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Stephanie Stockar2, Marcello Canova2, Ouafae El Ganaoul-Mourlan1, Antonio Sciarretta1  
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Abstract 

Accurately predicting the future behavior of the surrounding traffic, 

especially the velocity of the lead vehicle is important for optimizing 

the energy consumption and improve the safety of Connected and 

Automated Vehicles (CAVs). Several studies report methods to predict 

short-to-mid-length lead vehicle velocity using stochastic models or 

other data-driven techniques, which require availability of extensive 

data and/or Vehicle-to-Vehicle (V2V) communication. In the absence 

of connectivity, or in data-restricted cases, the prediction must rely 

only on the measured position and relative velocity of the lead vehicle 

at the current time. This paper proposes two velocity predictors to 

predict short-to-mid-length lead vehicle velocity. The first predictor is 

based on a Constant Acceleration (CA) with an augmented stop mode. 

The second one is based on a modified Enhanced Driver Model (EDM-

LOS) with line-of-sight feature. Both predictors rely only on 

information on the present values of lead vehicle position and velocity 

to compute a future velocity estimate.  An analysis is done to compare 

the prediction accuracy of the proposed predictors with different 

experimental driving data recorded using an OBD2 scanner plugged 

into a passenger vehicle. Finally, the predicted lead vehicle velocity is 

utilized to formulate time-gap constraints for the eco-driving optimal 

control problem, solved via Model Predictive Control (MPC). The 

energy savings of the considered velocity predictors are evaluated by 

performing a large-scale simulation study. The proposed velocity 

predictor provides closest energy savings to a wait-and-see solution for 

a CAV in absence of V2V communication. 

Introduction 

Advancements in navigation systems and Vehicle-to-Everything 

(V2X) communication have led to the access of a wealth of 

information from the environment and infrastructure, such as traffic 

density, location and velocity of surrounding vehicles, upcoming road 

topology, grade, speed limits, etc. Connected and automated vehicles 

(CAVs) can access such information to improve the safety and 

comfort. In recent times, control strategies have been developed that 

leverage the look-ahead information available to CAVs to save energy, 

often referred to as eco-driving [1,2,3,4,5]. Despite the energy 

efficiency improvements and other benefits demonstrated by these 

technologies, uncertainties in the traffic environment can limit the 

ability of eco-driving controllers to smoothen the velocity profile and 

might eventually lead to decline in energy savings [6]. For real-time 

implementation of eco-driving controllers with consistent energy 

savings, it becomes necessary to include the dynamics of the traffic, 

especially the estimated future lead vehicle velocity into the eco-

driving’s trajectory planning process. Fig. 1 describes an example of 

an eco-driving controller that integrates the signal phase and timing 

information from vehicle-to-infrastructure (V2I) communication and 

lead vehicle velocity prediction from vehicle-to-vehicle (V2V) 

communication into a short-term trajectory optimization framework. 

Lead vehicle here refers to the immediately preceding vehicle to the 

ego vehicle that can cause a potential rear-end collision. Predicting the 

speed trajectory of a lead vehicle plays a vital role in improving the 

safety and energy consumption of CAVs. In fact, inaccurate prediction 

of the lead vehicle speed may lead to an overreaction of the ego CAV, 

causing unwanted accelerations/decelerations and ultimately worse 

energy consumption than a purely reactive control strategy [6,7]. 

Predicting a vehicle’s speed is highly dependent on the amount of 

information on that vehicle and its surroundings, and the used 

prediction method. A comprehensive overview of the existing 

prediction methods can be found in [8]. The ego CAV can obtain 

information on the lead vehicle and its surroundings using either 

sensors and/or V2X communication, as shown in Fig. 1. The methods 

found in the literature for predicting speed trajectories can be broadly 

classified as data-driven or model-based.  

Data-driven time-series prediction methods such as long-short-term 

memory [1,12], or gated recurrent network [13], have been extensively 

used to perform mid-long length speed predictions. However, these 

methods require the availability of extensive training data and/or V2V 

communication.  

Model-based approaches include simple models such as constant 

velocity and Constant Acceleration (CA). The constant velocity 

predicts the lead vehicle to maintain the current speed over the future 

prediction horizon while the CA assumes the vehicles’ future speed to 

move with the same acceleration until it stops or exceeds a maximum 

velocity. However, these models lack adaptability to variations in 

driving styles and in certain cases are unrealistic. More sophisticated 

microscopic car-following models such as the Intelligent Driver Model 

[9], the Line-Of-Sight-based Enhanced Driver Model (EDM-LOS) 

[10], or Gipps’ model [11], which are in principle used to model driver 

behavior, could also be used to predict the lead vehicle’s velocity.  

Such microscopic models include parameters for driving style 

calibration, allowing to capture various driver behaviors. While model-

based methods loose accuracy over long term prediction, they perform 

reasonably well in short term horizon, which is the main focus of this 

paper.  

This paper presents a comparison of two methods to predict the lead 

vehicle velocity over a short-term horizon in the absence of 

connectivity (V2V/V2X) or under data-restricted cases. In such 

scenarios, the prediction must rely only on the measured position and 

relative velocity of the lead vehicle at the current time. Two methods 

are considered in this study, namely, a Constant Acceleration (CA) 

model and a Line-of-Sight based Enhanced Driver Model (EDM-

LOS). The CA uses the current detected velocity and acceleration of 

the lead vehicle to predict the future velocity for short instances of 

time. However, when approaching a fixed obstacle such as a traffic 

light or intersection, the CA model prediction may become inaccurate, 

resulting in the inability to correctly stop the ego vehicle at the 

intersection. The EDM-LOS model without the information about the 

vehicle preceding the lead vehicle fails to predict braking events during 

car-following. 
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Figure 1.  Hierarchical eco-driving control architecture leveraging V2X technology in presence of lead vehicle. 

The contributions of this work are as follows. Two lead vehicle 

velocity predictors are developed, namely Constant Acceleration-

Average Braking (CA-AB) and EDM-LOS based Predictor (EDM-

LOSP). The CA-AB is an improved model over CA in predicting 

decelerations to a stop in the presence of an obstacle. The EDM-LOSP 

is an improved model over EDM-LOS to identify and predict braking 

events during car-following. The performance of the proposed 

predictors is evaluated for energy efficiency and travel time in a 

simulation-based environment using real-world driving profiles and 

compared against CA as baseline and an ideal scenario with perfect 

velocity prediction (wait-and-see) as benchmark.  

The paper is organized with the following section describing the 

vehicle model, formulation of the optimal control problem and the lead 

vehicle constraint. The section after, describes the methods for 

predicting the lead vehicle’s trajectory and the following section 

discusses the evaluation of the predictors in a simulation environment 

along with its results. Concluding remarks are provided in the final 

section. 

Vehicle Model and Problem Formulation 

This section describes the mild hybrid vehicle model considered in this 

study and the eco-driving optimal control problem formulation.  

Mild Hybrid Electric Vehicle Model 

A forward-looking model of a P0 parallel mild-hybrid vehicle is 

adopted in this work to predict the longitudinal dynamics and energy 

consumption, as shown in Fig. 2 [14]. A Belted Starter Generator 

(BSG) is connected to a 1.8 L turbocharged gasoline engine and a 48V 

battery pack. The inputs to the model are obtained from a simplified 

electronic control module (ECM) that contains a production level 

torque split strategy and converts the driver’s pedal position to desired 

engine torque 𝑇𝑒𝑛𝑔
𝑑𝑒𝑠 and desired BSG torque 𝑇𝑏𝑠𝑔

𝑑𝑒𝑠. The vehicle 

simulator contains a low-frequency powertrain and longitudinal 

vehicle dynamics model, as well as quasi-static models of engine (fuel 

maps), BSG (torque limit and efficiency maps), torque converter and 

transmission. Model validation was performed in a previous study [14] 

on a chassis dynamometer over the FTP cycle. Despite few 

mismatches in the state of charge, the error on the predicted fuel 

consumption is less than 4%, which can be considered sufficiently 

accurate for this work. 

 

Figure 2. Qualitative schematics of a 48 V mild hybrid electric drivetrain. 

Optimal Control Problem 

The eco-driving control problem is formulated as a non-linear optimal 

control problem in spatial domain, aimed at minimizing a trade-off 

between fuel consumption and travel time over an itinerary of 𝑁steps. 

In this work, the state variables chosen are the vehicle velocity, battery 

state of charge (SoC) and travel time: 𝑥𝑠 = [𝑣𝑠, 𝜉𝑠, 𝑡𝑠]
𝑇 ∈ 𝒳 ⊂ ℝ𝑛. 

The engine torque and BSG torque are chosen as the control variables: 

𝑢𝑠 = [𝑇𝑒𝑛𝑔𝑠, 𝑇𝑏𝑠𝑔,𝑠]
𝑇
∈ 𝒰 ⊂ ℝ𝑚.  Note that all predictions are denoted 

using  (. )̂ and observed/measured signals are denoted using (. )0. 

Consider a dynamic control problem discretized in the spatial domain 

with the form: 

𝑥𝑠+1 = 𝑓(𝑥𝑠, 𝑢𝑠), 𝑠 = 1,… , 𝑁 (1) 

where 𝑠 is the discrete position, and 𝑓 is a function that describes the 

state dynamics and is derived in [13]. The admissible control maps at 

position 𝑠 is denoted by 𝜇𝑠:𝒳 → 𝒰, which satisfies the constraint 

function ℎ𝑠:𝒳 × 𝒰 → ℝ𝑟, expressed as ℎ(𝑥𝑠, 𝑢𝑠) ≤ 0, ∀, 𝑥 ∈ 𝒳: 

𝑣𝑠 ∈ [𝑣𝑠
𝑚𝑖𝑛, 𝑣𝑠

𝑚𝑎𝑥], ∀𝑠 = 1,… , 𝑁 (2a) 
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𝜉𝑠 ∈ [𝜉𝑠
𝑚𝑖𝑛, 𝜉𝑠

𝑚𝑎𝑥], ∀𝑠 = 1,… , 𝑁 (2b) 

𝑡𝑠 ∈ [0, 𝑡𝑁], ∀𝑠 = 1,… , 𝑁 (2c) 

𝑣0 = 𝑣0
𝑚𝑖𝑛 , 𝜉0 ∈ [𝜉

𝑚𝑖𝑛 , 𝜉𝑚𝑎𝑥] (2d) 

𝑎𝑠 ∈ [𝑎
𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥], ∀𝑠 = 1,… , 𝑁 (2e) 

𝑇𝑒𝑛𝑔,𝑠 ∈ [𝑇𝑒𝑛𝑔,𝑠
𝑚𝑖𝑛 , 𝑇𝑒𝑛𝑔,𝑠

𝑚𝑎𝑥 ], ∀𝑠 = 0,… , 𝑁 (2f) 

𝑇𝑏𝑠𝑔,𝑠 ∈ [𝑇𝑏𝑠𝑔,𝑠
𝑚𝑖𝑛 , 𝑇𝑏𝑠𝑔,𝑠

𝑚𝑎𝑥 ], ∀𝑠 = 0,… ,𝑁 (2g) 

where 𝑣𝑠
𝑚𝑖𝑛 , 𝑣𝑠

𝑚𝑎𝑥 refer to the minimum and maximum speed limit;  

𝜉𝑠
𝑚𝑖𝑛 , 𝜉𝑠

𝑚𝑎𝑥 refer to the minimum and maximum SoC limits; 

𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥 refer to the vehicle acceleration for comfort;  𝑇𝑒𝑛𝑔,𝑠
𝑚𝑖𝑛 , 𝑇𝑒𝑛𝑔,𝑠

𝑚𝑎𝑥  

refer to the engine torque limits; 𝑇𝑏𝑠𝑔,𝑠
𝑚𝑖𝑛 , 𝑇𝑏𝑠𝑔,𝑠

𝑚𝑎𝑥  refer to the BSG torque 

limits respectively. 𝑡𝑁 refers to the maximum travel time limit imposed 

at the end of the route which can be estimated using the time taken to 

complete the historical trips. To ensure charge-sustenance, 𝜉0 = 𝜉𝑁. 

The collection of admissible maps is referred as the policy of the 

controller, denoted by ℳ ≔ {𝜇0, … , 𝜇𝑁}. The controller minimizes a 

cost functional over 𝑁 steps: 

min
ℳ

 𝑐𝑁(𝑥𝑁) + ∑+𝑐(𝑥𝑠 , 𝜇𝑠(𝑥𝑠))

𝑁−1

𝑠=0

 (3) 

where 𝑐:𝒳 × 𝒰 → ℝ is the per-stage cost, defined as the weighted 

average of fuel consumption and travel time: 

𝑐(𝑥𝑠 , 𝜇𝑠(𝑥𝑠)) = (𝛾
𝑚̇𝑓,𝑠(𝑥𝑠 , 𝜇𝑠(𝑥𝑠))

𝑚̇𝑓,𝑛𝑜𝑟𝑚
+ (1 − 𝛾)) 𝑡𝑠 (4) 

where 𝛾 is the trade-off, 𝑚̇𝑓,𝑠 is the fuel flow rate, 𝑚̇𝑓,𝑛𝑜𝑟𝑚 is the 

normalizing factor, and  𝑡𝑠 ≔
𝑑𝑠

𝑣̅𝑠
 is the travel time per step. To account 

for the variability in route conditions such as time-varying signal phase 

and timing (SPaT) information, the eco-driving problem in Eq. (3) is 

formulated for 𝑠 = 1,… , 𝑁𝑁𝐻 − 1, as a receding horizon optimal 

control problem (RHOCP), minimizing the cost functional over a 

reduced horizon 𝑁𝐻 steps (≪ 𝑁) [14]: 

min
ℳ𝑠

 𝑐𝑠+𝑁𝐻(𝑥𝑠+𝑁𝐻) + ∑ +𝑐(𝑥𝑘 , 𝜇𝑘(𝑥𝑘))

𝑠+𝑁𝐻−1

𝑘=𝑠

 (5) 

where 𝑁𝐻 is the number of steps in the prediction horizon. In this work, 

at a position 𝑠, it is assumed that the lead vehicle acceleration 𝑎̂𝑘 is 

predicted (as described in the following section) and can be used to 

predict the lead vehicle velocity 𝑣̂𝑘
𝑙  and arrival time 𝑡̂𝑘

𝑙  for 𝑘 =
𝑠,… , 𝑠 + 𝑁𝑁𝐻 − 1, with a step size Δ𝑑𝑘 as: 

𝑣̂𝑘+1
𝑙 = √(𝑣̂𝑘

𝑙 ) 2  + 2𝑎̂𝑘Δ𝑑𝑘 (6a) 

𝑡̂𝑘+1
𝑙 = 𝑡̂𝑘

𝑙 +
2Δ𝑑𝑘

𝑣̂𝑘
𝑙 + 𝑣̂𝑘+1

𝑙
 (6b) 

It should be noted that the constraints (2a), (2b), (2e), (2f) and (2g) 

remain the same in the RHOCP ∀𝑠 = 1,… ,𝑁 − 𝑁𝐻, ∀𝑘 = 𝑠,… , 𝑠 +
𝑁𝐻. However, the constraint on the time is affected by imposing time-

gap constraint between the ego and lead vehicle as: 

𝑡𝑘   ≥  𝑡̂𝑘
𝑙   +  𝑡𝑔𝑎𝑝 (7) 

where 𝑡𝑔𝑎𝑝 represents the safety gap to the leader in time. 

To include V2I information, additional constraints are imposed on the 

time such that it lies in the feasible set of travel time for passing-at-

green at signalized intersection, 𝑡𝑘 ∈ Γ𝐺,𝑘 [15]. 

The RHOCP (5) is solved using Approximate Dynamic Programming 

(ADP), such that terminal cost of the RHOCP (named “short-term 

optimization” in Fig. 1) is approximated from the offline solution of a 

full-route optimization (named “long-term optimization” in Fig. 1) 

under partial route information [14].  

Predicting Lead Vehicle Velocity  

The two models considered in this work to predict the lead vehicle 

velocity within the RHOCP are the CA-AB and the EDM-LOSP. 

These models are a result of significant improvements made to the CA 

and EDM proposed in literature [2,3,10]. This section describes the CA 

and EDM-LOS models, their drawbacks, and the improvements made 

leading to the CA-AB and EDM-LOSP. 

Constant Acceleration – Average Braking (CA-AB) 

The CA model predicts the future velocity of the lead vehicle to have 

a constant acceleration until it reaches the speed limit [17]: 

 𝑎̂𝑙𝑘 = {
𝑎0, 𝑣̂𝑘

𝑙 < 𝑣𝑙𝑖𝑚
0, 𝑣̂𝑘

𝑙 ≥ 𝑣𝑙𝑖𝑚 ∨ 𝑣̂𝑘
𝑙 = 0

 (8) 

where  𝑎0 represents the acceleration of the lead vehicle at 𝑘 = 0 (also 

current time). 𝑎̂𝑙𝑘 represents the predicted acceleration. The speed 

limit of the route is given by 𝑣𝑙𝑖𝑚 . However, when approaching an 

obstacle such as a traffic light or a stop sign, the CA model is unable 

to correctly predict where the lead vehicle will be stopping, resulting 

in the lead vehicle stopping either before or after the traffic light.  

To overcome this drawback, the current acceleration 𝑎0 is here 

replaced with an average braking acceleration. The average braking 

acceleration 𝑎̃ is defined as:  

 𝑎̃ = −
𝑣0
2 

2 (𝐷𝑇𝐿 − 𝑑0
𝑙 )

 (9) 

where  𝐷𝑇𝐿 represents the position of the traffic light , 𝑑0
𝑙  represents the 

position and 𝑣0 represents the velocity of the lead vehicle at 𝑘 = 0. 

Note that this model formulation implies that the ego vehicle has 

access to V2I information, namely road grade, speed limits and 

location of stop signs and traffic signals within the 𝑁𝐻 prediction 

horizon. Eq. (9) represents the minimum kinematic deceleration 

required by the lead vehicle to come to a stop at the traffic light. The 

modes of the CA-AB can be summarized as follows: 
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 𝑎̂𝑙𝑘 = {

𝑎0, 𝑣̂𝑘
𝑙 < 𝑣𝑙𝑖𝑚, [𝐹𝐷]

0,         𝑣̂𝑘
𝑙 ≥ 𝑣𝑙𝑖𝑚 ∨ 𝑣̂𝑘

𝑙 = 0, [𝐹𝐷]

𝑎̃,  [𝑆]

 (10) 

where 𝐹𝐷 and 𝑆 stand for freeway driving and stop mode, respectively. 

The stop mode is activated in the presence of either a stop-sign or a 

traffic light with red signal phase within 𝑁𝐻 .  

Enhanced-Driver-Model with Line-of-Sight based 

Predictor (EDM-LOSP) 

The existing EDM-LOS is a deterministic velocity predictor 

representing various levels of driver aggressiveness [4]. The EDM-

LOS includes three distinct operating modes, namely, Car-Following 

(CF), Freeway Driving (FD) and Stop Mode (S). The different 

operating modes are represented by the following equations: 

𝑎̂𝑙𝑘 =

{
 
 
 
 

 
 
 
 𝑎 (1 − (

𝑣̂𝑘
𝑙

𝑣𝑙𝑖𝑚 − 𝜃0
)

𝛿

) ,   𝑣0 ≤ 𝑣𝑙𝑖𝑚        [𝐹𝐷]

𝑎 (1 − (
𝑣̂𝑘
𝑙

𝑣𝑘
𝑙−1)

𝛿

− (
𝑠∗(𝑣̂𝑙 , 𝛥𝑣)

Δ𝑑𝑘
𝑙 )

2

) ,          [𝐶𝐹]

−
1

𝑏
(
(𝑣̂𝑘

𝑙 )2 

2Δ𝑑𝑘
𝑙
)

2

,                                                  [𝑆]

 (11) 

Δ𝑑𝑘
𝑙 = 𝑑𝑘

𝑙−1 − 𝑑𝑘
𝑙 − 𝑑𝑠𝑎𝑓𝑒  (12) 

𝑠𝑘
∗(𝑣̂𝑙 , Δ𝑣) = 𝑠0  +

𝑣̂k
𝑙  (𝑣𝑘

𝑙−1 − 𝑣̂𝑘
𝑙 )

2√𝑎𝑏
 (13) 

𝑠𝑏𝑟𝑎𝑘𝑒,𝑘 = (1 +
𝑐1
𝛿
)(
𝑣̂𝑙𝑘
2

2𝑏
) (14) 

𝑣̂𝑘
𝑙  and 𝑑𝑘

𝑙  represents the lead vehicle velocity and position, 

respectively. [𝑎, 𝛿, 𝑏, 𝑐1, 𝜃0] are the set of EDM-LOS calibration 

parameters. 𝑎 represents the maximum acceleration and the exponent 

𝛿, representing driver aggressiveness, controls how quickly the desired 

speed is achieved.  The freeway driving represents the transition to the 

route speed limit in the absence of any vehicle preceding the lead 

vehicle. The degree of aggressiveness is further characterized by a 

calibration term 𝜃0, which determines the offset from the route speed 

limit. As per this formulation, a relatively relaxed driver would drive 

slightly below the speed limit. The term 𝑏  in the Stop mode represents 

the comfortable deceleration. When approaching an obstacle, such as 

a traffic light, the deceleration usually does not exceed 𝑏 and is 

dynamically self-regulating towards a situation in which the kinematic 

deceleration equals 𝑏 [3]. The driver aggressiveness on braking 

distance is captured by 𝑠𝑏𝑟𝑎𝑘𝑒, which is dependent on a calibration 

term 
𝑐1

𝛿
. The Line-Of-Sight (LOS) scheme in the EDM is used to 

realistically model the drive response when approaching a traffic light. 

The LOS is a distance parameter below which, in presence of a traffic 

light, the driver can preview the signal phase of the upcoming traffic 

light. The presence of a traffic light at 𝐷𝑇𝐿  sets the flag TL = 1, when 

𝐷𝑇𝐿 − 𝑑𝑘
𝑙 ≤ 𝑚𝑖𝑛 (𝐿𝑂𝑆, 𝑁𝐻). The driver performs a stop maneuver 

under two conditions, namely either if the previewed signal phase is 

red (SP = 3) or, the signal phase is yellow (SP = 8) and the vehicle is 

outside the critical braking zone 𝑠𝑏𝑟𝑎𝑘𝑒 . The term 𝑑𝑘
𝑙−1 in Δ𝑑𝑘

𝑙  is 

replaced by the position of the traffic light 𝐷𝑇𝐿 and 𝑠𝑠𝑎𝑓𝑒 set to zero. 

Therefore, stop mode is activated when: 

S = {
1, 𝑇𝐿 = 1 , 𝑆𝑃 = 3, 𝑑𝑘

𝑙 ≤ 𝐿𝑂𝑆

1, 𝑇𝐿 = 1 , 𝑆𝑃 = 8, 𝑠𝑏𝑟𝑎𝑘𝑒,𝑘 < 𝑑𝑘
𝑙 ≤ 𝐿𝑂𝑆

 (15) 

A detailed rule-based logic using LOS in the presence of a stop sign or 

traffic light is described in [16]. Regarding the car-following mode, 

𝑑𝑘
𝑙−1 and 𝑣𝑘

𝑙−1 represent the position and speed of the vehicle preceding 

the lead vehicle. The absence of V2V communication makes this 

information unavailable for the ego vehicle to predict the car-following 

behavior, in particular deceleration events, of the lead vehicle. To 

overcome this, a modification of the freeway driving and stop mode 

equations is here developed (EDM-LOSP).  

The prediction of the lead vehicle’s transition to the desired speed in 

the FD mode uses only the current velocity, which is obtained by 

setting 𝑣̂0
𝑙 = 𝑣0 in Eq. (11). Given availability of the current 

acceleration 𝑎0 , it is possible to replace 𝑎 with: 

𝑎𝑚 =  
𝑎0

1 − (
𝑣0

𝑣𝑙𝑖𝑚 − 𝜃0
)
𝛿

 
(16) 

with 𝑣̂0
𝑙 = 𝑣0, replacing 𝑎 with 𝑎𝑚 ensures that the first predicted 

acceleration 𝑎̂0
𝑙 = 𝑎0. Ideally, this results into a perfect prediction for 

the first step, as in the case of a constant acceleration assumption. In 

addition, EDM-LOS is sensitive to the calibration parameters, in 

particular 𝑎 and 𝛿. When modelling driver behavior using EDM-LOS, 

these parameters are either calibrated offline from recorded driving 

data [17] or using online estimation techniques [18]. The sensitivity is 

also minimized by making use of the available current acceleration 𝑎0. 

The other parameters 𝛿 and 𝜃0 remain calibratable, allowing one to 

capture different driver aggressiveness. The FD mode is employed 

when the current acceleration 𝑎0 is non-negative. When 𝑎0 is negative 

and there is no traffic light within 𝑁𝐻, the lead vehicle is assumed to 

brake because of the vehicle in front of the lead vehicle. Since the car-

following mode in EDM-LOS cannot be employed, the stop mode is 

modified to predict the braking behavior. The comfortable deceleration 

𝑏 is replaced by the current acceleration 𝑎0 and 𝑑𝑘
𝑙−1 term in Δ𝑑𝑘

𝑙  is 

replaced by assuming the lead vehicle is decelerating to a fixed 

obstacle at a position given by 
𝑣0
2

2|𝑎0|
.  One can observe that doing the 

above modifications to the stop mode results in converting to a 

constant acceleration model, as shown in appendix A.1. Incorporating 

the current acceleration 𝑎0 of the lead vehicle, the equations of EDM-

LOSP is summarized as:  

𝑎̂𝑙𝑘      =

{
 
 
 
 

 
 
 
 𝑎𝑚  (1 − (

𝑣̂𝑘
𝑙

𝑣𝑙𝑖𝑚 − 𝜃0
)

𝛿

) , 𝑣0 ≤ 𝑣𝑙𝑖𝑚, 𝑎0 ≥ 0

−(
1

𝑎0
)

(

 
𝑣̂𝑘
𝑙

2 (
𝑣0
2

2|𝑎0|
− 𝑑𝑘

𝑙 )
)

 ,                            𝑎0 < 0

−(
1

𝑏
)(

𝑣̂𝑘
𝑙

2(𝐷𝑇𝐿 − 𝑑𝑘
𝑙 )
) ,                                      𝑆 = 1

 (17) 

Comparison of Predictor Performance 

To highlight and compare the performance of the proposed predictors, 

a short driving profile was experimentally collected and used as 
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reference for the lead vehicle velocity. The speed prediction 

performance was quantified by computing the Root-Mean-Square-

Error (RMSE) between the actual speed and the predicted speed. 

Prediction horizon lengths of 5, 10 and 15 seconds are evaluated for 

each predictor. The results are summarized in Table 1, showing the 

CA-AB and EDM-LOSP performing better over their counterparts. 

Fig.3 provides a visual description of how each velocity predictor 

performs (10 s prediction horizon) during a portion of the driving 

profile. The difference between CA and CA-AB can be mostly 

appreciated when the lead vehicle speed goes to zero in the presence 

of red phase traffic light (e.g., around 80 s). The CA does not predict 

the velocity to stop at the traffic light, as seen from the red lines close 

to 80s, indeed, a longer prediction horizon causes the velocity to pass 

the traffic light. The proposed CA-AB uses 𝑎̃ in the place of 𝑎0 , hence 

predicting the lead vehicle stop at the traffic light. Summarizing, the 

advantages of using CA-AB over CA can be appreciated more in urban 

routes, due to the high traffic light and stops density. The portions of 

decreasing velocities of the lead vehicle, apart from the traffic light, 

for instance at ~10s, 25s and 50s are due the presence of vehicles 

preceding the lead vehicle. This behavior, given the availability of 

information on the vehicle preceding the lead, is predicted using the 

CF mode in EDM-LOS. However, without that information, this 

predictor assumes the lead vehicle to always be in FD mode predicting 

its velocity to reach a desired speed. The proposed EDM-LOSP 

overcomes this by identifying (𝑎0 < 0) and predicting decelerations 

using the second mode abovementioned in Eq. (17). 

Table 1. RMSE in m/s of the different speed predictors for 5s, 10s and 15s future 
windows. 

Prediction 

Horizon, s 
CA CA-AB EDM-LOS EDM-LOSP 

5 1.00 0.97 1.80 0.81 

10 2.63 2.40 2.70 2.24 

15 3.67 3.45 3.47 3.15 

 

 

Figure 3. Speed predictions of the different for a 10 s prediciton window. In red, the velocities predicted at each timestep while in blue the actual lead vehicle speed. 

 

 

Figure 4. Bar plots for fuel consumed in grams (on the left) and travel time in seconds (on the right) for the six different routes and the different lead vehicle velocity 

predictors. 
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Simulation and Results  

This section provides an application of the aforementioned lead 

vehicle velocity prediction methods. The performance of the proposed 

predictors, CA-AB and EDM-LOSP, are evaluated for energy 

efficiency and travel time using real-world driving profiles and 

compared against CA as baseline and an ideal scenario with perfect 

velocity prediction (wait-and-see) as benchmark. In general, 

information on future lead vehicle velocity is of crucial importance for 

the eco-driving optimal control problem, due to the knowledge needed 

to obtain the globally optimal solution.  Absence of such information 

from V2V communication of any restriction of unavailability of data 

imply the need for reliable and robust algorithms to predict the future 

lead vehicle velocity trajectory. For conciseness, EDM-LOSP will be 

referred to as EDM for the rest of this section including figures. 

For this analysis, different driving scenarios and routes were 

considered to demonstrate the utility of the speed predictors in the eco-

driving problem. Six different routes were selected and divided 

between urban and mixed scenarios. The route data were obtained 

using GPS information extracted from different vehicles driven along 

the designated routes. It is worth mentioning that the location of traffic 

lights was known, however the Signal Phasing and Timing (SPaT) was 

not available, thus the need of defining a realistic SPaT by leveraging 

the time spent at stops by the lead vehicle. Additional information on 

the routes on traffic light density and average speed limits is provided 

in Table 2.  For the sake of completeness, the speed limits, lead vehicle 

velocity and traffic light locations for the different routes are found in 

the Appendix (see Fig. A1), as a function of distance travelled. 

Table 2. Routes information for urban and mixed driving scenarios. 

Route name 
Traffic light density, 

1/km 

Average speed limits, 

mph 

Urban route 1 3.0 28 

Urban route 2 1.2 40 

Urban route 3 2.3 33 

Mixed route 1 0.5 59 

Mixed route 2 0.7 50 

Mixed route 3 0.4 59 

The results obtained using the rollout algorithm and the different speed 

predictors are shown in Fig. 4, in terms of total fuel consumed and 

travel time. As already mentioned, the optimization problem aims at 

minimizing both terms with an equal trade-off given as a weight in the 

cost function. It is worth noting that all the strategies implemented 

result charge sustaining, i.e., the initial and final SOC are 

approximately equal to 50%. The benchmark solution provided in 

these results corresponds to a perfect knowledge of the lead vehicle 

velocity in the prediction horizon (i.e., 200 m), and it is used to provide 

a fair and exhaustive comparison with the velocity predictors. From 

the bar plot in Fig. 4, it can be seen how the travel time remains 

practically unchanged among the different speed predictors, whereas 

the fuel consumed varies considerably. The highest differences are 

found in urban routes, where EDM and CA-AB consume an average 

of 3.9% and 7.9% more than the benchmark, respectively, while the 

CA leads to a fuel consumption increment of approximately 12.4%. In 

the mixed routes, no substantial changes are observed when applying 

the different predictors, mainly stemming from the higher portion of 

driving at constant speed where the different predictors act all 

similarly. The reasons why the EDM and corresponding eco-driving 

problem lead to an enhanced energy efficiency are worth analyzing in 

terms of Root-Mean-Square (RMS) of the acceleration. The CA speed 

predictor results in a higher RMS value for the acceleration in the 

urban routes with an average of 0.52 m/s2, with respect to both CA-AB 

and EDM eco-driving approaches (i.e., 0.51 m/s2 and 0.50 m/s2 

respectively). The higher value for acceleration RMS can be associated 

to higher fuel consumption, thus proving the differences just 

mentioned. An example of how the eco-driving solution approaches 

the traffic lights is shown in Fig. 5 and mostly visible in the zoomed 

window that highlights two close traffic lights. It can be noticed how 

the prediction of lead vehicle speed along with the signal phase 

knowledge allows the ego vehicle to not stop at traffic lights when it is 

feasible, thus avoiding inefficient deceleration to null speed and 

subsequent acceleration. Analyzing further the zoomed window, it can 

be seen that the benchmark solution starts decelerating long before the 

first traffic light and accelerates only towards the end of the green 

phase, just enough to avoid stopping. Further differences can be seen 

also in the behavior of the CA eco-driving approach (in yellow in Fig. 

5) that accelerates right after the lead vehicle leaves the traffic light 

and then decelerates when the gap is low.  

 

Figure 5. Traffic lights SPaT and trajectories of the lead vehicle and the 

different eco-driving approach using the diverse velocity predictors. 

For the sake of completeness, Fig. 6 illustrates the eco-driving 

solutions with the different speed predictors implemented on Mixed 

Route 2. In general, no visible differences are found among the 

different predictors' solutions. However, all demonstrate smoother 

velocities with respect to the lead vehicle avoiding unnecessary 

slowdowns (see Fig. 6 around 840 m and 2815 m), thus improving 

overall energy efficiency. 

 

Figure 6. Velocity traces for the different speed predictors and eco-driving 

problems in Mixed Route 2, as a function of distance. 
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The reason why the travel time does not vary as noticeably as the fuel 

consumption is attributable to the need of complying with traffic lights 

phases and the impossibility of passing the lead vehicle. To confirm 

this statement, two other rollout algorithms have been run with 

different weights between fuel consumed and travel time (i.e., 𝛾 

introduced in previous section). Even when orienting the cost function 

to penalize more the travel time than the fuel consumption, no 

substantial variations are found, as seen in Fig. 7 below concerning 

simulations on Urban route 1. It is worth noting that the y-axis in Fig. 

7 is magnified for the sake of clarity and that the differences between 

the neutral cost function and the one mostly oriented towards travel 

time (i.e., γ =  .  and γ =  . , respectively) are in the orders of seconds, 

hence confirming that the constraints posed by the lead vehicle and the 

traffic lights do not allow room for variation, as mentioned above. 

 

Figure 7. Bar plots graph of the travel times obtained using different speed 

predictors and different weights in the DP cost function in Urban Route 1. 

Conclusions 

The lead vehicle velocity prediction improves with the availability of 

the V2V information about the vehicles preceding the lead vehicle. 

However, in the absence of V2V communication or in data-restricted 

environment, the prediction accuracy reduces. To mitigate this, two 

predictors, namely CA-AB and EDM-LOSP, were developed to 

predict lead vehicle velocity without the need of V2V communication.  

First, a CA predictor was modified to incorporate an average 

deceleration part while slowing down or stopping. Second, the EDM-

LOS was modified to incorporate current acceleration information in 

capturing lead vehicle decelerations during car-following. A 

comparative study was conducted to analyze the prediction accuracy 

of the developed predictors over different prediction horizons. A time-

gap based constraint was designed leveraging the predicted lead 

vehicle velocity over the prediction horizon. This information was then 

integrated into a non-linear eco-driving optimal control problem. 

Large scale simulations were performed over 6 real-world routes 

representing urban and mixed driving scenarios to solve the eco-

driving problem as a MPC with the developed predictors. Results show 

higher energy savings considering the EDM-LOSP for urban driving 

with respect to the CA and CA-AB. This confirms the importance of 

accurate predictions of preceding traffic to enhance energy efficiency, 

especially in urban scenarios. Future work will include testing the eco-

driving controller embedding the information coming from the EDM-

LOSP using hardware-in-the-loop simulation. 
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Appendix  

A.1: Proof of stop mode in EDM-LOSP is equivalent to CA 

Following, a proof is given that the stop mode in EDM-LOSP is equivalent to a constant acceleration prediction. The proof is given for the predictor 

equations in continuous time, but the same result holds for the discrete system. 

Given the current instantaneous speed 𝑣0 and acceleration 𝑎0, let 𝑠𝑙(𝑡), 𝑣𝑙(𝑡), be the lead vehicle position and speed, respectively, where:  

𝑑𝑠𝑙

𝑑𝑡
= 𝑣𝑙(𝑡), 𝑠𝑙(0) = 0 (A1) 

The stop mode in the EDM-LOSP is then given by: 

𝑎̂(𝑡) =
𝑑𝑣𝑙

𝑑𝑡
=  −

1

|𝑎0|
(
𝑣𝑙(𝑡)2

2Δ𝑥(𝑡)
)

2

=  −
𝑎𝑘𝑖𝑛
2 (𝑡)

|𝑎0|
=  −𝑎𝑘𝑖𝑛(𝑡) (

𝑎𝑘𝑖𝑛(𝑡)

|𝑎0|
) , 𝑣𝑙(0) = 𝑣0, (A2) 

where Δ𝑥(𝑡) is the distance of the lead vehicle from the next predicted stop.  

Theorem 1:  

If  𝛥𝑥(𝑡) ≔
𝑣0
2

2|𝑎0|
− 𝑠𝑙(𝑡), then 𝑎𝑙(𝑡) = −|𝑎0| 

Proof:  

The proof proceeds by showing that: 

1.  𝑎𝑘𝑖𝑛(𝑡) = |𝑎0|, is an equilibrium point for the acceleration. 

2.  By the definition of Δ𝑥(𝑡), the equilibrium is attained at 𝑡 = 0 and 𝑎̂(𝑡) = −|𝑎0| 

Let 𝑎𝑘𝑖𝑛(𝑡) =
𝑣𝑙(𝑡)2

2𝛥𝑥(𝑡)
, then: 

dakin
dt

=
4vl(t)

dvl

dt
Δx(t) − 2vl(t)2

dΔx
dt

4Δx(t)2
=
vl(t)

Δx(t)
(
akin(t)

|a0|
) (|a0| − akin(t)).   

(A3) 

Hence 𝑎𝑘𝑖𝑛(0) = |𝑎0| entails that 𝑎𝑘𝑖𝑛 remains constant.  

Now, from the definition of Δ𝑥 it follows Δ𝑥(0) =
𝑣0
2

2|𝑎0|
. By substitution in the expression for 𝑎𝑘𝑖𝑛 and recalling the initial condition on 𝑣𝑙 it can be 

shown:  

𝑎𝑘𝑖𝑛(0) =
𝑣𝑙(0)2

2𝛥𝑥(0)
=

𝑣0
2

2(
𝑣0
2

2|𝑎0|
)

= |𝑎0|      →        𝑎̂(𝑡) =
𝑑𝑣𝑙

𝑑𝑡
=  −

𝑎𝑘𝑖𝑛(𝑡)
2

|𝑎0|
= −|𝑎0| (A4) 
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A.2: The urban and mixed routes with lead vehicle velocity and routes features  

 

Figure A1. Speed limits, traffic lights locations and lead vehicle velocity profiles for the six different urban and mixed routes, as a function of the distance. 
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