality of known and unknown classes by using
the panoptic quality (PQ) metric [36]. For each class, PQ is
calculated individually and averaged over all the classes making
PQ independent of class imbalance. Every class has predicted
segments p and its corresponding ground truths g that is divided
into three parts: true positives (TP): matched pair of segments,
false positives (FP): unmatched predicted segments, and false
negatives (FN): unmatched ground truth segments. Given the
three sets, PQ can be formulated as

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
segmentation quality (SQ)

× |TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

recognition quality (RQ)

. (27)

From the above equation, we can see PQ as the product of
a segmentation quality (SQ) and a recognition quality (RQ).
RQ can be inferred as an F1 score that gives the estimation
of segmentation quality. SQ is the average IoU of matched
segments.
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C. Implementation Details

Anomaly Segmentation: Our implementation is derived
from [14], [15]. We use a ResNet-50 [30] encoder, and its
weights are initialized from a model that is pre-trained with
barlow-twins [62] self-supervision on ImageNet [17]. We freeze
the encoder weights during training, saving memory and training
time. We use a multi-scale deformable attention Transformer
(MSDeformAttn) [68] as the pixel decoder. The MSDeformAttn
gives features maps at 1/8, 1/16, and 1/32 resolution, providing
image features to the transformer decoder layers. Our trans-
former decoder is adopted from Cheng et al. [14] and consists
of 9 layers with 100 queries. We train Mask2Anomaly using a
combination of binary cross-entropy loss and the dice loss [47]
for class masks and cross-entropy loss for class scores. The
network is trained with an initial learning rate of 1e-4 and batch
size of 16 for 90 thousand iterations on AdamW [45] with a
weight decay of 0.05. We use an image crop of 380× 760 with
large-scale jittering [21] along with a random scale ranging from
0.1 to 2.0. Next, we train the Mask2Anomaly in a contrastive
setting. We generate the outlier image using AnomalyMix [57]
where we cut an object from MS-COCO [41] dataset image
and paste them on the Cityscapes image. The corresponding
binary mask for an outlier image is created by assigning 1 to
the MS-COCO image area and 0 to the Cityscapes image area.
We randomly sample 300 images from the MS-COCO dataset
during training to generate outliers. We train the network for
4,000 iterations with m as 0.75, a learning rate of 1e-5, and
batch size 8, keeping all the other hyper-parameters the same
as above. The probability of choosing an outlier in a training
batch is kept at 0.2. The existing mask-transformers methods –
EAM [28], AEM [28], Maskomaly [1], and RbA [49] – report
in their papers results obtained using different training data and
backbones. So, for a fair comparison, we train all the methods
on the same data and using the same ResNet-50 backbone.

Open-set semantic segmentation: We the use Streethaz-
ard [31] dataset to train Mask2Anomaly with a Swin-Base back-
bone. The model was trained for 50 thousand iterations keeping
all the parameters the same as anomaly segmentation. Next, we
train Mask2Anomaly on outlier images in a contrastive settings.
The outlier image was created by AnomalyMix [57] using
MS-COCO [41] and Streethazard image. We train the network
for 5000 iterations keeping the Swin-Base backbone frozen. The
image crop size was kept at 380× 760, the rest all the other
hyper-parameters were the same as for anomaly segmentation.
We adapt EAM [28], AEM [28], Maskomaly [1], and RbA [49]
for open-set semantic segmentation task by keeping the same
set of hyper-parameters and architectural details as ours.

Open-set panoptic segmentation: We train Mask2Anomaly
having ResNet-50 backbone for 370 thousand iterations. Our
training approach employs a batch size of 8, incorporating
cropped input images sized at 640×640. We keep the remaining
hyperparameters the same as specified in the anomaly segmen-
tation. Across all the three training datasets, which contain 5%,
10%, and 15% of unknown classes, the number of connected
components were 2, 2, and 3 respectively. The number of iter-
ation for connected component algorithm was kept at 500 for
each training dataset.

D. Main Results

Anomaly Segmentation: Table I shows the pixel-level anomaly
segmentation results achieved by Mask2Anomaly and recent
SOTA methods on Fishyscapes, SMIYC, and Road Anomaly
datasets. We observed that Mask2Anomaly significantly im-
proves average AuPRC and FPR95 compared with per-pixel
and mask-transformer methods. Another observation is that
anomaly segmentation methods based on per-pixel architec-
ture, such as JSRNet, perform exceptionally well on the Road
Anomaly dataset. However, JSRNet does not generalize well
on other datasets. On the other hand, Mask2Anomaly yields
excellent results on all the datasets. Similarly, such general-
ization issues can also be found in mask-transformers based
methods, such as Maskomaly [1]. Next, Table II demonstrates
that Mask2Anomaly outperforms all the baselined methods on
component-level evaluation metrics. Interestingly, RbA shows
a sharp decline in the component-level anomaly segmentation
for Lost & Found dataset. We attribute this decrease to the
behavior of the tanh function present in the inference function
of RbA. We test our assumption on the Lost & Found dataset by
replacing the RbA inference function with ours. We found that
sIoU , PPV , and F1∗ significantly improved to 47.85, 38.26,
and 40.67, respectively. To conclude, Mask2Anomaly yields
state-of-the-art anomaly segmentation performance both in pixel
and component metrics. To get a better understanding of the
visual results, in Fig. 8, we qualitatively compare the anomaly
scores predicted by Mask2Anomaly and its closest competitors:
Dense Hybrid [27], Maximized Entropy [12], and RbA [49].
The results from RbA, Dense Hybrid, and Maximized Entropy
exhibit a strong presence of false positives across the scene,
particularly on the boundaries of objects (“things”) and regions
(“stuff”). On the other hand, Mask2Anomaly demonstrates the
precise segmentation of anomalies while at the same time having
minimal false positives.

Another critical characteristic of any anomaly segmenta-
tion method is that it should not disturb the in-distribution
classification performance, or else it would make the seman-
tic segmentation model unusable. We show in Table V(c)
that Mask2Anomaly using only GMA achieves a mIoU of
80.45. However, when adding also the mask contrastive train-
ing, Mask2Anomaly in-distribution accuracy on the Cityscapes
validation dataset drops slightly to 78.88 mIoU, but is still
1.46 points higher than the vanilla Mask2Former. More-
over, it is important to note that both Mask2Anomaly and
Mask2Former are trained for 90 k iterations, indicating that,
although Mask2Anomaly additionally attends to the background
mask region, it shows convergence similar to Mask2Former.
Fig. 9 qualitatively shows that Mask2Anomaly’s semantic seg-
mentation results are almost identical to Mask2Former.

Open-set semantic segmentation: Table III illustrates
the open-set semantic segmentation performance of
Mask2Anomaly on the StreetHazards test set. In terms
of anomaly segmentation performance, we observe that
Mask2Anomaly gives a significant gain of 90% compared to
DenseHybrid in AuPRC with minimal increase in false positives.
Notably, Mask2Anomaly also gives the second best closed set
performance, indicating its ability to improve in-distribution
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TABLE I
PIXEL-LEVEL EVALUATION: ON AVERAGE, MASK2ANOMALY SHOWS SIGNIFICANT IMPROVEMENT OVER BASELINED PER-PIXEL AND MASK-TRANSFORMER

BASED METHODS

TABLE II
ANOMALY SEGMENTATION COMPONENT-LEVEL EVALUATION: MASK2ANOMALY ACHIEVES LARGE IMPROVEMENT ON COMPONENT LEVEL EVALUATION METRICS

AMONG THE BASELINED METHODS

while giving state-of-the-art anomaly segmentation results.
Furthermore, we measure open-set semantic segmentation using
Open-IoU metrics, which allows us to measure anomalous and
in-distribution class performance jointly.

The StreetHazard test dataset consists of two sets: t5 and
t6. So, to calculate Open-IoU on t5: Open-IoUt5, we select
the anomaly threshold from t6 at a true positive rate of 95%
and then re-calculate the classification scores of in-distribution
classes t5. We repeat the same steps to get Open-IoUt6. To get
the overall Open-IoU on the StreetHazard test, we calculate the
weighted average of Open-IoU on t5 and t6 according to the
number of images in each set. In Table III, we can observe
Mask2Anomaly outperforms other baselined methods by a sig-
nificant margin of 30% on Open-IoU metrics. It is also important

to note that methods such as OOD-Head achieve good close-set
performance but show low Open-IoU. On the other hand, Outlier
Exposure has a relatively better Open-IoU but loses close set per-
formance. Similarly, mask-transformers such as RbA and AEM
show high close-set performance but fail to perform on open-set
and anomaly segmentation metrics. Mask2Anomaly does not
suffer from such shortcomings and yields the best open-set
performance while maintaining a strong closed-set performance.
From Fig. 7 we can visually infer that Mask2Anomaly is able to
segment the anomalous/open-set objects more accurately than
the baseline methods.

Open-set panoptic segmentation: Table IV summarises
the open-set panoptic segmentation performance of per-pixel
architecture based methods: Void-train and EOPSN, and
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Fig. 7. Qualitative results of open-set semantic segmentation: We can observe that the Mask2Anomaly gives precise boundaries for open-set objects compared
to best-performing per-pixel architecture and mask-transformer architectures.

TABLE III
OPEN-SET SEMANTIC SEGMENTATION QUANTITATIVE EVALUATION: WE OBSERVE THAT MASK2ANOMALY ACHIEVES THE BEST PERFORMANCE ON OPEN-SET

SEGMENTATION MATRICES

mask-transformers: EAM, AEM, and Mask2Anomaly. Void-
train is a baseline method in which we train the void regions
of an image by treating it as a new class. We can observe
Mask2Anomaly shows the best open-set panoptic segmentation
results among all the baselined methods on different proportions

of unknown classes. Additionally, it also shows strong results
on in-distribution classes that are indicated by various panoptic
evaluation metrics. Fig. 10 illustrates the qualitative comparison
of Mask2Anomaly with baselined methods on most challeng-
ing dataset having 20% unknown classes. In Fig. 10 (Row:
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TABLE IV
OPEN-SET PANOPTIC SEGMENTATION QUANTITATIVE RESULTS: WE SHOW QUANTITATIVE RESULTS ON THE COCO VAL SET BY ALL THE METHODS ON VARYING

KNOWN-UNKNOWN SPLITS

TABLE V
MASK2ANOMALY ABLATION TABLES: (A) COMPONENT-WISE ABLATION OF MASK2ANOMALY

1-3), we can see Mask2Anomaly can better perform panoptic
segmentation on unknown instances compared with baselined
methods. Fig. 10 (Row: 4), shows the panoptic segmentation on
known classes where we can observe Mask2Anomaly outputs
are precise with minimal false positives.

E. Ablations

All the results reported in this section are based on the FS
L&F validation dataset.

Mask2Anomaly: Table V(a) presents the results of a
component-wise ablation of the technical novelties included
in Mask2Anomaly. We use Mask2Former as the baseline. As
shown in the table, removing any individual component from
Mask2Anomaly drastically reduces the results, thus proving that
their individual benefits are complimentary. In particular, we
observe that the global masked attention has a big impact on
the AuPRC and contrastive learning is very important for the
FPR95. The mask refinement brings further improvements to
both. Fig. 11 visually demonstrates the positive effect of all the
components.

Global Mask Attention: To better understand the effect of the
global masked attention (GMA), in Table V(c), we compare it to
the masked-attention (MA) [14] and cross-attention (CA) [58].

We can observe that although the MA increases the mIoU w.r.t.
the CA, it degrades all the metrics for anomaly segmentation,
thus confirming our preliminary experiment shown in Fig. 5. On
the other hand, the GMA provides improvements across all the
metrics. This is confirmed visually in Fig. 12, where we show
the negative attention maps for the three methods at different
resolutions. The negative attention is calculated by averaging
all the queries (since there is no reference known object) and
then subtracting one. Note that the GMA has a high response on
the anomaly (the giraffe) across all resolutions.

Refinement Mask: Table V(d) shows the performance gains
due to the refinement mask. We observe that filtering out the
{′′stuff′′ \ ′′road′′} regions of the prediction map improves the
FPR95 by 14.61 along with marginal improvement in AuPRC.
On the other hand, removing the {′′things′′ \ ′′road′′} regions
degrades the results, confirming our hypothesis that anomalies
are likely to belong to the “things” category. Fig. 11 qualitatively
shows the improvement achieved with the refinement mask.

Mask Contrastive Learning: We tested the effect of the margin
in the contrastive loss LCL, and we report these results in
Table V(b). We find that the best results are achieved by setting
m to 0.75, but the performance is competitive for any value of
m in the table. Similarly, we tested the effect of the batch outlier
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Fig. 8. Anomaly segmentation qualitative results: We observe that Dense
Hybrid [27], RbA [49], and Maximized Entropy [12] suffer from large false
positives, whereas Mask2Anomaly shows accurate pixel-wise anomaly segmen-
tation results.

Fig. 9. Semantic segmentation results: We can visually infer that
Mask2Anomaly shows similar segmentation results when compared with
Mask2Former [14].

TABLE VI
CONNECTED COMPONENT TRAINING ITERATION: WE SHOW THE PANOPTIC

SEGMENTATION PERFORMANCE OF UNKNOWN CLASSES WITH THE

INCREASING NUMBER OF ITERATIONS

TABLE VII
NUMBER OF CONNECTED COMPONENTS: SHOWS THE PANOPTIC SEGMENTATION

PERFORMANCE OF UNKNOWN CLASSES WITH THE INCREASING NUMBER OF

CONNECTED COMPONENTS

probability, which is the likelihood of selecting an outlier image
in a batch. The results shown in Table V(e) indicate that the best
performance is achieved at 0.2, but the results remain stable for
higher values of the batch outlier probability.

Mining Unknowns Instances: We quantitatively summarise
the impact of mining unknown instances in panoptic segmenta-
tion of unknown instances shown in Table VIII. We can clearly
observe that removing the mining of unknown instances from
Mask2Anomaly drastically reduces the performance across all
the metrics. Also, the absence of global mask attention further
degrades performance.

Connected Components: Tables VI and VII shows the impact
of connected components hyperparameters on open-set panoptic
segmentation of unknown classes. In both tables, we train the
model on dataset split having 20 % of unknown classes. In
Table VI, we can observe that Mask2Anomaly shows the best
performance at 500 iterations, whereas in Table VII we achieve
the best performance when the number of connected components
is set to 3.

Architectural Efficacy of Mask2Anomaly: We demonstrate
the efficacy of Mask2Anomaly by comparing it to the vanilla
Mask2Former but using larger backbones. The results in Table X
show that despite the disadvantage, Mask2Anomaly with a
ResNet-50 still performs better than Mask2Former using large
transformer-based backbones like Swin-S. It is also important to
note that the number of training parameters for Mask2Anomaly
can be reduced to 23M as we use a frozen self-supervised pre-
trained encoder during the entire training, which is significantly
less than all the Mask2Former variations.

VIII. DISCUSSION

Performance stability: Employing an outlier set to train an
anomaly segmentation model presents a challenge because the
model’s performance can vary significantly across different
sets of outliers. Here, we show that Mask2Anomaly performs
similarly when trained on different outlier sets. We randomly
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Fig. 10. Open-set panoptic segmentation qualitative results: Row 1-3: We can observe that Mask2Anomaly is better able to segment the different instances of
unknown objects compared with the baselined method. Row 4: Shows that Mask2Anomaly gives better panoptic segmentation with precise boundaries on known
classes.

Fig. 11. Mask2Anomaly Qualitative Ablation: demonstrates the performance
gain by progressively adding (left to right) proposed components. Masked-out
regions by refinement mask are shown in white. Anomalies are represented in
red.

Fig. 12. Visualization of negative attention maps and results: Global mask
attention gives high attention scores to anomalous regions across all resolutions,
showing the best anomaly segmentation results among the compared attention
mechanisms. Cross-attention performs better than mask-attention but has high
false positives and low confidence prediction for the anomalous region. Darker
regions represent low attention values. Details to calculate negative attention are
given in Section:VII-E.

TABLE VIII
MINING UNKNOWN INSTANCES FOR OPS: WE SHOW THE NEGATIVE IMPACT ON

PANOPTIC SEGMENTATION PERFORMANCE OF UNKNOWN CLASSES BY

PROGRESSIVELY SUBTRACTING GLOBAL MASK ATTENTION AND MINING

UNKNOWN INSTANCES COMPONENTS

chose two subsets of 300 MS-COCO images (S1, S2) as our
outlier dataset for training Mask2Anomaly and DenseHybrid.
Table IX shows the performance of Mask2Anomaly and Dense
Hybrid trained on S1 and S2 outlier sets, along with the stan-
dard deviation(σ) in the performance. We can observe that the
variation in performance for the dense hybrid is significantly
higher than Mask2Anomaly. Specifically, in dense hybrid, the
average deviation in AuPRC is greater than 300%, and the
average variation in FPR95 is more than 200% compared to
Mask2Anomaly.

Reducing the supervision gap: In our previous discussion,
we show models that are trained with outlier supervision have
varying performance across different sets of outliers. So, we ex-
tend the previous discussion by demonstrating the performance
of Mask2Anomaly without reliance on outlier supervision. We
evaluate the performance of all the baselined method average
over the validation dataset of FS static, FS L&F, SMIYC-
RA21 and SMIYC-RO21. Fig. 13 shows the performance of
Mask2Anomaly with or without outlier supervision names as
Mask2Anomaly (w OS) and Mask2Anomaly (w/o OS), respec-
tively. In the plot, we can see unequivocally that Mask2Anomaly
(w/o OS) significantly reduces the anomaly segmentation per-
formance gap between the methods with outlier supervision and
notably outperforms methods that do not use outlier supervision.

Outlier Loss: In this discussion, we will examine the efficacy
of mask contrastive loss in anomaly segmentation. We empir-
ically demonstrate why mask contrastive loss, a margin-based
loss, performs better at anomaly segmentation by comparing it
with binary cross-entropy loss as an outlier loss. So, we train
Mask2Anomaly with MOOD using binary-cross entropy which
equates the outlier loss as

LBCE = MOOD log(lN ) + (1−MOOD) log(1− lN ), (28)

and, the new total loss at the outlier learning stage becomes

Lood = LBCE + Lmasks + λceLce, (29)
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TABLE IX
PERFORMANCE STABILITY OF MASK2FORMER: WE CAN OBSERVE THAT THE AVERAGE PERFORMANCE DEVIATION IN DENSE HYBRID IS SIGNIFICANTLY HIGHER

THAN MASK2ANOMALY

TABLE X
ARCHITECTURAL EFFICIENCY OF MASK2ANOMALY: MASK2ANOMALY

OUTPERFORMS THE BEST PERFORMING MASK2FORMER ARCHITECTURE WITH

SWIN-S AS BACKBONE BY USING ALMOST 30% TRAINABLE PARAMETERS

Fig. 13. Bridging the supervision gap: In this figure, we represent methods
that utilize outlier supervision in red, and those without outlier supervision are
in blue. We can observe Mask2Anomaly (w/o OS): Mask2Anomaly without
using outlier supervision, shows significant performance gain among anomaly
segmentation methods that do not use any extra supervision. Also, displays a
similar performance to PEBEL, which is the best per-pixel method that utilizes
additional supervision).

lN is the negative likelihood of in-distribution classes calculated
using the class scores C and class masks M . Fig. 14 illustrates
the anomaly segmentation performance comparison on FS L&F
validation dataset between the Mask2Anomaly when trained
with the binary cross entropy loss and mask contrastive loss,
respectively. We can observe that the mask contrastive loss
achieves a wider margin between out-of-distribution(anomaly)
and in-distribution prediction while maintaining significantly
lower false positives.

Global Mask Attention: The application of global mask at-
tention in semantic segmentation has shown a positive impact
on performance, as demonstrated in Table V(c). So, we further
investigate to assess the generalizability of this positive effect
on ADE20K [67] and Vistas [50]. To evaluate the possible
benefits of global mask attention, we trained the Mask2Former
architecture using both masked attention and global masked

Fig. 14. Outlier Loss Comparision: During the training Mask2Anomaly, on
the outlier set, we find that incorporating a mask contrastive loss, which is
a margin-based loss function, resulted in better performance compared to the
conventional binary cross-entropy loss. These experiments were conducted on
the FS L&F validation set.

Fig. 15. Failure Cases: (a, b) Mask2Anomaly fail to segment trailer or carriage
as they have a similar appearance as car or bus. Mask2Anomaly struggle to
perform well in poor illumination (c) and weather conditions (d). The white
region represents the anomalies that are enclosed in red boxes.

attention for 40 thousand iterations. Mask2Former performed
mIoU scores of 43.20 and 38.17 on masked attention, while
global mask attention yields better mIoU scores of 43.80 (+0.6)
and 38.92 (+0.75) on Ade20 K and Vistas, respectively.

Failure Cases: Fig. 15 illustrates the failure cases pre-
dicted by Mask2Anomaly. It is apparent that Mask2Anomaly
faces difficulties when anomalies exhibit a resemblance to in-
distribution classes like cars or buses, as shown in Fig. 15(a)
and (b). In Fig. 15(c) shows increased false positives around
anomalies when illumination conditions are poor. Weather con-
ditions adversely effects Mask2Anomaly performance as seen
in Fig. 15(d). We think that improving anomaly segmentation in
such scenarios would be a promising avenue for future research.

IX. CONCLUSION

In this work, we introduce Mask2Anomaly, a universal
architecture that is designed to jointly address anomaly and
open-set segmentation utilizing a mask-based architecture.
Mask2Anomaly incorporates a global mask attention
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mechanism specifically to improve the attention mechanism
for anomaly and open-set segmentation tasks. For the anomaly
segmentation task, we propose a mask contrastive learning
framework that leverages outlier masks to maximize the
distance between anomalies and known classes. Furthermore,
we introduce a mask refinement technique aimed at reducing
false positives and improving overall performance. For the
open-set segmentation task, we developed a novel approach to
mine unknown instances based on mask-architecture properties.
Through extensive qualitative and quantitative analysis, we
demonstrate the effectiveness of Mask2Anomaly and its
components. Our results highlight the promising performance
and potential of Mask2Anomaly in the field of anomaly and
open-set segmentation. We believe this work will open doors for
a new development of novel anomaly and open-set segmentation
approaches based on masked architecture, stimulating further
advancements in the field.
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