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Abstract

Anomaly segmentation is a critical task for driving ap-
plications, and it is approached traditionally as a per-
pixel classification problem. However, reasoning individ-
ually about each pixel without considering their contex-
tual semantics results in high uncertainty around the ob-
jects’ boundaries and numerous false positives. We pro-
pose a paradigm change by shifting from a per-pixel classi-
fication to a mask classification. Our mask-based method,
Mask2Anomaly, demonstrates the feasibility of integrating
an anomaly detection method in a mask-classification ar-
chitecture. Mask2Anomaly includes several technical nov-
elties that are designed to improve the detection of anoma-
lies in masks: i) a global masked attention module to focus
individually on the foreground and background regions; ii)
a mask contrastive learning that maximizes the margin be-
tween an anomaly and known classes; and iii) a mask re-
finement solution to reduce false positives. Mask2Anomaly
achieves new state-of-the-art results across a range of
benchmarks, both in the per-pixel and component-level
evaluations. In particular, Mask2Anomaly reduces the av-
erage false positives rate by 60% w.r.t. the previous state-
of-the-art. Github page: https://tinyurl.com/54ydrxvj

1. Introduction
Semantic segmentation [14, 45, 54, 52, 46] plays a sig-

nificant role in self-driving cars because it provides a de-
tailed understanding of surroundings. Generally, semantic
segmentation models are trained to recognize a pre-defined
set of semantic classes (e.g. car, pedestrian, road, etc.); how-
ever, in real-world applications, they may encounter ob-
jects not belonging to such categories (e.g. animals or cargo
dropped on the road). Therefore, it is essential for these
models to identify objects in a scene that are not present dur-
ing training i.e. anomalies, both to avoid potential dangers
and to enable continual learning [39, 8, 17, 7] and open-
world solutions [6].

Anomaly segmentation (AS) [3, 51, 20, 27] addresses
this problem, i.e. it aims to segment objects from classes

⨏pixel

Per-Pixel Anomaly Segmentation 

Per-Mask Anomaly Segmentation 

Per-Pixel Classification

Dense Hybrid

⨏mask

Per-Mask Classification

Mask2Former

Mask2Anomaly (Ours)

⨏mask : Mask Architecture

⨏pixel : Per-Pixel Architecture

: Contains Anomaly

Figure 1: Per-pixel vs per-mask Anomaly Segmenta-
tion: Dense Hybrid [22], the state-of-the-art method for
AS based on per-pixel classification can detect the anoma-
lies, but it produces many false positives. Anomaly seg-
mentation can be cast as a mask classification problem,
but naively using MSP [25] on top of Mask2Former [12]
does not produce good results. Our Mask2Anomaly ex-
ploits mask-transformers properties to refine the classifi-
cation of anomalies, drastically reducing false positives.
fpixel and fmask denotes per-pixel, and per-mask architec-
ture. Anomalies in the output image are represented in red.

that were absent during training. Existing AS methods are
built upon the idea of individually classifying the pixels and
assigning to each of them an anomaly score. This score
may be given by a pixel-level discriminative method [1, 27,
22, 47], by estimating the uncertainty of the individual pixel
predictions [41], or by comparing the per-pixel discrepancy
between the original image and a synthetic image generated
from the semantic predictions [34, 49, 50]. However, rea-
soning on the pixels individually produces noisy anomaly
scores, thus leading to a high number of false positives and
poorly localized anomalies (see Fig. 1).

In this paper, we propose to address this problem by
casting AS as a mask classification task rather than a pixel
classification. This idea stems from the recent advances
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in mask-transformer architectures [12, 13], which demon-
strated that it is possible to achieve remarkable performance
across various segmentation tasks by classifying masks,
rather than pixels. We hypothesize that mask-transformer
architectures are better suited to detect anomalies than per-
pixel architectures [11, 26], because masks encourage ob-
jectness and thus can capture anomalies as whole entities,
leading to more congruent anomaly scores and reduced
false positives. To enable the segmentation of anomalies
at the mask level, we revisit the Maximum Softmax Prob-
ability (MSP) [25], a classic method used in per-pixel AS,
and apply it to the masks produced by a mask-transformer
model. However, the effectiveness of such an approach
hinges on the model’s capability to output masks that cap-
ture well anomalies and we found that naively using MSP
on top of the best mask-transformer architecture [12] does
not yield good results (see Fig. 1). Hence, we propose
several technical contributions to improve the capability of
mask-transformer architectures to capture anomalies and re-
ject false positives in driving scenes (see Fig. 1):

• At the architectural level, we propose a global
masked-attention mechanism that allows the model to
focus on both the foreground objects and on the back-
ground while retaining the efficiency of the original
masked-attention [12].

• At the training level, we have developed a mask con-
trastive learning framework that utilizes outlier masks
from additional out-of-distribution data to maximize
the separation between anomalies and known classes.

• At the inference level, we propose a mask-based re-
finement solution that reduces false positives by fil-
tering masks based on the panoptic segmentation [28]
that distinguishes between “things” and “stuff”.

We integrate these contributions on top of the mask archi-
tecture [12] and term this solution Mask2Anomaly. To
the best of our knowledge, Mask2Anomaly is the first
demonstration of an AS method that detects anomalies
at the mask level. We tested Mask2Anomaly on stan-
dard anomaly segmentation benchmarks for road scenes
(Road Anomaly [34], Fishyscapes [4], Segment Me If You
Can [9]), achieving the best results among all AS methods
by a significant margin. In particular, Mask2Anomaly re-
duces on average the false positives rate by more than half
w.r.t. the previous state-of-the-art. Code and pre-trained
models will be made publicly available upon acceptance.

2. Related Work

Mask-based semantic segmentation. Traditionally, se-
mantic segmentation methods [37, 11, 56, 32, 55] have
adopted fully-convolutional encoder-decoder architectures
[37, 2] and addressed the task as a dense classification
problem. However, transformer architectures have recently

caused us to question this paradigm due to their outstanding
performance in closely related tasks such as object detec-
tion [5] and instance segmentation [23]. In particular, [13]
proposed a mask-transformer architecture that addresses
segmentation as a mask classification problem. It adopts
a transformer and a per-pixel decoder on top of the feature
extraction. The generated per-pixel and mask embeddings
are combined to produce the segmentation output. Build-
ing upon [13], [12] introduced a new transformer decoder
adopting a novel masked-attention module and feeding the
transformer decoder with one pixel-decoder high-resolution
feature at a time.

So far, all these mask-transformers have been consid-
ered exclusively in a closed set setting, i.e, there are no
unknown categories at test time. To the best of our knowl-
edge, Mask2Anomaly is the first method that performs AS
directly with mask-transformers, thus empowering these ap-
proaches with the capability to recognize anomalies in real-
world settings.

Anomaly segmentation methods can be broadly divided
into three categories: (a) Discriminative, (b) Generative,
and (c) Uncertainty-based methods. Discriminative Meth-
ods are based on the classification of the model outputs.
Hendrycks and Gimpel [25] established the initial AS dis-
criminative baseline by applying a threshold over the max-
imum softmax probability (MSP) that distinguishes be-
tween in-distribution and out-of-distribution data. Other
approaches use auxiliary datasets to improve performance
[31, 27, 47] by calibrating the model over-confident out-
puts. Alternatively, [30] learns a confidence score by using
the Mahalanobis distance, and [10] introduces an entropy-
based classifier to discover out-of-distribution classes. Re-
cently, discriminative methods tailored for semantic seg-
mentation [4] directly segment anomalies in embedding
space. In contrast, [22] proposes a hybrid approach that
combines the known class posterior, dataset posterior, and
an un-normalized data likelihood to estimate anomalies.
Generative Methods provides an alternative paradigm to
segment anomalies based on generative models [34, 16,
50, 49]. These approaches train generative networks to re-
construct anomaly-free training data and then use the gen-
eration discrepancy to detect an anomaly at test time. All
the generative-based methods heavily rely on the generation
quality and thus experience performance degradation due to
image artifacts [20]. Finally, Uncertainty based methods
segment anomalies by leveraging uncertainty estimates via
Bayesian neural networks [41].

All the methods discussed above are based on per-
pixel classification architectures and score the pixels in-
dividually without considering local semantics, leading
to noisy anomaly predictions and many false positives.
Mask2Anomaly overcomes this limitation by segmenting
anomalies as semantically clustered masks, encouraging the
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Figure 2: Mask2Anomaly Overview. Mask2Anomaly meta-architecture consists of an encoder, a pixel decoder, and a trans-
former decoder. We propose global mask attention (Sec. 3.2) that independently distributes the attention between foreground
and background. V, K, and Q are Value, Key, and Query. ϕ is image features. ϕi, ϕi+1, ϕi+2 are upsampled image features at
multiple scales. Mask contrastive Loss LCL (Sec. 3.3) utilizes outlier masks to maximize the separation between anomalies
and known classes. During anomaly inference, we utilize refinement mask RM (Sec. 3.4) to minimize false positives.

objectness of the predictions. To the best of our knowledge,
this is the first work to use masks to score anomalies.

3. Method

In this section, we begin by introducing problem-setting,
followed by describing a generic mask-transformer archi-
tecture for anomaly segmentation. Next, we delve into our
Mask2Anomaly architecture and its novel elements.

3.1. Preliminaries

Let us denote with X ⊂ R3×H×W the space of RGB
images, where H and W are the height and width, respec-
tively, and with Y ⊂ NK×H×W the space of semantic la-
bels that associate each pixel in an image to a semantic cat-
egory from a predefined set K, with |K| = K. At training
time we assume to have a dataset D = {(xi, yi)}Di=1, where
xi ∈ X is an image and yi ∈ Y is its ground truth semantic
mask. The goal for an anomaly segmentation model is to
learn a function f that maps the image space to an anomaly
score space, i.e. f : X 7→ RH×W . For traditional seman-
tic segmentation architectures based on per-pixel classifica-
tion [11], the function f can be obtained in various ways,
for example, applying the Maximum Softmax Probability
(MSP) [25] on top of the per-pixel classifier. Formally,
given the pixel-wise class scores S(x) ∈ [0, 1]K×H×W ob-
tained by segmenting the image x with a per-pixel architec-

ture, we compute the anomaly score as:

f(x) = 1− K
max
k=1

(S(x)). (1)

In this paper, we propose to adapt this framework based
on MSP to mask-transformer segmentation architectures.
We recall that the mask classification problem is formulated
as a direct set prediction task with the goal of producing
a fixed-size set of N predictions [5]. Based on this idea,
the mask classification meta-architecture for semantic seg-
mentation consists of three parts: a) a backbone that acts as
feature extractor, b) a pixel-decoder that upsamples the low-
resolution features extracted from the backbone to produce
high-resolution per-pixel embeddings, and c) a transformer
decoder, made of L transformer layers, that takes the image
features to output a fixed number of object queries consist-
ing of mask embeddings and their associated class scores
C ∈ RN×K . The final class mask M ∈ RN×(H×W ) are
obtained by multiplying the mask embeddings with the per-
pixel embeddings. The mask-transformer is trained using a
combination of binary cross-entropy loss and dice loss [40]
for the class masks and cross-entropy loss for the class
scores, unlike per-pixel architecture that is trained only on
cross-entropy loss (more details on these losses are given in
the supplementary material).

Given such a mask-transformer architecture, we propose
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Figure 3: Limitation of Mask-Attention: Masked-
attention [12] selectively attends to foreground regions re-
sulting in low attention scores (dark regions) for anomalies.
Anomalies are in red. Best viewed with zoom.

to calculate the anomaly scores for an input x as

f(x) = 1− K
max
k=1

(
softmax(C)T · sigmoid(M)

)
. (2)

Here, f(x) utilizes the same marginalization strategy of
class and mask pairs as [13] to get anomaly scores. With-
out loss of generality, we implement the anomaly scor-
ing (Eq. (2)) on top of the Mask2Former [12] architecture.
However, this strategy hinges on the fact that the masks pre-
dicted by the segmentation architecture can capture anoma-
lies well. We found that simply applying the MSP on top
of Mask2Former as in Eq. (2) does not yield good results
(see Fig. 1 and the results in Sec. 4.2). To overcome this
problem, we introduce improvements in the architecture,
training procedure, and anomaly inference mechanism. We
name our method as Mask2Anomaly, and its overview is
shown in Fig. 2 (left). In the rest of the sections, we will
discuss in detail the technical novelties of Mask2Anomaly.

3.2. Global Masked Attention

One of the key ingredients to Mask2Former [12] state-
of-the-art segmentation results is the replacement of the
cross-attention (CA) layer in the transformer decoder with a
masked-attention (MA). The masked-attention attends only
to pixels within the foreground region of the predicted mask
for each query, under the hypothesis that local features are
enough to update the query object features. The output of
the l-th masked-attention layer can be formulated as

softmax(MF
l +QKT )V +Xin (3)

where Xin ∈ RN×C are the N C-dimensional query fea-
tures from the previous decoder layer. The input queries
Q ∈ RN×C are obtained by linearly transforming the query
features with a learnable transformation whereas the keys
and values K,V are the image features under learnable lin-
ear transformations fk(.) and fv(). Finally, MF

l is the pre-
dicted foreground attention mask that at each pixel location
(i, j) is defined as

MF
l (i, j) =

{
0 if Ml−1(i, j) ≥ 0.5

−∞ otherwise,
(4)

where Ml−1 is the output mask of the previous layer.

By focusing only on the foreground objects, masked-
attention grants faster convergence and better semantic seg-
mentation performance than cross-attention. However, fo-
cusing only on the foreground region constitutes a problem
for anomaly segmentation because anomalies may also ap-
pear in the background regions. Removing background in-
formation leads to failure cases in which the anomalies in
the background are entirely missed, as shown in the ex-
ample in Fig. 3. To ameliorate the detection of anomalies
in these corner cases, we extend the masked attention with
an additional term focusing on the background region (see
Fig. 2, right). We call this a global masked-attention (GMA)
formally expressed as

Xout =softmax(MF
l +QKT )V

+softmax(MB
l +QKT )V +Xin

(5)

where MB
l is the additional background attention mask that

complements the foreground mask MF
l , and it is defined at

the pixel coordinates (i, j) as

MB
l (i, j) =

{
0 if Ml−1(i, j) < 0.5

−∞ otherwise.
(6)

The global masked-attention in Eq. (5) differs from the
masked-attention by additionally attending to the back-
ground mask region, yet it retains the benefits of faster con-
vergence w.r.t. the cross-attention.

3.3. Mask Contrastive Learning

The ideal characteristic of an anomaly segmentation
model is to predict high anomaly scores for out-of-
distribution (OOD) objects and low anomaly scores for in-
distribution (ID) regions. Namely, we would like to have a
significant margin between the likelihood of known classes
being predicted at anomalous regions and vice-versa. A
common strategy used to improve this separation is to fine-
tune the model with auxiliary out-of-distribution (anoma-
lous) data as supervision [21, 22, 4].

Here we propose a contrastive learning approach to en-
courage the model to have a significant margin between the
anomaly scores for in-distribution and out-of-distribution
classes. Our mask-based framework allows us to straight-
forwardly implement this contrastive strategy by using as
supervision outlier images generated by cutting anomalous
objects from the auxiliary OOD data and pasting it on top
of the training data. For each outlier image, we can then
generate a binary outlier mask MOOD that is 1 for out-
of-distribution pixels and 0 for in-distribution class pixels.
With this setting, we first calculate the negative likelihood
of in-distribution classes using the class scores C and class
masks M as:

lN = − K
max
k=1

(
softmax(C)T · sigmoid(M)

)
(7)
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Figure 4: Mask Refinement Illustration: To obtain the
refined prediction, we multiply the prediction map with a
refinement mask that is built by assigning zero anomaly
scores for pixels that are categorized as “stuff”, except for
the “road”. The refinement eliminates many false positives
at the boundary of objects and in the background. The re-
gion to be masked is white in the refinement mask.

Ideally, for pixels corresponding to in-distribution classes
lN should be −1 since the value of softmax(C)T and
sigmoid(M) would be close to 1. On the other hand, for
an anomalous pixel, sigmoid(M) is ideally 0 as M contains
only inlier classes mask that results in lN to be 0. Using lN ,
we define our contrastive loss as:

LCL =
1

2
(l2CL),

lCL =

{
lN ifMOOD = 0

max(0,m− lN ) otherwise,

(8)

where the margin m is a hyperparameter that decides the
minimum distance between the out-of-distribution and in-
distribution classes.

3.4. Refinement Mask

False positives are one of the main problems in anomaly
segmentation, particularly around object boundaries. Hand-
crafted methods such as iterative boundary suppression
[27] or dilated smoothing have been proposed to minimize
the false positives at boundaries or globally, however, they
require tuning for each specific dataset. Instead, we pro-
pose a general refinement technique that leverages the ca-
pability of mask transformers [12] to perform all segmen-
tation tasks. Our method stems from the panoptic perspec-
tive [28] that the elements in the scene can be categorized
as things, i.e. countable objects, and stuff, i.e. amorphous
regions. With this distinction in mind, we observe that in
driving scenes, i) unknown objects are classified as things,
and ii) they are often present on the road. Thus, we can
proceed to remove most false positives by filtering out all
the masks corresponding to “stuff”, except the “road” cat-
egory. We implement this removal mechanism in the form
of a binary refinement mask RM ∈ [0, 1]H×W , which con-
tains zeros in the segments corresponding to the unwanted
“stuff” masks and one otherwise. Thus, by multiplying RM

with the predicted anomaly scores f we filter out all the un-
wanted “stuff” masks and eliminate a large portion of the
false positives (see Fig. 4). Formally, for an image x the

refined anomaly scores fr is computed as:

fr(x) = RM ⊙ f(x), (9)

where ⊙ is the Hadamard product.
RM is the dot product between the binarized output

mask M̄ ∈ {0, 1}N×(H×W ) and the class filter C̄ ∈
{0, 1}1×N , i.e. RM = C̄ · M̄ . We define M̄ =
sigmoid(M) > 0.5 and the class filter C̄ is equal to 1
only where the highest class score of softmax(C) belongs
to “things” or “road” classes and is greater than 0.95.

4. Experiments

Dataset: We train Mask2Anomaly on Cityscapes [14] and
for evaluation we use Road Anomaly [34], Fishyscapes [3]
and Segment Me If You Can (SMIYC) benchmarks [9].
Road Anomaly: is a collection of 60 web images having
anomalous objects located on or near the road.
Fishyscapes (FS): consists of two datasets, Fishyscape
static (FS static) and Fishyscapes lost & found (FS lost
& found). Fishyscape static is built by blending Pascal
VOC [19] objects on Cityscapes images containing 30 val-
idation and 1000 test images. Fishyscapes lost & found is
based on a subset of the Lost and Found dataset [42], with
100 validation and 275 test images.
SMIYC: consists of two datasets, RoadAnomaly21
(SMIYC-RA21) and RoadObstacle21 (SMIYC-RO21).
The SMIYC-RA21 contains 10 validation and 100 test
images with diverse anomalies. The SMIYC-RO21 is
collected with a focus on segmenting road anomalies and
has 30 validation and 327 test images.
Evaluation Metrics: We evaluate all the anomaly segmen-
tation methods at pixel and component levels. For pixel-
wise evaluation, we use Area under the Precision-Recall
Curve (AuPRC) and False Positive Rate at a true positive
rate of 95% (FPR95). Since pixel-level evaluation metrics
can neglect small anomalies and be biased towards anoma-
lies with large sizes, we also include component-level eval-
uations using the averaged component-wise F1 (F1∗), the
positive predictive value (PPV), and the component-wise in-
tersection over union (sIoU). Further, details of all the met-
rics can be found in the supplementary material.
Implementation Details: Our implementation is derived
from [13, 12]. We use a ResNet-50 [24] encoder, and
its weights are initialized from a model that is pre-trained
with barlow-twins [53] self-supervision on ImageNet [15].
We freeze the encoder weights during training, saving
memory and training time. We use a multi-scale de-
formable attention Transformer (MSDeformAttn) [57] as
the pixel decoder. The MSDeformAttn gives features maps
at 1/8, 1/16, and 1/32 resolution, providing image fea-
tures to the transformer decoder layers. Our transformer
decoder is adopted from [12] and consists of 9 layers with



SMIYC RA-21 SMIYC RO-21 FS L&F FS Static Road Anomaly Average
Methods AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95↓

Max Softmax [25](ICLR’17) 27.97 72.02 15.72 16.6 1.77 44.85 12.88 39.83 15.72 71.38 14.81 48.93
Entropy [25](ICLR’17) - - - - 2.93 44.83 15.4 39.75 16.97 71.1 11.66 51.89

Mahalanobis [30](NeurIPS’18) 20.04 86.99 20.9 13.08 - - - - 14.37 81.09 18.42 60.38
Image Resynthesis [34](ICCV’19) 52.28 25.93 37.71 4.7 5.7 48.05 29.6 27.13 - - 31.32 26.45
Learning Embedding [4](IJCV’21) 37.52 70.76 0.82 46.38 4.65 24.36 57.16 13.39 - - 26.18 45.43

Void Classifier [4](IJCV’21) 36.61 63.49 10.44 41.54 10.29 22.11 4.5 19.4 - - 15.46 36.63
JSRNet [49](ICCV’21) 33.64 43.85 28.09 28.86 - - - - 94.4 9.2 52.04 47.3

SML [27](ICCV’21) 46.8 39.5 3.4 36.8 31.67 21.9 52.05 20.5 17.52 70.7 30.28 37.88
SynBoost [16](CVPR’21) 56.44 61.86 71.34 3.15 43.22 15.79 72.59 18.75 38.21 64.75 56.36 32.86

Maximized Entropy [10](ICCV’21) 85.47 15.00 85.07 0.75 29.96 35.14 86.55 8.55 48.85 31.77 67.18 18.24
Dense Hybrid [22](ECCV’22) 77.96 9.81 87.08 0.24 47.06 3.97 80.23 5.95 31.39 63.97 64.74 16.79

PEBEL [47](ECCV’22) 49.14 40.82 4.98 12.68 44.17 7.58 92.38 1.73 45.1 44.58 47.15 31.47
Mask2Anomaly (Ours) 88.7 14.60 93.3 0.20 46.04 4.36 95.20 0.82 79.70 13.45 80.59 6.68

Table 1: Pixel level evaluation: On average, Mask2Anomaly shows significant improvement among the compared methods.
Higher values for AuPRC are better, whereas for FPR95 lower values are better. The best and second best results are bold
and underlined, respectively. ‘-’ indicates the unavailability of benchmark results.

SMIYC RA-21 SMIYC RO-21
Methods sIoU ↑ PPV ↑ F1∗↑ sIoU ↑ PPV ↑ F1∗↑

Max Softmax [25](ICLR’17) 15.48 15.29 5.37 19.72 15.93 6.25
Ensemble [29](NurIPS’17) 16.44 20.77 3.39 8.63 4.71 1.28

Mahalanobis [30](NeurIPS’18) 14.82 10.22 2.68 13.52 21.79 4.70
Image Resynthesis [34](ICCV’19) 39.68 10.95 12.51 16.61 20.48 8.38

MC Dropout [41](CVPR’20) 20.49 17.26 4.26 5.49 5.77 1.05
Learning Embedding [4](IJCV’21) 33.86 20.54 7.90 35.64 2.87 2.31

SML [27](ICCV’21) 26.00 24.70 12.20 5.10 13.30 3.00
SynBoost [16](CVPR’21) 34.68 17.81 9.99 44.28 41.75 37.57

Maximized Entropy [10](ICCV’21) 49.21 39.51 28.72 47.87 62.64 48.51
JSRNet [49](ICCV’21) 20.20 29.27 13.66 18.55 24.46 11.02

Void Classifier [4](IJCV’21) 21.14 22.13 6.49 6.34 20.27 5.41
Dense Hybrid [22](ECCV’22) 54.17 24.13 31.08 45.74 50.10 50.72

PEBEL [47](ECCV’22) 38.88 27.20 14.48 29.91 7.55 5.54
Mask2Former [12] 25.20 18.20 15.30 5.00 21.90 4.80

Mask2Anomaly (Ours) 60.40 45.70 48.60 61.40 70.30 69.80

Table 2: Component level evaluation: Mask2Anomaly
achieves large improvement on component level evaluation
metrics among the baselined methods. Higher values of
sIoU, PPV, and F1∗ are better. The best and second best
results are bold and underlined, respectively.

100 queries. We train Mask2Anomaly using a combina-
tion of binary cross-entropy loss and the dice loss [40] for
class masks and cross-entropy loss for class scores. The net-
work is trained with an initial learning rate of 1e-4 and batch
size of 16 for 90 thousand iterations on AdamW [38] with a
weight decay of 0.05. We use an image crop of 380 × 760
with large-scale jittering [18] along with a random scale
ranging from 0.1 to 2.0.

Next, we train the Mask2Anomaly in a contrastive set-
ting. We generate the outlier image using AnomalyMix [47]
where we cut an object from MS-COCO [33] dataset image
and paste them on the Cityscapes image. The correspond-
ing binary mask for an outlier image is created by assign-
ing 1 to the MS-COCO image area and 0 to the Cityscapes
image area. We randomly sample 300 images from the MS-
COCO dataset during training to generate outliers. We train
the network for 4000 iterations with m as 0.75, a learning
rate of 1e-5, and batch size 8, keeping all the other hyper-
parameters the same as above. The probability of choosing
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Figure 5: Qualitative Results: We observe that per-
pixel classification architectures: Dense Hybrid [22] and
Maximized Entropy [10] suffer from large false positives,
whereas Mask2Anomaly, which is a mask-transformer,
shows accurate pixel-wise anomaly segmentation results.

an outlier in a training batch is kept at 0.2.

4.1. Main Results

Table 1 shows the pixel-level anomaly segmentation re-
sults achieved by Mask2Anomaly and recent SOTA meth-
ods on Fishyscapes, SMIYC, and Road Anomaly datasets.
We can observe that Mask2Anomaly significantly improves
the average AuPRC by 20% and the FPR95 by 60% com-
pared to the second-best method. We observe that anomaly
segmentation methods based on per-pixel architecture,
such as JSRNet, perform exceptionally well on the Road



 + Global Mask Attention    + Contrastive Learning          Refinement Mask            + Refinement Mask               Ground TruthInput Image

Figure 6: Mask2Anomaly Qualitative Ablation: demonstrates the performance gain by progressively adding (left to right )
proposed components. Masked-out regions by refinement mask are shown in white. Anomalies are represented in red.

Anomaly dataset. However, JSRNet does not generalize
well on other datasets. On the other hand, Mask2Anomaly
yields excellent results on all the datasets. Moreover, the
property of our mask architecture to encourage object-
ness, rather than individual pixel anomalies, not only re-
duces the false positive but also improves the localiza-
tion of whole anomalies. Indeed, Tab. 2 demonstrates
that Mask2Anomaly outperforms all the baselined meth-
ods on component-level evaluation metrics. To conclude,
Mask2Anomaly yields state-of-the-art anomaly segmenta-
tion performance both in pixel and component metrics.

Qualitative results: To get a better understanding of the
visual results, in Fig. 5 we visually compare the anomaly
scores predicted by Mask2Anomaly and its closest com-
petitors: Dense Hybrid [22] and Maximized Entropy [10].
The results from both: Dense Hybrid and Maximized En-
tropy exhibit a strong presence of false positives across the
scene, particularly on the boundaries of objects (“things”)
and regions (“stuff”). On the other hand, Mask2Anomaly
demonstrates the precise segmentation of anomalies while
at the same time having minimal false positives. Additional
qualitative results are in the supplementary material.

Segmentation results: Another critical characteristic of
any anomaly segmentation method is that it should not dis-
rupt the in-distribution classification performance, or else
it would make the semantic segmentation model unus-
able. We find that adding only GMA to the base model
leads to in-distribution accuracy of 80.45 on the valida-
tion set of Cityscapes. The final Mask2Anomaly model
maintains an in-distribution accuracy of 78.88 mIoU, which
is still 1.46 points higher than the vanilla Mask2Former.
Moreover, it is important to note that both Mask2Anomaly
and Mask2Former are trained for 90k iterations, indicat-
ing that, although Mask2Anomaly additionally attends to
the background mask region, it shows convergence sim-
ilar to Mask2Former. Extended quantitative and qualita-
tive segmentation results with both Mask2Anomaly and
Mask2Former are presented in the supplementary material.
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Figure 7: Visualization of negative attention maps and
results: Global mask attention gives high attention scores
to anomalous regions across all resolutions showing the
best anomaly segmentation results among the compared at-
tention mechanisms. Cross-attention performs better than
mask-attention but has high false positives and low confi-
dence prediction for the anomalous region. Darker regions
represent low attention values. Details to calculate negative
attention are given in Section:4.2.

4.2. Ablations

All the results reported in this section are from the
Fishyscapes lost and found validation dataset.

Mask2Anomaly: Table 3(a) presents the results of a
component-wise ablation of the technical novelties included
in Mask2Anomaly. We use Mask2Former as the baseline.
As shown in the table, removing any individual component
from Mask2Anomaly drastically reduces the results, thus
proving that their individual benefits are complimentary. In
particular, we observe that the global masked attention has
a big impact on the AuPRC and the contrastive learning is
very important for the FPR95. The mask refinement brings
further improvements to both. Figure 6 visually demon-
strates the positive effect of all the components.

Global Mask Attention: To better understand the effect
of the global masked attention (GMA), in Tab. 3(c), we
compare it to the masked-attention (MA) [12] and cross-
attention (CA) [48]. We can observe that although the MA
increases the mIoU w.r.t. the CA, it degrades all the metrics
for anomaly segmentation, thus confirming our preliminary



GMA CL RM AuPRC↑ FPR95↓
10.60 89.35

✓ ✓ 35.05 87.11
✓ ✓ 57.23 31.93

✓ ✓ 68.95 24.07
✓ ✓ ✓ 69.41 9.46

margin(m) AuPRC↑ FPR95↓
1 65.37 11.61

0.95 65.40 12.20
0.90 66.05 13.49
0.80 66.20 14.89
0.75 69.41 9.46
0.50 62.07 13.26

(a) (b)
mIoU↑ AuPRC↑ FPR95↓

CA [13] 76.43 20.30 89.35
MA [12] 77.42 10.60 89.39

GMA 80.45 32.35 25.95

AuPRC↑ FPR95↓
w/o Refinement Mask 68.95 24.07

L{things\road} 67.04 39.11
L{stuff \road} 69.41 9.46

Batch Outlier Probability AuPRC↑ FPR95↓
0.1 63.01 14.66
0.2 69.41 9.46
0.5 69.20 11.03
1 68.77 10.53

(c) (d) (e)

Table 3: Mask2Anomaly Ablation tables: (a) Component-wise ablation of Mask2Anomaly. Results in italics show
Mask2Former results. GMA: Global Mask Attention, CL: Contrastive Learning, and RM: Refinement Mask. (b) Shows
the behavior of LCL by choosing different margin(m) values. We empirically find the best results when m is 0.75. (c)
Global masked attention (GMA) performs the best among various attention mechanisms: Cross-Attention (CA) and Masked-
Attention (MA). (d) We show the performance gain by using a refinement mask that masks the {stuff \ road} regions as
anomalies are categorized as things class. (e) Batch outlier probability is the likelihood of selecting an outlier image for a
batch during contrastive training. The best result is achieved at 0.2 probability. (All the results reported on FS Lost & Found
validation set).

experiment shown in Fig. 3. On the other hand, the GMA
provides improvements across all the metrics. This is con-
firmed visually in Fig. 7, where we show the negative atten-
tion maps for the three methods at different resolutions. The
negative attention is calculated by averaging all the queries
(since there is no reference known object) and then sub-
tracting one. Note that the GMA has a high response on the
anomaly (the giraffe) across all resolutions.

Refinement Mask: Table 3(d) shows the performance
gains due to the refinement mask. We observe that fil-
tering out the {“stuff” \ “road”} regions of the prediction
map improves the FPR95 by 14.61 along with marginal im-
provement in AuPRC. On the other hand, removing the
{“things” \ “road”} regions degrades the results, confirm-
ing our hypothesis that anomalies are likely to belong to
the “things” category. Figure 6 qualitatively shows the im-
provement achieved with the refinement mask. Also, refine-
ment mask adds a small overhead of 1.12 GFlops compared
to Mask2Anomaly 258 GFlops inference cost.

Mask Contrastive Learning: We tested the effect of the
margin in the contrastive loss LCL, and we report these re-
sults in Tab. 3(b). We find that the best results are achieved
by setting m to 0.75, but the performance is competitive for
any value of m in the table. Similarly, we tested the effect
of the batch outlier probability, which is the likelihood of
selecting an outlier image in a batch. The results shown in
Tab. 3(e) indicate that the best performance is achieved at
0.2, but the results remain stable for higher values of the
batch outlier probability.

Effect of bigger backbones: We demonstrate the effi-

Method Backbone AuPRC↑ FPR95 ↓ FLOPs↓ Training ↓
Parameters

Mask2Former [12] ResNet-50 10.60 89.35 226G 44M
ResNet-101 9.11 45.83 293G 63M

Swin-T 24.54 37.98 232G 42M
Swin-S 30.96 36.78 313G 69M

Mask2Anomaly‡ ResNet-50 32.35 25.95 258G 23M

Table 4: Architectural Efficiency of Mask2Anomaly:
Mask2Anomaly outperforms the best Mask2Former archi-
tecture having Swin-S backbone with only 30% trainable
parameters. Mask2Anomaly‡ only uses global mask atten-
tion.

cacy of Mask2Anomaly by comparing it to the vanilla
Mask2Former but using larger backbones. The re-
sults in Tab. 4 show that despite the disadvantage,
Mask2Anomaly with a ResNet-50 still performs better than
Mask2Former using large transformer-based backbones. It
is also important to note that the number of training param-
eters for Mask2Anomaly can be reduced to 23M by using a
frozen self-supervised pre-trained encoder, which is signif-
icantly less than all the Mask2Former variations.

5. Conclusion

In this work, we present Mask2Anomaly, a novel
anomaly segmentation architecture established on masked
architecture. Mask2Anomaly contains global mask atten-
tion specifically designed to improve the attention mecha-
nism for anomaly segmentation tasks. Next, we develop
a mask contrastive learning framework that utilizes outlier
masks to maximize the separation between anomalies and



known classes. Finally, we introduced mask refinement
that reduces false positives and improves the overall per-
formance. We show the efficacy of Mask2Anomaly and its
components through extensive qualitative and quantitative
results. We hope Mask2Anomaly will open doors for new
anomaly segmentation methods based on mask architecture.
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Supplementary Material

Summary: This supplementary material contains ad-
ditional method explanations, experiments, and results
of Mask2Anomaly that include:

• explanation of anomaly segmentation evaluation met-
rics;

• Mask2Anomaly results on validation sets;
• outlier loss comparison and analysis;
• training loss functions of Mask2Anomaly ;
• an analysis of various inference techniques applied to

a Mask2Anomaly;
• performance stability of Mask2Anomaly;
• additional results and supplementary video.

A. Evaluation Metrics
Pixel-Level: For pixel-wise evaluation, consider Y ∈
{Ya, Yna} is the pixel level annotated ground truth labels
for image χ containing anomaly. Ya and Yna represents the
anomalous and non-anomalous labels in the ground-truth.
Assume, Ŷ (γ) is the model prediction obtained at thresh-
olding f(x) at γ. Then, we can write precision and recall
equations as:

precision(γ) =
|Ya ∩ Ŷa(γ)|

|Ŷa(γ)|
(10)

recall(γ) =
|Ya ∩ Ŷa(γ)|

|Ya|
(11)

and, AuPRC can be approximated as:

AuPRC =

∫
γ

precision(γ)recall(γ) (12)

The AuPRC works well for unbalanced datasets making it
particularly suitable for anomaly segmentation since all the
datasets are significantly skewed. Next, we consider the
False Positive Rate at a true positive rate of 95% (FPR95),
an important criterion for safety-critical applications that is
calculated as:

FPR95 =
|Ŷa(γ

∗) ∩ Yna|
|Yna|

(13)

where γ∗ is a threshold when the true positive rate is
95%.
Component-Level: SMIYC [9] introduced a few
component-level evaluation metrics that solely focus on de-
tecting anomalous objects regardless of their size. These
metrics are important to be considered because pixel-level
metrics may not penalize a model for missing a small
anomaly, even though such a small anomaly may be im-
portant to be detected. In order to have a component-
level assessment of the detected anomalies, the quantities to
be considered are the component-wise true-positives (TP ),

FS L&F FS static
Methods AuPRC↑ FPR95 ↓ AuPRC↑ FPR95 ↓

Max Softmax [25] 4.59 40.59 19.09 23.99
Max Logit [25] 14.59 42.21 38.64 18.26

Entropy [25] 10.36 40.34 26.77 23.31
Energy [35] 25.79 32.26 31.66 37.32

SynthCP [50] 6.54 45.95 23.22 34.02
SynBoost [16] 40.99 34.47 48.44 47.71

SML [27] 36.55 14.53 48.67 16.75
Deep Gambler [36] 39.77 12.41 67.69 15.39
Dense Hybrid [22] 63.80 6.10 60.20 4.90

PEBEL [47] 59.83 6.49 82.73 6.81
Mask2Anomaly (Ours) 69.41 9.46 90.54 1.98

Table 5: Fishyscapes Validation Results: The best and
second best results are bold and underlined, respectively.

false-negatives (FN ), and false-positives (FP ). These
component-wise quantities can be measured by considering
the anomalies as the positive class. From these quantities,
we can use three metrics to evaluate the component-wise
segmentation of anomalies: sIoU, PPV, and F1∗. Here we
provide the details of how these metrics are computed, using
the notation K to denote the set of ground truth components,
and K̂ to denote the set of predicted components.

The sIoU metric used in SMIYC [9] is a modified ver-
sion of the component-wise intersection over union pro-
posed in [43], which considers the ground-truth components
in the computation of the TP and FN . Namely, it is com-
puted as

sIoU(k) =
|k ∩ K̂(k)|

|k ∩ K̂(k)\A(k)|
, K̂(k) =

⋃
k̂∈K̂, k̂∩k ̸=∅

k̂

(14)
where A(k) is an adjustment term that excludes from the
union those pixels that correctly intersect with another
ground-truth component different from k. We refer the
reader to [9] for more details on this term. Given a thresh-
old τ ∈ [0, 1], a target k ∈ K is considered a TP if
sIoU(k) > τ , and a FN otherwise.

The positive predictive value (PPV) is a metric that mea-
sures the FP for a predicted component k̂ ∈ K̂, and it is
computed as

PPV(k̂) =
|k̂ ∩ K̂(k)|

|k̂|
(15)

A predicted component k̂ ∈ K̂ is considered a FP if
PPV (k̂) ≤ τ . Finally, the F1∗ summarizes all the
component-wise TP , FN , and FP quantities by the fol-
lowing formula:

F1∗(τ) =
2TP (τ)

2TP (τ) + FN(τ) + FP (τ)
(16)

B. Results on Fishyscapes and SMIYC validation sets
To provide a comprehensive evaluation, we have bench-
marked Mask2Anomaly results on the Fishyscapes and



SMIYC-RA21 SMIYC-RO21
Methods AuPRC↑ FPR95 ↓ AuPRC↑ FPR95 ↓

Max Softmax [25] 40.4 60.2 43.4 3.8
ODIN [31] 46.3 61.5 46.6 4.0

Mahalanobis [30] 22.5 86.4 25.9 26.1
MC Dropout [41] 29.2 77.9 7.9 43.8

Ensemble [29] 16.0 80.0 4.7 98.3
Void Classifier [4] 39.3 66.1 9.8 43.6

Learning Embedding [4] 51.9 60.0 1.5 56.7
Image Resynthesis [34] 76.4 20.5 70.3 1.3

SynBoost [16] 68.8 30.9 81.4 2.8
Maximized Entropy [10] 80.7 17.4 94.4 0.4
Mask2Anomaly (Ours) 94.5 3.3 88.6 0.3

Table 6: SMIYC Validation Results: The best and second
best results are bold and underlined, respectively.

SMIYC validation sets as presented in Tab. 5 and Tab. 6,
respectively. We can observe that Mask2Anomaly out-
performs all the prior methods by a large margin on both
benchmarks. Interestingly, maximized entropy and dense
hybrid show the best AuPRC for SMIYC-RO21 and FPR95

for FS L&F, respectively. However, overall Mask2Anomaly
gives the best performance on all the benchmarks. This
suggests that mask-based architecture offers better general-
izability in comparison to per-pixel architecture due to its
intrinsic property of encouraging objectness.

C. Outlier Loss Comparision
We now empirically demonstrate why mask contrastive
loss, a margin-based loss, performs better at anomaly
segmentation than binary cross-entropy loss. We
train Mask2Anomaly with MOOD using binary-cross en-
tropy. The new loss based on the binary cross entropy can
be written as:

LBCE = MOOD log(lN )+(1−MOOD) log(1−lN ) (17)

where, lN = − K
max
k=1

(
softmax(C)T · sigmoid(M)

)
(18)

lN is the negative likelihood of in-distribution classes
calculated using the class scores C and class masks
M . Figure 8 illustrates the anomaly segmentation per-
formance comparison on FS L&F validation dataset be-
tween the Mask2Anomaly when trained with the binary
cross entropy loss and mask contrastive loss, respectively.
We can observe that the mask contrastive loss achieves
a wider margin between out-of-distribution(anomaly) and
in-distribution prediction while maintaining significantly
lower false positives.

D. Training Loss
Mask2Anomaly gives two sets of outputs: class scores (C)
and class masks (M ). To train M , we first pad the ground
truth mask Mgt with “no object” masks denoted by ϕ. Since
we assume M ≥ Mgt, padding the ground truth masks al-
low us one-to-one matching. Now, we use bipartite match-

AuPRC: 63.23           FPR95: 71.59 AuPRC: 69.41           FPR95: 9.46

Binary Cross-Entropy Loss Mask Contrastive Loss 

In-distribution

out-of-distribution

In-distribution

out-of-distribution

Figure 8: Outlier Loss Comparision: To
train Mask2Anomaly on the outlier set, we find that
mask contrastive loss, which is a margin-based loss shows
better performance compared to the binary cross-entropy
loss. Both experiments are done on the FS L&F validation
set.

ing to match the ground truth and the predicted masks, and
the assignment cost is given by:

Lmasks = λbceLbce + λdiceLdice (19)

where Lbce and Ldice are the binary cross entropy loss and
the dice loss calculated between the matched masks. λbce

and λdice are the loss weights that are both set to 5.0. To
train C, which indicates the semantic class of a mask, we
used the cross-entropy loss Lce. The total training loss is
given by:

L = Lmasks + λceLce (20)

with λce set to 2.0 for the prediction that matched with
ground truth and 0.1 for ϕ, i.e. for no object. After training
the Mask2Anomaly for 90K iterations, we fine-tune the net-
work with the mask contrastive loss LCL. The new training
loss is written as:

LM2A = L+ LCL (21)

We perform all the training and inference on a single
Nvidia Titan RTX with 24GB memory.

E. Mask2Anomaly Inference
The per-pixel classification networks have a straightforward
inference as the network outputs a pixel-wise anomaly
map. However, in the case of a mask architecture, we get
a set of class scores C and a set of binary mask M . So,
we test various inference techniques on Mask2Anomaly
for anomaly segmentation, as shown in Table 7. We find
that the marginalization over class scores obtained after the
softmax and taking the sigmoid of the mask yields the best
results. Also, we observe that applying a softmax after the
marginalization to perform max-softmax [25] does not give
good results.



SMIYC-RA21 SMIYC-RO21 FS L&F FS Static Road Anomaly Average
C M f(C).f(M) AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓
I I I 9.47 95.16 4.44 73.45 2.53 92.16 1.18 99.97 65.59 97.56 16.64 91.66

Softmax Softmax I 44.73 38.27 3.16 95.72 4.82 47.98 10.34 52.04 42.74 55.73 21.13 57.94
Sigmoid Sigmoid I 25.04 93.14 83.14 1.24 14.55 43.83 45.67 96.87 28.1 91.63 39.3 65.34
Sigmoid Softmax I 29.29 39.01 7.48 98.01 0.42 48.23 6.37 52.16 25.61 55.78 13.83 58.63
Softmax Sigmoid I 95.48 2.41 92.89 0.15 69.41 9.46 90.54 1.98 79.7 13.45 85.56 5.51
Softmax Sigmoid Softmax 94.55 3.31 88.59 0.36 70.8 32.66 88.96 2.22 78.3 15.54 84.24 10.81

Table 7: Mask2Anomaly Inference: we show various inference techniques on Mask2Anomaly for anomaly segmentation.
f(.) represents the function applied to class scores or masks. I is the identity function. The best results are in bold.

SMIYC-RA21 SMIYC-RO21 FS L&F FS Static Average σ

Methods AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC ↑ FPR95 ↓ AuPRC FPR95

Mask2Anomaly-S1 95.48 2.41 92.89 0.15 69.41 9.46 90.54 1.98 - -
Mask2Anomaly-S2 92.03 3.22 92.3 0.27 69.19 13.47 85.63 5.06 - -
σ(Mask2Anomaly) ± 2.44 ±0.57 ±0.42 ±0.08 ±0.16 ±2.84 ±3.47 ±2.18 ±1.62 ±1.41

Dense Hybrid-S1 52.99 38.87 66.91 1.91 56.89 8.92 52.58 6.03 - -
Dense Hybrid-S2 60.59 32.14 79.64 1.01 47.97 18.35 54.22 5.24 - -
σ(Dense Hybrid) ±5.37 ±4.76 ±9.00 ±0.64 ±6.31 ±6.67 ±1.16 ±0.56 ±5.46 ±3.15

Table 8: Performance stability in Mask2Former: we can observe that the average deviation in the performance of the
dense hybrid is significantly higher than Mask2Anomaly. σ denotes the standard deviation.

F. Performance stability on different outlier sets
Employing an outlier set to train an anomaly segmenta-
tion model presents a challenge because the model’s per-
formance can vary significantly across different sets of out-
liers. Here, we show that Mask2Anomaly performs simi-
larly when trained on different outlier sets.

We randomly chose two subsets of 300 MS-COCO
images (S1, S2) as our outlier dataset for train-
ing Mask2Anomaly and DenseHybrid. Table 8 shows
the performance of Mask2Anomaly and Dense Hybrid
trained on S1 and S2 outlier sets, along with the standard
deviation(σ) in the performance. We can observe that the
variation in performance for the dense hybrid is signifi-
cantly higher than Mask2Anomaly. Specifically, in dense
hybrid, the average deviation in AuPRC is greater than
300%, and the average variation in FPR95 is more than
200% compared to Mask2Anomaly.

G. Additional Results
Segmentation results: In Tab. 9 and Fig. 9, we show
the segmentation results for Mask2Anomaly and
Mask2Former. We can qualitatively and qualitatively infer
that Mask2Anomaly performs better than Mask2Former.
Qualitative anomaly segmentation: In Fig. 10, we
show the qualitative comparison of Mask2Anomaly with
best-existing anomaly segmentation methods: Maximized
Entropy [10] and Dense Hybrid [22]. We observe that these
per-pixel classification architectures suffer from large false
positives, whereas Mask2Anomaly, a mask-transformer,
shows confident results across all datasets.
Attention comparison: Figure 11 shows the anomaly
segmentation results obtained using various attention

mechanisms, and the global mask attention clearly exhibits
the best performance.
Qualitative ablation study: We show a component-wise
qualitative ablation of Mask2Anomaly in Fig. 12 by pro-
gressively adding each components. We can observe that
each proposed component improves anomaly segmentation
and complements the others.
Supplementary video: Shows the performance
of Mask2Anomaly on the sequence of images of small
obstacle dataset [44]. Mask2Anomaly displays an impres-
sive performance in segmenting wildlife on the road and
anomalies in low-light conditions.
Failure cases: Fig. 13 shows that Mask2Anomaly strug-
gles to segment tiny anomalies and falsely detects road
potholes as anomalies.



Methods road s. walk building wall fence pole t. light t. sign veg. terrain sky person rider car truck bus train mbike bicycle mIoU
Mask2Former 98.4 87.0 92.7 46.1 59.9 69.5 75.3 82.2 92.9 63.8 95.2 84.9 69.3 95.6 58.7 77.0 79.9 62.7 80.0 77.4

Mask2Anomaly 98.5 86.3 91.5 53.9 60.2 67.5 74.3 88.1 93.1 62.6 96 84.1 62.7 95.7 79.6 80.3 77.1 70.1 77.1 78.8

Table 9: Class-wise semantic segmentation results comparison between Mask2Former and Mask2Anomaly on Cityscapes
validation set.

        Input Image                       Mask2Former                   Mask2Anomaly                  Ground Truth

Figure 9: Semantic Segmentation Results: We can visually infer that Mask2Anomaly shows similar segmentation results
when compared with Mask2Former [12].



Input Image Maximized Entropy [10] Dense Hybrid [22] Mask2Anomaly(Ours) Ground Truth

Figure 10: Qualitative Results: We observe that per-pixel classification architecture: Maximized Entropy and Dense Hybrid
suffer from large false positives, whereas Mask2Anomaly which is a mask-transformer, show confident results across all
datasets. Anomalies are represented in red.



Input Image Cross-Attention [13] Mask-Attention [12] Global Mask Attention (Ours) Ground Truth

Figure 11: Attention Comparison: We observe that the proposed global mask attention can better segment anomaly among
the compared attention mechanism. Anomalies are represented in red.



          + Global Mask Attention      + Contrastive Learning           + Refinement Mask                     Ground TruthInput Image

Figure 12: Mask2Anomaly Qualitative Ablation: shows the performance gain by progressively adding (left to right )
proposed components. Anomalies are represented in red.



Input Image Mask2Anomaly Ground Truth

Figure 13: Failure Cases: Row (1,2): We can observe that Mask2Anomaly is unable to segment tiny anomalies(inside red
bounding boxes of input image). Please zoom in for better clarity. Row 3: Mask2Anomaly falsely segments the pothole on
the road as an anomaly. Anomalies are indicated in red in the ground truth.


