POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Distributed Software Platform for Additive Manufacturing

Original

A Distributed Software Platform for Additive Manufacturing / FONTANA CRESPO, RAFAEL NATALIO; Cannizzaro,
Davide; Bottaccioli, Lorenzo; Macii, Enrico; Patti, Edoardo; DI CATALDO, Santa. - (2023). (Intervento presentato al
convegno IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2023) tenutosi a
Sinaia, Romania nel 12-15 September 2023) [10.1109/ETFA54631.2023.10275694].

Availability:
This version is available at: 11583/2982338 since: 2023-10-17T08:19:32Z

Publisher:
IEEE

Published
DOI:10.1109/ETFA54631.2023.10275694

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 March 2024

A Distributed Software Platform for Additive
Manufacturing

Rafael Natalio Fontana Crespo*, Davide Cannizzaro*, Lorenzo Bottaccioli*,
Enrico Macii*, Edoardo Patti* and Santa Di Cataldo™
*Politecnico di Torino, Turin, Italy. Emails: name.surname @polito.it

Abstract—Additive Manufacturing (AM), a cornerstone of
Industry 4.0, is expected to revolutionise production in practically
all industries. However, multiple production challenges still exist,
preventing its diffusion. In recent years, Machine Learning
algorithms have been employed to overcome these hurdles.
Nonetheless, the usage of these algorithms is constrained by
the scarcity of data together with the challenges associated with
accessing and integrating the information generated during the
AM pipeline. In this work, we present a vendor-agnostic platform
for AM that enables collecting, storing, analysing and linking the
heterogeneous data of the complete AM process. We conducted an
extensive analysis of the different AM datatypes and identified
the most suitable technologies for storing them. Furthermore,
we performed an in-depth study of the requirements of different
AM stakeholders to develop a rich and intuitive Graphical User
Interface. We showcased the specific usage of the platform for
Powder Bed Fusion, one of the most popular AM processes, in a
real industrial scenario, integrating specific existing modules for
in-situ monitoring and real-time defect detection.

Index Terms—Industry 4.0, Platform, Additive Manufacturing,
Powder Bed Fusion, Machine Learning

I. INTRODUCTION

Additive Manufacturing (AM) is the process of producing
an object by layering raw materials one on top of another
employing one of the various 3D printing processes. AM is
opposite to the traditional subtractive processes, in which an
object is subjected to multiple machining procedures reducing
its volume [1]]. The AM production process starts with a
computer-aided design (CAD) file, containing the model of
the desired object to be produced. The CAD file is then
transformed into a Stereo Lithography (STL) file. This file
is transferred to the machine, where it is scanned, sliced
into layers, and constructed. Once the production process is
completed, the object is detached from the building plate and
post-processing is carried out to achieve the desired properties.

AM has shown to have significant advantages over subtrac-
tive processes in terms of production procedures, development
time, cost and material usage as well as considerably greater
versatility. However, there is still a significant gap between
AM current state and the maturity required for its widespread
adoption due to production hurdles such as process repeatabil-
ity and reliability [2]]. The recent usage of powerful machine
learning (ML) algorithms to support real-time process control
and fault detection during builds is helping to overcome these
limiting factors. Nonetheless, these algorithms require data.

During an AM building process, a vast amount of hetero-
geneous data are generated. To comprehensively characterize

the process, valuable information must include more than
just the data collected from various sensors and cameras
mounted on the machine. Among others, these data include
machine settings, CAD and STL files. However, these data
may have varying formats. This, together with the absence of
a standardized data structure and Application Programming
Interfaces (APIs) for managing information from different
sources, creates significant challenges in collecting, storing,
synchronizing, and correlating AM data [3|]. Due to these
challenges, AM data are generally not collected, limiting the
application of the ML algorithms previously mentioned [4].

The development of platform solutions able to collect and
manage AM data is attracting increasing attention in the re-
search community. In 5], a cloud-based framework combining
digital-twins technology with a collaborative data management
was proposed. Data were stored in clouds organized by an AM
life-cycle data schema. What is more, the platform enabled
the integration of other applications using the Representational
State Transfer (REST) [6] interface. On the other hand, in [7] a
platform to store in a scalable manner the huge amount of data
generated during the AM process was developed. The platform
performed analysis and presented the information through
customizable visualizations. To the best of our knowledge,
the aforementioned platforms have a quite limited scope,
since they target specific technologies and applications. What
is more, according to [8]], the framework’s Graphical User
Interfaces (GUI) are a bit hard to understand for normal
non-expert users and the available data visualizations are
weakly related to the general industry requirements. Lastly,
the framework proposed in [5]] relied on a proprietary license
platform - Material Data Curation System (MDCS).

To deal with the specific problem of AM heterogeneous
data integration, storage and management, in this work we
present a distributed software platform which supports all the
steps of the AM process. The platform is designed with a mi-
croservices design pattern, where discrete services implement
specific functionalities and can be created, deployed and scaled
independently. This paper builds upon our previous concept
presented in [9] and presents the practical implementation of
the proposed microservices-based AM monitoring platform,
which includes significant improvements. Firstly, we perform
an extensive analysis of the heterogeneous AM datatypes,
which enables the selection of the most suitable technologies
for their storage. What is more, we develop a rich GUI
following a series of specifications identified through an in-

depth study of the requirements of different AM stakeholders.
The developed GUI enables non-expert users to intuitively
interact with the platform functionalities and manage AM-
related data. Lastly, we showcase a particular implementation
of the platform in a real industrial scenario for Powder Bed
Fusion (PBF), one of the most prevalent techniques for Metal
Additive Manufacturing. To this end, the platform integrates a
plugin component for the detection of defects generated during
the PBF process which was presented in [[10]. Platform users
can easily execute this defect detection analysis as well as
visualize the results in a layer-by-layer fashion or through
aggregated statistics for the complete object.

II. PLATFORM DESCRIPTION

In this section, we present the developed AM platform for
data collection and management, which schema is shown in
Fig. (1] Firstly, we analyse the data the platform should store
and manage. Later, we provide an overview of its different
microservices.

A. Data Type and Structure

Before starting the platform development, it is crucial to
comprehend the origin, structure, and type of the data the
platform will handle. To this end, an entire AM lifecycle
process was analysed. Data were grouped into five distinct
categories: i) Design parameters include all the parameters
that are specified during the product design, such as CAD files,
raw material and support shapes; ii) Process parameters refer
to the input settings for the AM process established during
machine setup, which may be predefined or set by the machine
operator (e.g. type of laser, powder heat capacity, shield gas
used); iii) Process characteristics involve the data that can
be used to characterise the building process, either as-is or
derived from sensors mounted on the machine, such as tem-
perature measurements and layer surface topography; iv) Post-
Processing includes the different post-processing methods and
their corresponding parameters; v) Product analysis encom-
passes the outcomes of the tests done on the AM fabricated
part to determine its final properties (e.g. surface roughness
and porosity).

These categories encompass a variety of data types, such as
text, images, reports, CADs and other file types, which must
be handled appropriately to enable the storage and exchange
of these data between the different stakeholders.

B. Architecture and Microservices

We aim to develop a platform based on the microservices
design pattern that guarantees: i) scalability; ii) reliabil-
ity; iii) flexibility; iv) modularity; V) interoperability; vi) ex-
tendibility; vii) decentralization; viii) standarization; iX) secu-
rity; X) synchronous communication; Xi) asynchronous commu-
nication. Additionally, the platform must implement suitable
technologies to store the heterogeneous AM datatypes.

For this reason, we developed an AM platform, which
architecture is shown in Fig. |I} The platform is built with the
microservices approach, and comprises the whole AM data

Application Layer

Cloud Layer

[Edge Layer

| ﬁu |
|]

Fig. 1. AM data collection and management platform: proposed architecture

lifecycle. Moreover, the framework provides REST APIs for
external and internal communications. The platform design en-
ables the integration of new functionalities (e.g. defect detec-
tion) in a plug-and-play fashion, which can communicate with
the other components using the Message Queuing Teleme-
try Transfer (MQTT) or the REST protocol, thus providing
both Publish/Subscribe and Request/Response communication
paradigms. Last but not least, it implements modern secu-
rity approaches, such as authentication using JsonWebTokens
JWT).

As shown in Fig. [I] the platform architecture consists of
four layers: i) IoT Layer, ii) Edge Layer, iii) Cloud Layer,
and iv) Application Layer. The IoT Layer comprises the
devices in the field, such as the printers and other IoT devices
involved in the AM process (e.g. sensors and actuators). On
the other hand, the Edge Layer includes the Proxy and the
MQTT Connector. The Proxy handles synchronous (REST)
communication between the “field” devices and the platform
components while the MQTT Connector manages the asyn-
chronous (MQTT) communication.

The Cloud Layer is the platform’s core and comprises
several components which provide different functionalities.
The Message Broker is responsible for handling asynchronous
(MQTT) communication between the platform components.
On the contrary, the Internal Web Socket Proxy manages
synchronous (REST) communication between the platform
components and balances loads between them. The Auth
Service manages user and device authentication using JWT
tokens. Furthermore, to guarantee secure external connections,
Certbot automates the generation of certificates enabling the
use of the Hypertext Transfer Protocol Secure (HTTPS). On
the other hand, the Frontend API Service performs primary
checks, submitting requests to the Backend Service and return-
ing asynchronous responses from it. The Backend service is
responsible for handling internally the available devices and
databases, and transmitting data to and from the Databases
and the Cache Service. The Cache Service stores Process

characteristics time-series data, enabling immediate access to
this information. Regarding the Databases, two are employed:
1) PostgreSQL, a relational database, is used to store non-
time series data. This includes data of the five categories
described previously in Section (e.g. raw material, type
of laser, and porosity); ii) Cassandra DB, a non-relational
database, is employed to store time-series data. This comprises
mainly the Process characteristics data, such as temperature
and oxygen concentration. Lastly, the File Storage saves file
data types, including files of the Design Parameters (e.g. STL
files), Process Characteristics (e.g. machine quality report),
and Product Analysis (e.g. porosity report, mechanical report).

The File Storage System is the microservice responsible
for handling files. This microservice exposes REST APIs for
sending, retrieving and deleting files in the File Storage. What
is more, it provides a REST API for downloading a PDF file
which combines the data of a job and its reports (e.g. materials
reports, mechanical reports). In addition, it provides a REST
API for retrieving a zip file to download all the files related
to a job. Since this file may have a considerable size (e.g.
defect detection monitoring involves hundreds of images, in
order of GBs), the file compression is performed “on the fly” to
provide better performance in terms of time, memory, and user
experience. Furthermore, the File Storage System integrates a
tool for combining STL files and correlating the digital STL
model with the images obtained on a layer basis. This may
seem trivial for the latest AM machines with this technology
already available, but it is significantly useful for older ones
allowing back compatibility. Moreover, it enables a 3D layer-
by-layer visualization of the printing phase in the GUI

Last but not least, the Application Layer provides a set
of tools to enable users to manage and access information
coming from the underlying layers. In addition, the platform
enables the extension of its functionalities in a plug-and-
play fashion with the development of lightweight applications,
called Custom Plugins. The Custom Plugins are subscribed to
the Message Broker, consume messages from it and perform
their tasks. Two particular implementations for the PBF case
will be presented in Section Powder Bed Monitoring
and Defect Detection. All the platform functionalities can be
accessible with an intuitive GUI (described in Section [III-C)
that has been customized for the particular case under study.

III. USE CASE: CAMERA-BASED MONITORING FOR
PowDER BED FUSION

Powder Bed Fusion (PBF) is one of the most diffused metal
additive manufacturing techniques in the industrial sector. In
this technique, a metallic powder is spread over previous layers
to be later selectively melted by a heat source. In this section,
we present the platform implementation for PBF in a real
industrial scenario. The platform comprises dedicated modules
for in-situ monitoring using a low-cost camera and real-time
defect detection. Moreover, after an extensive study of the
requirements of different AM stakeholders, we developed a
rich GUI for enhancing platform usability and accessibility.

A. Powder Bed Monitoring

To monitor the progress of the PBF building process, it is
required to capture images of the building plate for every layer.
The particular machine configuration in our study lacked this
functionality. Consequently, a system for acquiring powder bed
images was developed: the Powder Bed Monitoring (PBM)
module. The hardware of the PBM consisted of an Arduino
Uno microcontroller, a low-cost camera and an embedded PC
running Linux (e.g. Raspberry Pi). The module acquired two
images for every layer: one before the laser selectively melted
the powder and one after. All valuable information at run time
(e.g. time at which monitoring started, camera used, execution
errors) is stored in a local file in the embedded PC. The module
is accessible via a REST APIL In this way, the monitoring
module can be controlled directly from the platform GUI
The PBM enables the synchronization of external non-property
hardware enhancing AM machines (lacking the layer-by-layer
monitoring functionality) with the use of a low-cost camera.

B. Defect Detection

Defect Detection is a custom plugin that detects powder
bed defects raised during the PBF production process [10].
This plugin analyses the layer-by-layer images of the building
process through image processing and ML algorithms. The
module allows the detection of five powder bed defects known
to cause porosity and microstructural alterations during the
building process on the PBF-produced parts: incandescence,
spattering, horizontal, waves and holes. The Defect Detection
module exposes REST APIs for launching and stopping the
analysis as well as for retrieving useful information during
run-time (e.g. the number of layers analyzed, execution time
and defect detection results of each layer).

C. Graphical User Interface

The way the final user interacts with the platform is of vital
importance. Consequently, to identify the user requirements
that the platform must fulfil, we interviewed a series of
AM stakeholders: CAD designers, supply engineers, process
engineers, and post-process quality specialists. The first re-
quirement was the possibility to download a PDF file which
combined all the reports and the data of a particular file.
Moreover, there should be an option for downloading a zip
file containing all job-related data and files, including reports,
monitoring powder bed images and STL files. On the other
hand, the possibility to launch the Defect Detection analysis
as well as a layer-by-layer visualization of the detected defects
and graphs, showing a summary of the obtained results.
Lastly, users should have different levels of access to restricted
information according to their credentials.

After identifying the requirements the platform must fulfil,
a rich and intuitive GUI was built using React, one of the
most popular front-end libraries for building web applications.
The platform supports two different types of users: Normal
users, who can only handle jobs of the printers they have
been assigned, and Admin users who can manage other
users, manage printers, and manage the available jobs. Users

= & AM Platform Torino, IT @

Jobs

Download
ZIP file

ID: JOB00420200304101007

Defect Analysis Layer Navigation

‘ +
Launch New
Defect
L Detection
Analysis
— -]

3D Model

Layer237

Powder Bed

Camera I
Monitoring «—

Output

Hortzontal Spattaring
O Spattering
Defect
Detection
Output
Horizontal
O

Fig. 2. Layer-by-layer visualization of Defect Detection results

are required to log in to access the platform functionalities.
Through the GUI it is possible to manage printers, jobs and
users: create, list, update and delete these resources. Moreover,
it is possible to interactively upload, explore and visualize
AM data. New data can be uploaded manually by filling out
different forms and uploading files, or automatically through
machine-readable files. Finally, it is possible to download a
PDF file containing all job data and reports.

The platform enables the possibility to directly execute the
Defect Detection analysis through the GUI, enabling non-
experts users to run them without any concern about how they
run or the resources they implement. For the visualization
of the defect detection results, users can choose the best
visualization for them: in graphs, showing a summary of
the obtained results, or in a layer-by-layer fashion. Fig. 2]
presents an example of this layer-by-layer visualization. This
visualization comprises the 3D model of the part being built,
the Camera Monitoring Output and the Defect Detection
Output for the selected layer. As shown in Fig. 2} it is
possible to navigate through defect detection results of the
different layers using one of the layer navigation options:
slider, or directly searching for a particular layer of interest.
The 3D model enables a perspective rotation to visualize the
produced part from different angles. What is more, the 3D
model is directly correlated to the layer under visualization:
the black areas in the 3D model represent the surface built in
that layer while the grey ones are the ones built previously.
The Camera Monitoring Output includes the two raw images
captured with the PBM for that particular layer. On the other

hand, the Defect Detection Output comprises images in which
the detected defects are highlighted. The example shown in
Fig.] comprises the images of the detected Horizontal and
Spattering defects in that layer. Lastly, as can be seen in Fig.[2]
it is even possible in this visualization to launch a new defect
analysis for the selected job as well as download a zip file
containing all job-related data and files.

IV. CONCLUSIONS AND FUTURE WORKS

This paper presented a real implementation of a distributed
platform built with a microservices design pattern that sup-
ports all the stages of the AM process. The platform allows
collecting, linking, storing and analysing the heterogeneous
data generated throughout the AM lifecycle and takes a
significant step in ensuring AM applications reach their full
potential. The platform architecture enables the extension of
its functionalities in a plug-and-play fashion. The rich GUI
developed provides normal non-expert users with an easy-
to-understand and intuitive way to interact with AM data.
Moreover, the GUI integrates advanced analytics like the
Defect Detection module, which enables non-IT experts to
perform complex analyses without being aware of the details
of its execution. Future works will include the integration
of new analytics modules to take further advantage of the
stored data (e.g. the usage of ML algorithms to establish a
correlation between the defects found in image analysis and
the process parameters used). In conclusion, the developed
platform presents an enabling technology for onsite monitoring
of AM processes as well as for process control.

ACKNOWLEDGMENT

This study was carried out within MICS (Made in Italy
Circolare e Sostenibile) and received funding from the MUR-
M4C2 1.3 of PNRR — D.D. 1551.11-10-2022, PE00000004.

REFERENCES

[11 W. E. Frazier, “Metal additive manufacturing: a review,” Journal of
Materials Engineering and performance, vol. 23, pp. 1917-1928, 2014.

[2] S. A. Tofail et al., “Additive manufacturing: scientific and technological
challenges, market uptake and opportunities,” Materials today, vol. 21,
no. 1, pp. 22-37, 2018.

[3] A. Simeone, A. Caggiano, and Y. Zeng, “Smart cloud manufacturing
platform for resource efficiency improvement of additive manufacturing
services,” Procedia Cirp, vol. 88, pp. 387-392, 2020.

[4] S. D. Cataldo et al., “Optimizing quality inspection and control in
powder bed metal additive manufacturing: Challenges and research
directions,” Proceedings of the IEEE, vol. 109, no. 4, pp. 326-346, 2021.

[5] C. Liu et al., “Digital twin-enabled collaborative data management
for metal additive manufacturing systems,” Journal of Manufacturing
Systems, vol. 62, pp. 857-874, 2022.

[6] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[71 K. S. Aggour et al., “Federated multimodal big data storage & ana-
lytics platform for additive manufacturing,” in 2019 IEEE international
conference on big data (big data). 1EEE, 2019, pp. 1729-1738.

[8] Y. Zhang et al., “A systematic review on data of additive manufacturing
for machine learning applications: the data quality, type, preprocessing,
and management,” Journal of Intelligent Manufacturing, pp. 1-36, 2022.

[9] D. Cannizzaro et al., “In-situ defect detection of metal additive man-
ufacturing: an integrated framework,” IEEE Transactions on Emerging
Topics in Computing, vol. 10, no. 1, pp. 74-86, 2021.

, “Image analytics and machine learning for in-situ defects detection

in additive manufacturing,” in Proc. of DATE, 2021, pp. 603-608.

[10]

	Introduction
	Platform Description
	Data Type and Structure
	Architecture and Microservices

	Use Case: Camera-Based Monitoring for Powder Bed Fusion
	Powder Bed Monitoring
	Defect Detection
	Graphical User Interface

	Conclusions and Future Works
	References

