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Abstract—We present a deep learning-based method for the
automatic extraction of physical parameters from optical spectra
and power values of a chirped, tapered, dual-section quantum dot
superluminescent diode. The neural network is able to estimate
a set of parameters that are capable of reproducing the behavior
of the target device with high accuracy.

Index Terms—Superluminescent diodes, deep learning, param-
eter extraction, time-domain traveling wave, quantum dots.

I. INTRODUCTION

Superluminescent diodes (SLEDs) are a prominent solution
for sources in a wide range of applications, due to their high
output power and spectral brightness. In particular, chirped
and tapered Quantum Dot (QD) SLEDs are characterized by
a large bandwidth, as well as a tunable spectral asymme-
try between the two facets [1], which could introduce the
possibility of multiplexing their outputs for flexible tuning
of the device output and bandwidth. The characterization of
such devices is not straightforward due to the number of
parameters required to properly reproduce the experimental
behavior in stationary and dynamic conditions, the latter for
the amplification of optical pulses: brute-force approaches to
extract these parameters are not recommended because of the
high computational cost and time of those methods. A much
more effective approach for the characterization or inverse
design of devices relies on machine learning solutions [2].
We hereby present a Deep Learning (DL) approach for the
extraction of device parameters of a chirped, tapered, and dual-
section QD SLED, starting from its power and spectral data.
The accuracy of the Deep Neural Network (DNN) is tested by
comparing the predictions with some reference curves similar
to those experimentally reported in [1], here obtained with
Time-Domain Traveling Wave (TDTW) simulations.

II. REFERENCE DEVICE

The device parameters are presented in [1]. The active
material contains 10 chirped InAs QD layers: three layers with
ground state (GS) emission λGS centered at 1243 nm, three
layers with λGS = 1211 nm, and four with λGS = 1285 nm.
The device is 6mm long, with an initial 14 µm wide straight
ridge waveguide (rear of the device), followed by a first
tapered section with a full taper angle of 3◦ and a second
tapered section with a full taper angle of 0.8◦, which is
equivalent to a total width of 110 µm at the front facet. At
1.875mm from the rear facet, an insulation trench is etched,
creating two bias sections that can be driven independently for
greater flexibility.

III. TDTW MODEL FOR DATA-SET GENERATION

The TDTW model [3] takes into account the chirped nature
of the active QD material (different layers with different
ground state emission wavelengths) and the stimulated emis-
sion from the second QD excited state.

The carrier dynamics is described by a set of multi-
population rate equations (MPREs), which take into account
the scattering and recombination phenomena graphically sum-
marized in Fig. 1. The population dynamics in the conduction
and valence bands are assumed to be equivalent (excitonic
approximation) to speed up the simulation. The propagation
of the forward and backward field components E± is described
with two wave equations that, under the slowly varying
envelope approximation (SVEA), read [4]:

1

vg

∂E±

∂t
± ∂E±

∂z
=− 1

2
(α±

i (z) + αp)E
±(z, t)−

−j
ω0Γxy

±(z)

2cneffϵ0
P±(z, t) + Ssp

±(z, t)

(1)

with vg group velocity, E± progressive and regressive com-
ponents of the field, αp plasma losses, ω0 reference angular
frequency, neff effective index. The intrinsic waveguide losses
α±

i (z) and the transverse confinement factor Γxy
±(z) vary

with respect to the position and have different behaviors
depending on the propagation direction in the tapered structure
due to the weak confinement of the field in the transverse
direction. P±(z, t) is the macroscopic polarization, linked
to the stimulated response of the system, while Ssp

±(z, t)
describes the spontaneous emission process.

Finally, boundary conditions are required in order to take
into account the residual facet reflectivities r0 and rL [5]:

E+(t, 0) = r0E
−(t, 0) (2)

E−(t, L) = rLE
+(t, L) (3)

The model is solved numerically with a finite difference
scheme and it is employed to generate a training data-set for

Fig. 1. Scheme of the considered levels and the scattering and recombination
phenomena that affect them.



TABLE I
INVESTIGATED PARAMETERS AND CORRESPONDING RANGES.

Parameter Range Parameter Range Parameter Range
Progr. losses α+

i [cm−1] 2.2 –5.0 GS gain gGS [10−16 cm2 eV] 0.2 –0.6 GS Auger rec. time τGS
Aug [ns] 0.1 –5.0

Regr. losses α−
i [cm−1] 0.3 –2.4 ES1 gain gES1 [10−16 cm2 eV] 0.3 –0.8 ES1 Auger rec. time τES1

Aug [ns] 0.1 –5.0
Injection efficiency ηi [ ] 0.5 –0.8 ES2 gain gES2 [10−16 cm2 eV] 0.4 –1 ES2 Auger rec. time τES2

Aug [ns] 0.1 –5.0

DL. This is achieved by randomly generating combinations of
the nine target parameters shown in Table I, as they play a
fundamental role in the definition of the static and dynamical
behavior of SOA. The parameters’ values are randomly gen-
erated according to a uniform distribution over the associated
ranges, listed in Table I, the only additional constraint being
that gES2 > gES1 > gGS . For each parameter set, the rear
current is fixed to IR = 100mA, while the front current IF is
changed from 1A to 5A. A single simulation lasts 5 ns. Each
entry in the data-set contains the front and rear facet spectra
(102 equally spaced points each) and the front and rear facet
average output powers for the five current combination. Due
to the high computational cost, training is done on a data-
set of 1000 samples (60% training, 20% validation, and 20%
testing).

IV. DEEP LEARNING SCHEME

The deep neural network (DNN) used for parameter ex-
traction is developed in TensorFlow™ with the Keras API.
It is a single fully connected DNN that employs the ADAM
optimizer, with step-decaying learning rate, and Leaky ReLU
as activation of the layers. To prevent overfitting, batch nor-
malization and L2 regularization are considered. To maximize
the accuracy of the prediction, different combinations of
hyperparameters are evaluated during the training process. In
particular, we tested multiple values of number of hidden
layers ([2, 3, 4, 5, 6, 7]), number of neurons per layer ([20, 30,
50, 100]) and batch size ([10, 20, 50, 100, 150, 200]). During
this optimization process, early stopping is implemented to
prevent overfitting and to speed up the process itself. Two
combinations of hyperparameters are selected since they are
able to minimize the loss (mean squared error) and the average
error of the predictions on the test set, defined as

∆e =
1

N
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Xtargi

(4)

where N = 9 is the number of target parameters, Xtargi is the
vector of values for the i-th parameter of the test set, and Xi

is the vector of associated predictions. We selected 3 hidden
layers, 100 neurons per layer, and 50 batch size (minimum
loss) and 5 hidden layers, 100 neurons per layer, and 100
batch size (minimum average error). Finally, the reference
curves are fed to the trained networks and their predictions are
averaged for better accuracy (model averaging). The obtained
parameters are simulated once again with the TDTW solver
in order to compare the spectra and output powers.

V. RESULTS DISCUSSION

Fig. 2 shows the comparison of the reference spectra (solid
lines) and those obtained by simulating the extracted parame-

Fig. 2. Comparison of the reference and predicted spectra.

ters (circles), at different values of front section current. The
predicted parameters yield spectral curves that are in good
agreement with the target. Indeed, they are characterized by
the same spectral components with very similar profiles, with
a limited decrease in accuracy at larger currents. In general,
due to the limited size of the data-set, the predicted normalized
curves present a lower peak at λ = 1240 nm with respect to
the reference cases; we expect to solve this issue by increasing
the size of the data-set.

VI. CONCLUSIONS

We proposed a DL approach to the extraction of parameters
from the spectral data of superluminescent diodes. While
accuracy improvements can be achieved by increasing the
number of entries in the data-set, the proposed DNN is able
to extract a set of nine parameters that reproduce the behavior
of the target device, thus providing an accurate starting point
for studying the device dynamic behavior in the presence of
external optical pulses.
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