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Abstract: In recent decades, the automotive industry has moved towards the development of ad-
vanced driver assistance systems to enhance the comfort, safety, and energy saving of road vehicles.
The increasing connection and communication between vehicles (V2V) and infrastructure (V2I) en-
ables further opportunities for their optimisation and allows for additional features. Among others,
vehicle platooning is the coordinated control of a set of vehicles moving at a short distance, one
behind the other, to minimise aerodynamic losses, and it represents a viable solution to reduce the
energy consumption of freight transport. To achieve this aim, a new generation of adaptive cruise
control is required, namely, cooperative adaptive cruise control (CACC). The present work aims to
compare two CACC controllers applied to a platoon of heavy-duty electric trucks sharing the same
linear spacing policy. A control technique based on reinforcement learning (RL) algorithm, with
a deep deterministic policy gradient, and a classic linear quadratic control (LQC) are investigated.
The comparative analysis of the two controllers evaluates the ability to track inter-vehicle distance
and vehicle speed references during a standard driving cycle, the string stability, and the transient
response when an unexpected obstacle occurs. Several performance indices (i.e., acceleration and jerk,
battery state of charge, and energy consumption) are introduced as metrics to highlight the differences.
By appropriately selecting the reward function of the RL algorithm, the analysed controllers achieve
similar goals in terms of platoon dynamics, energy consumption, and string stability.

Keywords: platooning; CACC; energy consumption; vehicle dynamics; reinforcement learning;
IA; LQC

1. Introduction

The growing need to improve road safety has led the automotive industry to de-
velop advanced driver assistance systems (ADAS), which significantly contribute to the
reduction and mitigation of accidents [1]. On the other hand, the efficient use of energy
for vehicle propulsion has become the main driver for the research and development of
novel powertrains; it is worth mentioning that the automotive sector greatly contributes
to the global production of polluting emissions [2]. In the context of automated driving,
vehicle platooning represents an enabling technology for both increased occupant safety
and energy savings. Vehicle platooning has been extensively studied in the last decades
as it represents a suitable method for reducing the energy consumption and greenhouse
gas emissions of heavy-duty vehicles. Different platooning test projects (e.g., Chauffeur,
Sartre, Energy-ITS, SCANIA) were carried out in different countries to investigate different
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platooning systems [3,4], vehicle mixes, types of infrastructure, and sensors. The focus of
these projects was to investigate the potential for energy consumption reduction and an
increase in road capacity, the latter representing a key task of the transportation sector.

The advantages linked to drag reduction represent a key aspect in the scientific com-
munity [5–7]. The research efforts highlighted that heavy-duty vehicles (HDV) are the
most indicated for energy-oriented platooning, given that they can exploit the benefits of
the slipstream effect for viable inter-vehicle distances. On the contrary, this effect cannot
be exploited by light-duty vehicles unless the inter-vehicle distance is less than 3 m. Still,
driving close to the previous vehicle leads to safety concerns; thus, trade-off conditions or
dedicated systems need to be carefully investigated. More specifically, in [8], multi-vehicle
collision avoidance strategies using active emergency braking systems were developed to
improve the safety of a string of vehicles in complex scenarios by also gathering information
from the infrastructure. The safety issue can also be managed through the selection of a
proper spacing policy that links the vehicle speed to the inter-vehicular distance. The author
of [9] performed a comparative study of five different spacing policies by analysing the
performances in terms of stability, comfort, and safety for adaptive cruise control systems.

To accomplish the cooperative task of platooning control, cooperative adaptive cruise
control (CACC) has been developed; unlike classic ACC, it gathers information from all
vehicles in the string, i.e., distance, velocity, and accelerations. The exchange of data relies
on vehicle-to-everything (V2X) and/or vehicle-to-vehicle (V2V) technology. The main
disadvantage of the classic ACC is that string stability is not ensured, as demonstrated by
the on-field test in [10], where the adaptive cruise control of several vehicles was tested.
On the contrary, CACC systems guarantee string stability, as demonstrated by the authors
of [11], where the focus was to design and validate a CACC system. Moreover, string
stability can also be guaranteed by a proper design of the spacing policy. In [12], string
stability was investigated by developing a delay-based spacing policy that guarantees the
same speed profile in a spatial domain.

In the literature, the cooperative strategy has been implemented using different al-
gorithms. The authors of [13] developed a proportional string stable feedback control
strategy by using information on distance and speed errors; the study proved to be feasible
through an experimental validation conducted over a platoon of trucks. Other works have
used more advanced control techniques, as done by the authors of [14], where a model
predictive control (MPC) strategy, combined with the topography information responsible
for generating efficient speed profiles, was deployed to drive vehicle platoons. Moreover,
in [15], the comparison between nonlinear MPC and proportional-integrative-derivative
(PID) controllers was investigated to optimise fuel consumption and guarantee the safety
of a class of eight trucks over hilly terrain.

Among these different approaches, in this paper, a centralised control system is
developed to drive a platoon of vehicles along a straight path, designed to target energy
saving, safety, and dynamic performance by investigating two control techniques: a classic
one used as a reference, represented by the linear quadratic controller (LQC), and a novel
one based on the reinforcement learning (RL) algorithm. The LQC strategy has been
selected due to its capability to guarantee system stability as well as its fast tuning process
and fast computational time. On the other hand, RL was selected as an emerging technology
with high innovative potential. RL is a promising control technique for CACC algorithms
because it guarantees adaptability to different situations and the possibility to continue its
training online; moreover, it has proven to be particularly effective in handling uncertain
and hard-to-predict environments. Generically speaking, RL allows us to directly handle
the nonlinear dynamics of physical systems. If the training phase is properly designed, an
RL-based CACC system can learn how to adapt to the inherent variability in aspects such
as road conditions, traffic patterns, and driver behaviour.

Furthermore, the potential of RL solutions has been widely assessed in the scientific
literature. The control of a vehicle platoon has a large action and state space, thus making
deep RL (DRL)-based solutions suitable for the problem [16–19]. Moreover, the chosen
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DRL approach is model-free, i.e., it does not require a model to predict the behaviour of the
system as opposed to model-predictive control (MPC) [20]. It is also worth observing that
whereas LQC requires a quadratic objective function, DRL does not hold any constraint on
the reward function shape, which can also be a non-quadratic cost function. Yet, differently
from other analytical control methods, DRL-based control cannot theoretically guarantee
convergence or system stability. It is indeed a non-linear control that learns through
interaction with an environment, pairing the action evaluated to be the best for a given state
with the state itself through the experience gained during training. Thus, its performance
cannot be mathematically or theoretically guaranteed since it depends not only on the
mathematical formulation but also on the training duration and other parameter settings.
Further information can be found in Section 4, where the DRL-based control is described.

The paper is divided as follows: in Section 2, the vehicle platoon model is presented;
in Sections 3 and 4, the LQC and RL architectures are respectively introduced. In Section 5,
the results of platoon simulation, tracking an FTP75 driving cycle, and a cut-in scenario are
presented with the aim of comparing the CACC controllers by means of a set of performance,
energy, and safety indices. Finally, the conclusions of the research are reported in Section 6.

2. Model Description
2.1. Vehicle Model

In this section, the platoon model is introduced. A number of N heavy-duty electric
vehicles (HDEVs) moving on a straight and sloped road is considered. Figure 1 shows the
scheme of the mechanical model of the vehicle platoon: the dark blue vehicle is called the
lead vehicle, whereas the others are referred to as the followers.
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Figure 1. Vehicle platooning on straight and sloped roads.

Each vehicle is characterised by inertial and geometrical properties: a mass mi and the
total vehicle length li. Only the longitudinal motion is accounted for, whereas the lateral
and pitch ones are neglected. The position, velocity, and acceleration (xi, vi,

.
vi) of each

vehicle are computed by using a fixed reference system X. The quantity di−1,i refers to
the inter-vehicle distance (i.e., the distance between the rear and front bumpers of two
consecutive vehicles). The electric motor provides the amount of torque necessary to
overcome the rolling, aerodynamic, and climbing resistances, as well as the inertial torque
for vehicle and powertrain acceleration. The amount of torque is computed by the control
system, and it is transmitted to the driveshafts by a single-speed transmission, modelled as
a constant transmission ratio and assuming rigid shafts.

Even though the pure rolling motion is assumed for each wheel, the actual tyre-road
friction condition has been considered by implementing a simple traction control system
that saturates the tyre forces to their maximum transmissible limit, depending on road grip
µ and the normal load Fz. In this way, the tyres never exceed their maximum transmissible
force, Fx < µFz.

The equation of motion of the ith vehicle is:
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mtoti
.
vF,i =

ητTm,i

rw,i
−
[

migsin(α) + mig f 0,icos(α) +
(

mig f2,icos(α) +
1
2

ρcx,i(di−1,i)A f ,i

)
v2

F,i

]
(1)

where mtot,i is the equivalent translating mass of the vehicle, accounting for the translating
and rotating components, f0,i and f2,i are the rolling resistance coefficients that are generally
characterised experimentally through quadratic regression applied to the coast-down test,
rw, is the wheel rolling radius, τ and η are the reduction ratio and the efficiency of the
transmission, ρ is the air density, A f ,i is the vehicle frontal area, cx,i is the aerodynamic drag
coefficient, and α represents the longitudinal road slope.

Once the torque requested for the electric motor is known, the power request can
be derived as the aforementioned torque multiplied by the angular velocity of the motor.
Electric motor losses are modelled as a function of their torque and speed through a 2D
map. The power absorbed by the auxiliaries is assumed to be constant. The battery power
request is the sum of the electric motor power and the abovementioned contributions. The
behaviour of the battery is represented by the following equations, which evaluate the
amount of current flowing through the battery and the instantaneous change in the state of
charge (

.
σ):

Ibatt =
Vbatt −

√
V2

batt − 4RbattPbatt

2Rbatt
(2)

.
σ =

Ibatt
Qbatt·∆t

(3)

where Ibatt is the battery current, Vbatt and Rbatt are its open-circuit voltage and internal
resistance, and Qbatt and ∆t are the battery maximum capacity and the simulation timestep,
respectively.

The dependency of the drag reduction on the inter-vehicle distance, which was experi-
mentally validated for HDVs in [21], is introduced in the model with the following equations:

cx,i = cx,0 · kcx (4)

kcx = 1− ∆Cx∆Cx(%) =

(
1− a3,id3 + a2,id2, a1,id + a0,i

b3,id3 + b2,id2 + b1,id + b0,i

)
× 100 (5)

where d represents the relative distance, cx,0 is the undisturbed drag coefficient (i.e., the
drag coefficient of the isolated vehicle), and an,i and bn,i are empirical coefficients obtained
by experimental data fitting [21]. Figure 2 shows the trend of the drag coefficient reduction
versus the inter-vehicle distance for a platoon composed of three HDVs. It is noticeable that
the middle (red line) and last (black line) vehicles are more affected by the drag reduction
than the leader. The map, derived from the literature, was included in the platoon model
to evaluate the potential for energy savings. Figure 3 shows the energy consumption
comparison related to a set of three trucks following a WLTP Class 3 driving cycle: the
group of bars on the left represents the vehicles moving far enough apart not to be affected
by the slipstream of the preceding vehicle, while the bars on the right refer to the same
vehicles moving close together thanks to a platoon control system. The results demonstrate
that each vehicle in the platoon shows energy savings; in particular, the advantage increases
from the first to the last vehicle. Obviously, the quantitative results depend on vehicle
data and platooning control parameters; Figure 3 refers to the numerical values used
in Section 5.
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The inter-vehicle distance and its derivative are defined as:{
di−1,i = xi−1 − xi − li−1.

di−1,i = vi−1 − vi
(6)

The vehicle platooning control system is conceived to exploit the advantages of a
collaborative ACC. More specifically, the test scenario is based on a lead vehicle following
the reference speed of a driving cycle, thanks to a PID controller, whereas the string of
followers is controlled by a centralized control unit, which exploits the information from the
sensors, i.e., vehicle velocity vi and inter-vehicle distance di−1,i, to track a reference value
of inter-vehicle distance (according to the spacing policy) and a target speed of the platoon.
The reference values are computed by the centralised controller, which in turn evaluates
the amount of torque to be applied by each actuator in the platoon in order to compensate
for the velocity and distance errors. All the data exchange (feedback signals, references,
and inputs) is instantaneous. Thus, neither delay nor disturbance are accounted for.

The idea of a centralised control unit is investigated considering two different con-
trol solutions: the linear quadratic controller (LQC) and a reinforcement learning-based
controller (RL).

2.2. Spacing Policy

To maintain a safe distance between vehicles, a spacing policy must be properly
defined. Different solutions may be adopted, from the simplest one (e.g., maintaining the
safety distance constant) to more complex ones (e.g., including the velocity or acceleration
terms in the safety distance) [9]. In this paper, the safety distance, also referred to as the
inter-vehicle safety distance, is set by the following law:

di−1,i,re f = d0 + thvi (7)
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where d0 represents the minimum distance between vehicles (when the vehicles are sta-
tionary), th is the time headway, and vi is the speed of the ith vehicle. Consistent with
Equation (7), a constant time headway implies a safety distance growing linearly with
velocity. Reference [22] suggests time headway in the interval [1 s, 2 s], based on safety and
road capacity concerns.

3. LQ Controller
3.1. Open Loop System: Model Linearization

The linear quadratic controller (see [23,24] for more details on this well-established
technique) was chosen since it fits very well with the multi-input, multi-output requirement
of the centralised collaborative platooning controller. To apply this technique, the platoon
model was linearized and the resulting equations of motion stacked in state–space form.
Before linearization, the equations are normalised to the nominal condition by introducing:

di−1,i = dn · zFi,d
vF,i = vn · zFi,v

α = αn · p
Tm,F,i = Tm,n · u

(8)

where vn, dn, Tm,n are the nominal velocity, the nominal inter-vehicle distance, and the
nominal electric motor torque, respectively; zi,d and zi,v are the states of each follower
vehicle; u represents the input; and p represents the road slope disturbance.

Introducing the normalisation from (1), the equation of motion can be written:

mtotivn
.
zFi,2 =

Tm,nτ

ηrw
u−

{
A0sin(αn p) + A1cos(αn p) + [B0cos(αn p) + B1 + B2dnzFi,d]v2

nz2
Fi,v

}
(9)

where the expressions of the A0, A1, B0, B1, B2 are shown in Appendix A.
At steady state (

.
zFi,v = 0

)
and without external disturbance ( p = 0), the nominal

torque is:

Tm,n =
rw

ητ

[
A1 + (B0 + B1dn)v2

n

]
(10)

Let us introduce the small variations, denoted with δ, around the nominal values:
zFi,d = 1 + δzFi,d
zFi,v = 1 + δzFi,v

u = 1 + δu
p = δp

(11)

Thus, introducing the linearisation and neglecting the second-order variational terms,
the linearised equation of motion for each follower vehicle is:

δzFi,v = Ki · δui − Gi · δzFi,v − Si · δzFi,d − Ei · δp (12)

The time derivative of inter-vehicle (variational) distance can be written as:

δ
.
zFi,d =

vn

dn
(δzFi−1,v − δzFi,v) (13)

Therefore, by applying the former steps for each follower vehicle, the final set of
equations of motion of the vehicle platoon under open-loop control can be found:{

δ
.
z
}
= [A]{δz}+ [B]{δu}+ [H]{δp}+ [C]δzL,v (14)
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where [A], [B] are the dynamic and input matrices, respectively, {δz} is the state vector:

{δz} =



δzF1,d
δzF1,v

. . .
δzFi,d
δzFi,v

. . .
δzFN,d
δzFN,v


(15)

where δzFi,d and δzFi,v is the normalised variational distance and speed, {δu} is the input
vector, δzL,v is the normalised variational lead vehicle velocity (internal disturbance), and
{δp} is the variational inclination contribution (external disturbance). The content of the
matrices and the gains in a case study of three vehicles are given in Appendix A.

3.2. Control: Closed Loop System

The longitudinal dynamics of the follower vehicles are controlled in a closed loop
using the LQC technique. The latter is based on the minimization of a quadratic functional
and has the advantage of ensuring the asymptotic stability of the controlled system [23].
Since the LQC control law is a linear combination of all the states {δe}, the equations are
rearranged to have the errors of inter-vehicle distance δedi,i+1

and vehicle velocity δev,i
as states:

{δe} = {δz} −
{

δzre f

}
(16)

where
{

δzre f

}
is the reference vector of the desired speeds and desired inter-vehicle dis-

tances (normalised w.r.t. the nominal values and variational). Moreover, an augmented
state ηi, that is, the integral of the distance error

( .
ηi = δedi,i+1

)
, is added as the last ele-

ment of the state vector to include an integral term in the full-state feedback control law,
compensating for the steady state errors.

Therefore, the equations are entirely re-written by substituting the expression (19) in
(15), leading to:{

δ
.
e
}
= [A]{δe}+ [B]{δu}+ [A]

{
δzre f

}
−
{

δ
.
zre f

}
+ [H]δp + [C]δz1,v (17)

The control law {δu} is here defined as:

{δu} = {δuFB}+ {δuFF} (18)

where δuFB represents the feedback control term, whereas δuFF represents the feedforward
control term. The feedback control law is full-state feedback:

{δuFB} = −[L]{δe} (19)

where [L] is the control gain matrix, computed by solving the steady-state Riccati equation.
This solution guarantees the minimization of the cost function J({δu}), defined by the LQC
problem:

J({δu}) =
∫ ∞

0

(
{δe}T [Q]{δe}+ {δu}T [R]{δu}

)
dt (20)

where [Q] and [R] are diagonal weight matrices that are tuned based on the desired system
performance. More specifically, [Q] controls the deviation of the states from equilibrium,
whereas [R] controls the input effort. In the next section, the tuning process for the matrices
will be presented.
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The feedforward contribution δuFF is designed to compensate for the terms of Equation (16)
that are not a linear combination of the states:

{δuFF} = [B]+
(
−[A]

{
δzre f

}
+
{

δ
.
zre f

}
− [H]δp− [C]δz1,v

)
(21)

Since the input matrix [B] is not square and hence not invertible, [B]+ indicates
the pseudoinverse (or generalised inverse) matrix, computed with the Moore–Penrose
method [25]. The existence and uniqueness of the pseudoinverse of the [B] matrix have been
verified by checking the four Penrose conditions applied to the [B] matrix (see Appendix B
for more details). Figure 4 shows the block diagram of the controlled platooning system.
On the left are the input/disturbances applied to the dynamic system, i.e., the road slope,
the velocity of the lead vehicle, and the reference speed and distance of each vehicle. The
plant with the two controllers (feedback and feedforward) is shown in the central part and
on the right of the figure.
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3.2.1. Tuning of Q and R Matrices and Time Headway

The results achievable by the feedback control are affected by the choice of the weight
matrices Q and R. In the adopted methodology, they were tuned to guarantee the best
trade-off for the following objectives.

• Comfortable drive: to ensure comfort for each vehicle, threshold values for longitu-
dinal acceleration and jerk are set to ax < |2|ms2 and dax

dt < |0.9|ms3 , as specified by the
authors of [26].

• Safety: the control system must be able to safely stop each vehicle in the platoon,
namely avoiding rear-end collisions, when an emergency braking condition occurs at
the maximum speed permitted by the regulations, e.g., considering highway speed
limits (80 km/h for HDVs).

A sensitivity analysis on the values of the matrix R was performed to facilitate the
tuning process, aiming at satisfying the aforementioned objectives. The values of the Q
matrix are kept fixed during sensitivity. The effect on safety and comfort of the time head-
way th will also be presented. To maximize the overall efficiency of the platoon of vehicles,
the time headway is set to maintain the vehicles at low inter-vehicle distances without
compromising safety. The matrices were hence tuned by analysing two manoeuvres: WLTP
Class 3 driving cycle and emergency braking. In the following sections, the results of a
platoon composed of three trucks will be shown.

3.2.2. WLTP Class 3 Driving Cycle

The truck platoon is subjected to a WLTP Class 3 driving cycle. The nominal velocity
vn is set to 80 km/h, and the nominal distance dn varies according to the time headway
th and d0 settings: the latter is maintained constant at d0 = 3 m. The lead vehicle’s speed
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is controlled using PID logic. The PID gains ( KP, KD, KI) are set to KP = 300, KD = 5,
KI = 10. The remaining control parameters (R0 and th) are set according to Table 1, while
the truck’s inertial and geometrical data are listed in Table 3. R0 represents the constant
weight of the [R] matrix ([R] = R0[I]), equal for both follower trucks.

Table 1. R0 and th values used in the sensitivity analysis in the WLTP Class 3 and emergency
braking tests.

R0 th[s]

10−7 1.5, 3, 4.5
10−5 1.5, 3, 4.5
10−3 1.5, 3, 4.5

The results of the WLTP Class 3 driving cycle are divided into two parts: Figure 5
shows the R0 sensitivity (with constant time headway th = 1.5 s), whereas Figure 6 depicts
the th sensitivity (with constant R0 set to 10−5).

In Figure 5, the top charts report the velocity of follower 1 (left) and the inter-vehicle
distance errors (namely ed1,2), whereas the electric motor torque is reported in the bottom
charts. The green line represents the vehicle leader velocity (the disturbance), whereas the
follower 1 velocity response is represented for the three different analysed values of R0.
The results show that, even though the difference in torques is quite small, the lower the R0
values, the better the tracking inter-vehicle distance performance.

In Figure 6, the effect of the time headway is more evident in the results: the higher
the time headway, the less motor torque is delivered, resulting in lower longitudinal
acceleration. Therefore, higher values of time headway improve passenger comfort as the
RMS values of jerk and acceleration are the lowest (see Table 2) for all combinations with
R0, and these values remain within the prescribed limits.
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R0 = 10−5.

3.2.3. Emergency Braking Manoeuvre

In this scenario, the truck platoon travels at 80 km/h when the leader vehicle suddenly
brakes on a high road friction condition. Tests were performed to analyse the performance
of the platooning control system with different control calibrations during an emergency
braking manoeuvre. The test cases are the same as in Table 1. The simulation stops when
the first collision is reached (i.e., when a distance curve crosses the zero line).

Figure 7 shows the results of vehicle velocities (top) and inter-vehicle distance (bottom)
during the emergency braking test for different values of R0 (for both followers): The time
headway set of 1.5 s represents the most challenging condition. As seen during the driving
cycle, the highest value of ( R0 = 10−3) leads to the greatest inter-vehicle distance error,
thus leading to a rear-end collision between follower 1 and the lead vehicle (the impact
occurs at ∼22 km/h). For R0 = 10−5 and R0 = 10−7 both vehicles (follower 1 and follower
2) can stop safely (red line).
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Figure 8 shows the beneficial effect of higher time headway on safety since for th = 3 s
and th = 4.5 s the vehicles stop without any collisions (at the same speed the inter-vehicle
distance increases) if meanwhile R0 = 10−5.
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Figure 8. Emergency braking manoeuvre results: follower 1 and follower 2 velocity (top) and
inter-vehicle distance (bottom) th = [1.5 s, 3 s, 4.5 s] with R0 = 10−5.

Table 2 summarizes the results of the sensitivity analysis. To avoid the collision, the
value of R0 should be set as low as possible (in fact, for R0 = 10−3 the follower 1 vehicle
collides with the leader for all the analysed time headways) and the time headway the
highest possible (but a low time headway is required to increase road capacity). All the
computed acceleration and jerk values are well below the comfort limits for the tested
driving cycle.

Table 2. Summary of comfort and safety analysis: RMS of jerk and longitudinal acceleration for
the driving cycle under investigation. For a quick evaluation of the results, a colormap from green
(lowest values) to red (highest value) is adopted to colour the table cells.

Driving Cycle Jerk [m/s3] (Limit 0.9 m/s3) ax [m/s2] (Limit 2 m/s2)
Vehicle th = 1.5 s th = 3 s th = 4.5 s th = 1.5 s th = 3 s th = 4.5 s

Follower 1
R0 = 10−7 0.156 0.113 0.088 0.49 0.423 0.373
R0 = 10−5 0.154 0.111 0.086 0.495 0.428 0.374
R0 = 10−3 0.148 0.106 0.082 0.505 0.431 0.374

Follower 2
R0 = 10−7 0.122 0.073 0.049 0.452 0.36 0.294
R0 = 10−5 0.117 0.070 0.047 0.453 0.359 0.293
R0 = 10−3 0.108 0.063 0.042 0.456 0.354 0.287

Given that for R0 > 10−5 the safety requirement is satisfied for all the time headway
values, R0 = 10−5 has been selected for the comparison with the RL control. The final
calibration for the matrices Q and R is:

Q = diag
(

100, 10−5, 100, 10−5, 20, 20
)

R = diag
(

10−5, 10−5
)

4. RL Control System
4.1. Reinforcement Learning for Control

Reinforcement learning is a branch of machine learning with ample application to
control systems. It differs both from supervised learning, since it does not require labelled
data given from an external supervisor to learn from, and from unsupervised learning,
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since it attempts to maximise a reward signal rather than trying to find hidden structure
in unlabelled data. In essence, reinforcement learning attempts to learn how to map
observations to actions that maximise the cumulative reward in the long run [27].

Compared to a more classical approach to control systems, reinforcement learning-
based control attempts to compound all functions of a control system (such as state es-
timation and multiple high- and low-level control loops) into a single agent. The agent
interacts with an environment by taking actions a and receiving observations of the states
s. When deployed, the agent uses a control policy to decide which actions should be
taken as a function of the current observations, and the reinforcement learning algorithm
is used in the training phase to train this policy (i.e., tune its parameters) to attain the
desired behaviour. More specifically, while training, the agent attempts to maximise the
cumulative reward in the long run; hence, the definition of the instantaneous reward is
crucial in developing a reinforcement learning agent. The learning procedure does not
require an external supervisor to label what the correct action will be. The agent itself
must, in fact, identify the latter through a trial-and-error procedure and by interacting with
the environment.

Formally speaking, the policy is often described as a mapping π : S→ A , where the
state space S and the action space A define the (discrete or continuous) sets of possible
states and actions. At each time step t, the agent receives the observation st and takes
an action at. Consequently, it receives from the environment the instantaneous reward
rt and the new state st+1. The cumulative reward R = ∑t γtrt, which the RL algorithm
attempts to maximize, is a discounted sum of the instantaneous rewards (γ ∈ [0, 1] being
the discount factor). The discounted sum is adopted to transform what would otherwise
be an infinite-horizon optimisation problem into a finite-horizon one (there are also other
reasons for discounting, such as not using predicted rewards that are too far in the future
to be reliable).

The exact structure and representation of the policy, the learning process itself, whether
the learning process can take place after deployment or not, and whether the agent can
exploit a model of the environment are all defined by the chosen reinforcement learning
algorithm. The control designer must hence select the RL algorithm that better suits the
application at hand, define a reward function that enforces the desired control objectives,
train the algorithm (typically in a simulation environment), and finally test and deploy
the agent.

In this work, the chosen algorithm is the deep deterministic policy gradient (DDPG) [28],
which is a model-free algorithm whose main features are discussed in Section 4.2. The
definition of the reward function as well as the observation and action spaces are reported
in Section 4.3.

4.2. The DDPG Algorithm

DDPG is a model-free, off-policy algorithm, meaning that the training phase takes
place entirely before deployment and testing. A DDPG agent is also an actor–critic agent, as
opposed to a value-based or a policy-based agent. In essence, this means that two different
types of function approximators exist.

• Actor, which receives observations and returns actions (thus playing the role of
the policy).

• The critic, which receives the observations and the actions taken by the actor, evaluates
them and returns a prediction of the discounted long-term reward.

During training, the actor’s parameters are updated using the information given
by the critic, and the critic itself is updated using the actual rewards received from the
environment.

DDPG uses four function approximators: an actor, a critic, a target actor, and a target
critic, all four of which are modelled using feed-forward neural networks.

The presence of a target actor and a target critic is a feature that was introduced to
improve the stability of the learning process [28]. The target actor and critic networks
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(which are used when the agent is deployed) are periodically updated using the parameters
of the actor and critic using a smoothing technique.

More in detail, we can define a target actor µt, a target critic Qt, an actor µ and a critic
Q. The weights of the target networks θµt and θQt are at first initialized to the weights
of the actor and critic networks θµ and θQ. Then, they are updated at every time step
as follows:

θµt = SF · θµ + (1− SF) · θµt (22)

θQt = SF · θQ + (1− SF) · θQt (23)

where SF is a smoothing factor. In our work, this was set to SF = 10−3. Furthermore, for all
networks, we used three hidden layers with 56 neurons each and used the rectified linear
unit (ReLu) as the activation function. The hidden layers and neurons are selected from
previous work [29] and adapted to the platoon control problem by increasing the number
of layers.

Another notable feature of DDPG is that, since it is an actor–critic network using neural
networks as function approximators, it can deal with continuous action and observation
spaces that can be either continuous or discrete. This contrasts with other RL methods such
as Q-learning, which can only deal with problems in which the action-value function can
be represented as a table and where state and action spaces need to be small enough.

Another significant feature of the DDPG algorithm is the experience replay memory,
where the data needed for the update process of the parameters of the neural networks
during training is stored. At each time step, the memory of the chosen capacity N receives
and stores an array containing the current state s, the current action a, the obtained reward
r, and the state of the environment after the action. For every training iteration, a batch of n
random arrays is sampled from the replay memory and is used to train the critic and actor
networks through the respective loss functions Lc and La:

Lc =
1
n

n

∑
i=1

(
y−Q

(
s, a
∣∣∣θQ
))2

(24)

La =
1
n

n

∑
i=1

Q(s, µ(s)) (25)

In machine learning applications, the amplitude of the step moving towards the mini-
mum of the loss function is called the learning rate. It is one of the main hyperparameter,
and in this work it is set to 5 · 10−5 for the actor network and to 10−4 for the critic one. The
capacity of the experience replay memory is set to N = 106. Furthermore, the sample time
is set to 0.1 s, since it is small enough to correctly track the lead and depict the energetic
aspects. It is typical to use, for this application, a sample time between 0.05 s and 0.2 s [30].

Finally, all reinforcement learning applications require the definition of the training
process by controlling the balance between exploration and exploitation. Exploitation refers
to the agent picking the action that maximises future reward, whereas exploration refers
to the agent selecting a random action during the training process. Clearly, if the training
process is unbalanced towards exploitation, the agent may converge to a behaviour that is
locally optimal, whereas if the process is unbalanced towards exploration, it may never
learn at a reasonable rate.

In this work, we used a common approach and characterised the exploration rate as
noise through an Ornstein–Uhlenbeck (OU) action noise model. The default noise mean
value is set to 0. It is important to set its standard deviation appropriately to encourage
exploration, and for continuous action problems, it is common to set it proportional to the
action range [31]. At the same time, the noise standard deviation can be reduced over time
to push the algorithm towards exploitation. Such a result can be achieved by introducing a
decay rate for the standard deviation, which we set to 10−5.

The general framework of the DDPG algorithm is shown in Algorithm 1.
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Algorithm 1: DDPG Algorithm

1: Select the driving cycle of the Lead vehicle
2: Randomly initialize critic and actor network parameters
3: Initialize experience replay memory with capacity N
4: Initialize target networks
5: for episode = 1 to Emax do
6: Receive initial state
7: for j = 1 to length of the driving cycle time vector do
8: Output action from the actor network and add a OU noise for action exploration
9: Execute action aj and observe reward rj, new state sj+1 from the vehicle model
10: Store array (sj, aj, rj, sj+1) in the replay memory
11: Sample a random minibatch of n arrays from the replay memory
12: Update critic networks parameters by minimizing Lc
13: Update actor networks parameters by minimizing La
14: Update the target networks parameters
15: end for
16: end for

4.3. Agent Structure

The objective of the agent is to simultaneously control the whole platoon of vehicles, as
the LQC described in the previous section does. Therefore, the agent receives observations
from all vehicles and can communicate actions to the two follower vehicles.

In particular, the state vector is defined as follows:

s =



th,1
th,2
vL
vF1
vF2
aL

, (26)

where:

• th,1 and th,2 are the time headway of follower 1 with respect to the leader and follower
2 with respect to follower 1, respectively;

• vL and aL are the velocity and acceleration of the leader;
• vF1 and vF2 are the velocities of follower 1 and follower 2.

The action vector a is defined by the normalised torque commands for the two follower
vehicles, Tm,F,1 and Tm,F,2:

a =

(
Tm,F,1
Tm,F,2

)
. (27)

Each normalised torque can range from −1 to 1, with −1 representing the maximum
breaking torque and 1 representing the maximum traction torque.

The design of the reward function for the RL controller plays a similar role to the
definition of the cost function for the LQC controller that was described in Section 3.2, and
a proper definition must be developed to meet the safety and comfort requirements.

In contrast with the LQC cost function, which must be quadratic, there is no restriction
on the structure of the reward function. However, to quantitatively compare the perfor-
mance of the two methods, we decided to express two reward terms, rth,1 and rth,2 as a
quadratic function of the difference between a desired time headway and the current time
headway for the two vehicles. The reward was then set to the average of these two terms:

rth,1 = 1− w1(th,des − th,1)
2,

rth,2 = 1− w2(th,des − th,2)
2,

(28)
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r =
rth,1 + rth,2

2
, (29)

where th,des is the desired time headway and w1, w2 are tuneable weights. Since w1 and w2
determine how strictly the agent attempts to enforce the desired time headway of the two
followers, in agreement with the LQC approach (where the corresponding elements on the
main diagonal of Q and R matrices are the same), they are both set equal to 1.

To guarantee safety and no collision between the vehicles, the following actions are
taken if the time headway becomes null:

- The reward is set to the maximum negative value (−10);
- The corresponding training iteration has been stopped.

4.4. Evaluation of the RL Agent

Having set up the agent and the environment as described in the previous sections,
the agent was trained using the FTP75 driving cycle as the reference cycle for the leader.
Results in Figure 9 show how the agent’s average reward increases during the training,
thus showing its learning capacity. The effectiveness of the RL agent was then assessed by
testing it on a different driving cycle, i.e., WLTP Class 2.
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The results in Figure 10 show the velocities and time gaps of each vehicle for the WLTP
driving cycles. The second follower vehicle shows smaller time headway variations with
respect to the first follower. Still, they both correctly reproduce the velocity profile of their
leading vehicle.
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Figure 11 presents a comparison of the following quantities over the training and test
cycles for Followers 1 and 2:

• percentage energy savings with respect to the leader vehicle,
• RMS of time headway,
• RMS of time headway error with the desired one
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• RMS of jerk.
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The results show that the agent performs even better on the WLTP than on the FTP75
in terms of energy consumption and comfort, with an RMS of time headway that stays
almost constant from one driving cycle to the next. Such behaviour can be explained as
follows: the agent learns well to generalise over different driving cycles, and the testing
cycle turns out to be less demanding in terms of velocity and acceleration, thus allowing
both higher energy savings and comfort. Moreover, in this case, for the second follower
vehicle, the decreased error on the time headway corresponds to an increase in RMS jerk.

5. Results

In this section, a comparison between the LQ and the RL-based controllers applied to a
vehicle platoon composed of one leader and two followers is proposed. Firstly, a discussing
about the string stability is provided, then the simulation of two driving situations, to
assess the performance of the two controllers, is shown.

- Standard driving cycle: the leader vehicle tracks the FTP75 driving cycle (saturated
to a minimum speed value of 2 m/s to avoid backward movement of the platoon),
and the followers try to keep the reference inter-vehicle distance defined by a linear
spacing policy and a reference platoon velocity.

- Cut-in scenario: a new vehicle (not belonging to the platoon) invades the lane occupied
by the platoon, thus altering the equilibrium of the controlled system. The controller’s
ability to react when an unexpected obstacle breaks the platoon’s equilibrium can
therefore be verified.

The followers are controlled by a centralised platooning controller (either LQC- or
RL-based) to keep an inter-vehicular distance that depends on the actual vehicle speed
(according to a constant-time headway spacing policy). The vehicles forming the platoon
are heavy-duty battery electric vehicles with a single-speed transmission and a total mass
of 13 tons. The truck data and the parameters of the controllers are available in Table 3; the
road slope is assumed to be null (p = 0). The LQ and RL-based controllers are tested in
the same framework, consisting of the driving scenario and the nonlinear vehicle platoon
model described in Section 2.
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Table 3. Truck data and platooning controller parameters.

Quantity Symbol Value

Equivalent vehicle mass mtoti 13,175 kg

Wheel radius rw,i 0.5715 m

Electric motor maximum
power Pm,max 300 kW

Electric motor maximum
torque Tm,max 600 Nm

Total transmission efficiency η 95%

Total transmission ratio τ 19.74

Battery max capacity Qbatt 693 Ah

Battery Nominal Voltage Vbatt,n 500 V

Initial SOC SOC0 80%

Isolated vehicles drag
coefficient cx,0 0.57

Air density ρ 1.2

Vehicle frontal Area A f ,i 8.9 m2

Road-tyre friction coefficient µ 0.9

Rolling resistance coefficient f0 0.0041

Rolling resistance coefficient f2 0

Time headway th,des 1.4 s

Nominal speed vn 80 km/h

Nominal inter-vehicle
distance dn 36 m

Nominal road slope αn 5◦

LQC: Q—matrix Q diag
(

102, 10−5, 102, 10−5, 20, 20
)

LQC: R—matrix R 10−5 × diag(1, 1)

RL: reward function weight 1 w1 1

RL: reward function weight 2 w2 1

RL: Actor learning rate lra 5× 10−5

RL: Critic learning rate lrc 10−4

5.1. String Stability

Platoon systems can show string stability issues. It represents a safety concern since
a string stable platoon allows to avoid traffic collisions and traffic jams when a long
string of vehicles travels along the same route. This evidence is investigated by different
literature works, both experimentally and numerically. In particular, the methodology
for the assessment of the platoon string stability is described in [11], which states that the
sufficient condition to guarantee platoon string stability is:

||H(jω)||∞ < 1

where:

H(jω) =
Ed,23(jω)

Ed,12(jω)

representing the frequency response function of two consecutive distance errors Ed,23
and Ed,12, which account for the propagation of perturbances along the platoon. Thus,
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the string stability is verified by testing the LQC and RL performance by exciting the
platoon dynamics with a sine sweep disturbance applied by the lead vehicle velocity.
The frequency range is set from 10−4 to 5 Hz. The test is carried out at 40 km/h, and
the amplitude of the lead vehicle speed disturbance is set to 1.5 km/h. The results in
the time domain of the error distances ( ed1,2 , ed2,3

)
are reported in Figure 12 for both

controllers. The string stability condition is satisfied when the amplitude of ed2,3 (blue
line) is less than ed1,2 (red line). The LQC is string-stable across the entire frequency range.
On the other hand, the RL-based controller ensures a bandwidth of string stability of
0 − 0.3 Hz. In fact, as can be noted from the time history (top part of Figure 12), the
blue line shows an amplitude of oscillation smaller than the red one until 2800 s (when
the corresponding frequency is f ∼ 0.3 Hz). Nevertheless, this range is compliant with
the typical longitudinal dynamics control of heavy-duty trucks, e.g., the frequency range
investigated in [11], and was therefore considered satisfactory.
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Moreover, differently from the LQC, the RL signals are clearly affected by nonlinear-
ities; in fact, the frequency content of the signals includes both fundamental harmonics
due to the frequency of the excitation and super-harmonics (see spectrograms in Figure 13)
because of control nonlinearity. This control-related nonlinear behaviour comes from the
combined operation of the safety-related penalty on the reward function and the activation
functions of the neural network.
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5.2. LQC—RL Comparison
5.2.1. Driving Cycle Results

For the sake of visibility, in Figure 14, the comparison of the two controllers over the
first follower vehicle is represented. As clearly shown by the figure, the controllers achieve
almost identical speed profiles. The small differences in vehicle accelerations cause a clearer
difference in time headway, especially during braking.
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RL results, dotted blue LQC results. The plot refers to the Follower 1 vehicle.

With reference to the highlighted area where the platoon is braking, it can be observed
that, while LQC’s actual time headway is lower than the target one, RL has the opposite
trend, i.e., the actual value is greater. This difference can be justified by the asymmetry
of the RL control due to the penalty introduced in the reward function to avoid collisions
during braking.

Consequently, also from an energetic standpoint, the results are comparable since the
state of charge profiles of the two simulations overlap (see the SOC trends reported in
Figure 14).

Figure 15 shows the results of the performance indices introduced to evaluate the
drivability (RMS jerk and longitudinal acceleration), the energy consumption, and the
controller performance (RMSE of the time headway).
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The RMSE of time headway reduces from the first to the second follower for both the
controllers, but the reduction is stronger for the LQC case, where the error passes from 6 to
2% and RL from 5.5% to 3%.

As for the energy consumption of the first follower, the difference between the two
controllers is less than 3%, respectively, 3.93 kWh/km (RL) and 3.83 kWh/km (LQC). From
the comparison in terms of comfort, RL shows a lower RMS of acceleration but a higher
jerk. Moreover, the jerk along the string increases for the RL, while it decreases for the LQC.
However, the increase in the RMS of jerk results in comfortable driving because the values
remain within the limit previously defined.

5.2.2. Cut-In Scenario Results

In this scenario, the truck platoon is travelling at 80 km/h on a highway road when a
vehicle suddenly breaks the platoon lane. Figure 16 shows an example of the investigated
scenario: the green vehicle performs a cut-in manoeuvre in the platoon lane, between the
leader and the follower 1 truck. In the simulation, the cut-in vehicle behaviour is modelled
through a linear variation in 2 s of the leader position while maintaining its initial velocity
(80 km/h). The cut-in vehicle’s final position is set to split equally the available space
between the vehicles. The cut-in vehicle is assumed to be a truck with the same inertial
and geometrical characteristics listed in Table 3. Figure 16 depicts the simulation results
of the two controllers in terms of velocity profile, inter-vehicle distance, and longitudinal
acceleration for the driving cycle. The solid green line represents the velocity of the cut-in
vehicle, and the dashed black line represents the event that triggers the cut-in manoeuvre.
Both the controllers properly reduce the vehicle speed when the disturbance occurs, but
the LQC guarantees a minimum distance error that is half of the RL one, thus improving
the platoon’s safety under critical conditions. The LQC applies a braking torque higher
than the RL one, thus resulting in a higher longitudinal acceleration. Such behaviour stems
from the innate difference between the two algorithms. The RL controller has learned
a smoother approach that allows for reaching lower distances during the cut-in, thus
achieving greater comfort. On the contrary, LQC tries to maximise performance in terms of
safety. However, both controllers proved to be able to reduce the distance error, and they
reached the reference distance (33 m) at steady state. The LQC results in more aggressive
behaviour, i.e., it brakes twice to obtain the reference distance.
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6. Conclusions

In this paper, a collaborative centralised platooning control system has been obtained
through two different control techniques, i.e., the linear quadratic controller and the rein-
forcement learning-based controller.

The main outcomes of this research activity are:

• The proposed model of the truck platoon includes the dependency of the aerodynamic
drag with the inter-vehicle distance; it is vital to quantify the fuel savings of each
vehicle in the platoon.

• The virtual environment that has been developed enables one to tune and train classical
and AI controllers and assess platoon performance under different driving cycles.

• The LQC controller is string stable across the entire frequency range, while the RL-
based controller may have a limited bandwidth of string stability.

• Regardless of the type of controller, a linear spacing policy proved to be a suitable
choice to meet all the requirements (dynamic performance and energy savings).

• The training of RL provides satisfactory results even in the case of driving cycles
different from the ones used for the learning phase of the agent.

• The simulation results of an RL-based controller are affected by nonlinearities; this
control-related nonlinear behaviour comes from the combined operation of the safety-
related penalty on the reward function and the activation functions of the neural network.

• The comparison through the selected performance indices (i.e., acceleration and jerk,
final SOC, and energy consumption) during a standard driving cycle showed that,
by properly selecting the reward function, RL and LQC achieve similar dynamic and
energetic targets.

• The comparison during a cut-in simulation scenario showed that both controllers
properly reduced the vehicle speed when the disturbance occurred, avoiding accidents.
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Appendix A

The coefficients of the Equations (8) and (12) are:
A0 = mg

A1 = mg f0
B0 = mg f2
B1 = 1

2 ρA f

(A1)


Ki =

A1+[B0+B1cx,i(dn)]vn
mi,tot

Gi =
2[B0+B1F1]vn

mi,tot

Ei =
A0αn

mi,totvn

Si =
B1F2vn
mi,tot

(A2)
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where the coefficients F1 and F2 depends by the linearisation of the Equation (5):

F1 =

(
a2d2

n + a1dn + a0
)

b2d2
n + b1dn + b0

(A3)

F2 = − (a0a1 − a1b0)dn + (a0b2 − a2b0)2d2
n + (a1b2 − a2b1)d3

n
(b 2d2

n + b1dn + b0 )̂2
(A4)

Considering a platoon of three vehicles, the matrices of the state-space system are:

[A] =



0 − vn
dn

0 0 0 0
−S2 −G2 0 0 0 0

0 vn
dn

0 − vn
dn

0 0
0 0 −S3 −G3 0 0
1 0 0 0 0 0
0 0 1 0 0 0


; (A5)

[B] =



0 0
K2 0
0 0
0 K3
0 0
0 0

 (A6)

[H] =



0 0
E1 0
0 0
0 E2
0 0
0 0

;[C] =
[

vn

dn
0 0 0 0 0

]
;

Appendix B

B+ is the pseudoinverse of matrix B if and only if all the following conditions (1)− (4)
are satisfied:

1. BB+B = B
2. B+BB+ = B+

3.
(
BB+

)T
= BB+

4.
(
B+B

)T
= B+B

References
1. Alam, A.; Gattami, A.; Johansson, K.H.; Tomlin, C.J. Guaranteeing safety for heavy duty vehicle platooning: Safe set computations

and experimental evaluations. Control. Eng. Pr. 2014, 24, 33–41. [CrossRef]
2. Vahidi, A.; Sciarretta, A. Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol. 2018,

95, 822–843. [CrossRef]
3. Tsugawa, S.; Jeschke, S.; Shladovers, S.E. A review of truck platooning projects for energy savings. IEEE Trans. Intell. Veh. 2016, 1,

68–77. [CrossRef]
4. Bergenhem, C.; Pettersson, H.; Coelingh, E.; Englund, C.; Shladover, S.; Tsugawa, S. Overview of platooning systems. In

Proceedings of the 19th ITS World Congress, Vienna, Austria, 22–26 October 2012.
5. Ellis, M.; Gargoloff, J.I.; Sengupta, R. Aerodynamic Drag and Engine Cooling Effects on Class 8 Trucks in Platooning Configura-

tions. SAE Int. J. Commer. Veh. 2015, 8, 732–739. [CrossRef]
6. Kaluva, S.T.; Pathak, A.; Ongel, A. Aerodynamic drag analysis of autonomous electric vehicle platoons. Energies 2020, 13, 4028.

[CrossRef]
7. McAuliffe, B.; Lammert, M.; Lu, X.Y.; Shladover, S.; Surcel, M.D.; Kailas, A. Influences on Energy Savings of Heavy Trucks Using

Cooperative Adaptive Cruise Control. In SAE Technical Papers; SAE International: Warrendale, PA, USA, 2018. [CrossRef]

https://doi.org/10.1016/j.conengprac.2013.11.003
https://doi.org/10.1016/j.trc.2018.09.001
https://doi.org/10.1109/TIV.2016.2577499
https://doi.org/10.4271/2015-01-2896
https://doi.org/10.3390/en13154028
https://doi.org/10.4271/2018-01-1181


Appl. Sci. 2023, 13, 10459 23 of 23

8. Zhang, R.; Li, K.; Wu, Y.; Zhao, D.; Lv, Z.; Li, F.; Chen, X.; Qiu, Z.; Yu, F. A Multi-Vehicle Longitudinal Trajectory Collision
Avoidance Strategy Using AEBS with Vehicle-Infrastructure Communication. IEEE Trans. Veh. Technol. 2022, 71, 1253–1266.
[CrossRef]

9. Wu, C.; Xu, Z.; Liu, Y.; Fu, C.; Li, K.; Hu, M. Spacing policies for adaptive cruise control: A survey. IEEE Access 2020, 8,
50149–50162. [CrossRef]

10. Gunter, G.; Gloudemans, D.; Stern, R.E.; McQuade, S.; Bhadani, R.; Bunting, M.; Monache, M.L.D.; Lysecky, R.; Seibold, B.;
Sprinkle, J.; et al. Are Commercially Implemented Adaptive Cruise Control Systems String Stable? IEEE Trans. Intell. Transp. Syst.
2021, 22, 6992–7003. [CrossRef]

11. Naus, G.J.L.; Vugts, R.P.A.; Ploeg, J.; Van De Molengraft, M.J.G.; Steinbuch, M. String-stable CACC design and experimental
validation: A frequency-domain approach. IEEE Trans. Veh. Technol. 2010, 59, 4268–4279. [CrossRef]

12. Besselink, B.; Johansson, K.H. String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances.
IEEE Trans. Autom. Control 2017, 62, 4376–4391. [CrossRef]

13. Sugimachi, T.; Fukao, T.; Suzuki, Y.; Kawashima, H. Development of autonomous platooning system for heavy-duty trucks? In
IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC Secretariat: Laxenburg, Austria, 2013; pp. 52–57. [CrossRef]

14. Turri, V.; Besselink, B.; Johansson, K.H. Cooperative Look-Ahead Control for Fuel-Efficient and Safe Heavy-Duty Vehicle
Platooning. IEEE Trans. Control Syst. Technol. 2017, 25, 12–28. [CrossRef]

15. Ward, J.W.; Stegner, E.M.; Hoffman, M.A.; Bevly, D.M. A Method of Optimal Control for Class 8 Vehicle Platoons Over Hilly
Terrain. J. Dyn. Syst. Meas. Control 2022, 144, 011108. [CrossRef]

16. Gao, W.; Gao, J.; Ozbay, K.; Jiang, Z.P. Reinforcement-Learning-Based Cooperative Adaptive Cruise Control of Buses in the
Lincoln Tunnel Corridor with Time-Varying Topology. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3796–3805. [CrossRef]

17. Yang, J.; Liu, X.; Liu, S.; Chu, D.; Lu, L.; Wu, C. Longitudinal tracking control of vehicle platooning using DDPG-based PID. In
Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence, CVCI 2020, Hangzhou, China,
18–20 December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 656–661. [CrossRef]

18. Peake, A.; McCalmon, J.; Raiford, B.; Liu, T.; Alqahtani, S. Multi-Agent Reinforcement Learning for Cooperative Adaptive Cruise
Control. In Proceedings of the International Conference on Tools with Artificial Intelligence, ICTAI, Baltimore, MD, USA, 9–11
November 2020; IEEE Computer Society: Washington, DC, USA, 2020; pp. 15–22. [CrossRef]
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