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Abstract
We derive a new analysis of Follow The Regularized Leader (FTRL) for online learning with de-
layed bandit feedback. By separating the cost of delayed feedback from that of bandit feedback,
our analysis allows us to obtain new results in three important settings. On the one hand, we de-
rive the first optimal (up to logarithmic factors) regret bounds for combinatorial semi-bandits with
delay and adversarial Markov decision processes with delay (and known transition functions). On
the other hand, we use our analysis to derive an efficient algorithm for linear bandits with delay
achieving near-optimal regret bounds. Our novel regret decomposition shows that FTRL remains
stable across multiple rounds under mild assumptions on the Hessian of the regularizer.
Keywords: Online learning, bandit feedback, delayed feedback

1. Introduction

Delayed feedback is a phenomenon that cannot be avoided in many applications of online learning.
For example, in digital advertisement a conversion event may happen with some delay after an ad
is shown to a user. In healthcare, the effect of a drug on a patient may take some time before it
becomes observable (Eick, 1988). A consequence of delayed feedback is that sequential decision
makers have to act before knowing the effect of their previous actions, where the effect of multiple
past actions may be potentially observed all at once. These challenges pertain not only to the
algorithms, but also to the way they are analyzed, which is the reason why standard (non-delayed)
proof techniques fail in the presence of delayed feedback.

Due to its fundamental nature in online learning, delayed feedback has been extensively stud-
ied in several different scenarios, including full-information feedback (Weinberger and Ordentlich,
2002; Joulani et al., 2013; Quanrud and Khashabi, 2015; Joulani et al., 2016; Flaspohler et al., 2021)
and bandit feedback (Cesa-Bianchi et al., 2016; Thune et al., 2019; Bistritz et al., 2019; Zimmert
and Seldin, 2020; Ito et al., 2020a; Gyorgy and Joulani, 2021; Van Der Hoeven and Cesa-Bianchi,
2022; Masoudian et al., 2022). In this work, we focus on the more realistic case of bandit feedback;
that is, when the only way for the learner to know the effect of an action is to execute it. We develop
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a general framework for the analysis of delayed bandit feedback which we then apply to three im-
portant settings: combinatorial semi-bandits (which includes multi-armed bandits as a special case),
adversarial Markov Decision Processes (MDPs), and linear bandits.

Our analysis, which is based on Follow The Regularized Leader (FTRL)—see, for example,
(Orabona, 2019, Chapter 7), unifies previous analyses and sheds light on the impact of delayed
bandit feedback in online learning. Our main insight is that one can separate the cost of delayed
feedback and bandit feedback through a novel decomposition of the FTRL regret, which allows to
separately bound these different regret components. This insight leads to new results in all of the
settings we consider. We prove the first regret bounds for combinatorial semi-bandits with delays,
which also turn out to be optimal for sufficiently large T (throughout the paper, by optimal we al-
ways mean optimal for sufficiently large T ). We also prove the first regret bounds for adversarial
MDPs with delays and known transitions, which are again optimal. Finally, we derive a computa-
tionally efficient algorithm for linear bandits, whose regret has an optimal dependence on delays.

We now formally introduce the setting of online learning with delayed bandit feedback studied
in this paper. Online learning with delayed bandit feedback proceeds in rounds. In each round
t ∈ [T ] the learner chooses (possibly in a randomized manner) an action at ∈ A ⊆ RK , suffers
loss a⊤

t ℓt, where ℓt ∈ RK is bounded in some suitably chosen norm, and observes {L(ℓτ ,aτ ) :
τ + dτ = t}, where d1, . . . , dT is an unknown sequence of delays and L is an application-specific
(possibly randomized) feedback function, encoding which information about ℓτ the learner sees
based on the action aτ . For example, in the combinatorial semi-bandit setting the learner observes
all loss components corresponding to the non-zero elements of the action, whereas in the linear
bandit setting the learner only observes the scalar a⊤

τ ℓτ .

1.1. Contributions

New analysis. In section 3 we provide a novel analysis of FTRL under delayed bandit feedback.
The main novelty is showing that we can decompose the regret into three main parts. The first part
of the regret is standard, namely the pseudo-distance between the starting point of the algorithm
and the optimal point in hindsight. The second part is the cost of delayed feedback. In our analysis,
we show that the cost of delayed feedback is essentially the same as in the delayed full-information
setting. The third part of the regret is the cost of bandit feedback, which is the same term that occurs
in the standard analysis of FTRL for bandit feedback. A technical novelty is that we show that FTRL
is stable across multiple rounds under some mild assumptions on the Hessian of the regularizer. In
related work, Huang et al. (2023) provides an analysis of online mirror descent with delayed bandit
feedback in several settings. However, their analysis does not lead to optimal bounds because it
does not separate the cost of delayed and bandit feedback.

Combinatorial semi-bandits with delayed feedback. As far as we know we are the first to
consider nonstochastic combinatorial semi-bandits under delayed feedback. In the combinatorial
semi-bandit setting, we apply the newly gained insight from our analysis of FTRL to derive an
optimal algorithm. We show that if maxa∈A ∥a∥1 ≤ B, then the regret after T rounds is of or-
der
√

B(KT +BD) log(K), where D =
∑T

t=1 dt is the total delay after T rounds. In the worst
case, the delay is constant (i.e., dt = d for all t) and we provide a matching lower bound (up to
logarithmic factors) showing that any learner must incur Ω(

√
BT (K +Bd)) regret.

Adversarial Markov decision processes. Delayed feedback in adversarial (finite-horizon and
episodic) MDPs was first studied by Lancewicki et al. (2022). Under full-information feedback,
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where the agent observes the entire cost function at the end of the episode, they achieve optimal
regret Õ(H

√
T +D), where T is the number of episodes and H is the horizon. However, un-

der the more realistic bandit feedback (where the only observed costs are those along the agent’s
trajectory), their regret bound scales with T 2/3 + D2/3, which is far from optimal. The current
state-of-the-art guarantee under bandit feedback is by Jin et al. (2022) who achieve regret bound
of Õ(H

√
SAT +H(HSA)1/4

√
D). However, there is still a (HSA)1/4 factor gap on the second

term compared to the lower bound of Lancewicki et al. (2022). Remarkably, the application of our
FTRL analysis to adversarial MDPs allows us to close this gap and achieve the first optimal regret
bound of Õ(H

√
SAT +H

√
D) for the case of known transitions.

Linear bandits. In the linear bandit setting, Ito et al. (2020a) provide an analysis of continuous
exponential weights (Cover, 1991; Vovk, 1990; Littlestone and Warmuth, 1994) with delayed bandit
feedback and constant delay d that obtains the optimal Õ(K

√
T +

√
dT ) regret bound. One draw-

back is that the per-round runtime of continuous exponential weights is prohibitively large, although
it is polynomial in K and T . Building on Scrible (Abernethy et al., 2008), we derive an algorithm
that achieves a slightly suboptimal Õ(K3/2

√
T +

√
D) regret, but with a much better per-round

running time of order K3, provided a self-concordant barrier for the decision set can be efficiently
computed. Huang et al. (2023) show an algorithm with a similar running time, but with a worse
regret bound of Õ(K3/2

√
T +K2

√
D).

1.2. Additional related work

Delayed feedback in stochastic models. Delayed feedback with stochastic losses were studied
both in MDPs (Howson et al., 2021) and linear bandits (Vernade et al., 2020; Howson et al., 2022),
as well as many other domains (Dudik et al., 2011; Agarwal and Duchi, 2012; Vernade et al., 2017,
2020; Pike-Burke et al., 2018; Cesa-Bianchi et al., 2018; Zhou et al., 2019; Gael et al., 2020;
Lancewicki et al., 2021; Cohen et al., 2021). However, the adversarial losses considered in this
work are much more general and induce many additional technical challenges.

Combinatorial semi-bandits with delayed feedback. Even though we are the first to study com-
binatorial semi-bandits with delayed feedback, a special case, namely multi-armed bandits with
delayed feedback, is well understood. Neu et al. (2010, 2014) were among the first ones to study the
impact of delayed feedback in the nonstochastic setting. Subsequently, Cesa-Bianchi et al. (2019)
proved a Ω(

√
KT +

√
dT log(K)) lower bound when dt = d for all t. The matching upper bound

was provided by Zimmert and Seldin (2020), but nearly matching upper bounds also exist Thune
et al. (2019); Bistritz et al. (2019); Gyorgy and Joulani (2021); Van Der Hoeven and Cesa-Bianchi
(2022). Conversely, (special cases of) combinatorial semi-bandits without delay have also received
considerable attention (György et al., 2007; Kale et al., 2010; Uchiya et al., 2010; Cesa-Bianchi and
Lugosi, 2012; Audibert et al., 2014; Combes et al., 2015; Lattimore et al., 2018; Zimmert et al.,
2019).

Adversarial Markov decision processes. There is a rich literature on regret minimization in
MDPs with non-delayed feedback (Even-Dar et al., 2009; Jaksch et al., 2010; Zimin and Neu, 2013;
Dick et al., 2014; Rosenberg and Mansour, 2019b,a, 2021; Jin et al., 2020; Shani et al., 2020; Luo
et al., 2021). Under delayed feedback, apart from the literature mentioned earlier, Dai et al. (2022)
recently presented a Follow-The-Perturbed-Leader approach that can also handle delayed feedback
in adversarial MDPs. However, their regret bound is slightly weaker than Jin et al. (2022) mentioned
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earlier. Finally, a different line of work (Katsikopoulos and Engelbrecht, 2003; Walsh et al., 2009)
consider delays in observing the current state, which is inherently different than our setting—for a
thorough discussion on the differences between the models we refer the reader to Lancewicki et al.
(2022).

Linear bandits. Early work in the non-delayed linear bandit setting suffered from suboptimal
results in terms of T (McMahan and Blum, 2004; Awerbuch and Kleinberg, 2004; Dani and Hayes,
2006). Abernethy et al. (2008) were the first to prove a regret bound with optimal scaling in T .
Subsequent works by (Bubeck and Eldan, 2015; Hazan and Karnin, 2016; Ito et al., 2020b; Zimmert
and Lattimore, 2022) obtained the optimal O(K

√
T ) regret bound.

2. Preliminaries

We denote by ℓ̂t ∈ RK the estimate of the loss ℓt in round t. We will define a loss estimator for each
application separately. We assume that delays d1, . . . , dT and losses ℓ1, . . . , ℓT are both generated
by an oblivious adversary. We focus on Follow The Regularized Leader (FTRL) which, in each
round t, computes

wt = argmin
w∈W

∑
τ∈ot

ℓ̂⊤τ w +R(w), (1)

where W ⊆ RK is a compact closed convex set, R is a twice-differentiable convex function such
that ∇2R(w) ≻ 0I for all w ∈ W , and ot = {τ : τ + dτ < t} is the set of indices of observed
losses at the end of round t − 1. Note that W and A do not necessarily coincide, as is the case of
combinatorial semi-bandits for example. Similarly, at and wt do not necessarily coincide. We will
specify the relationship between at and wt in each application. We define mt = [t − 1] \ ot to be
the set of indices of losses that have not been observed at the end of round t − 1 due to delay. As
a simplifying assumption, we assume that dmax = maxt∈[T ] dt ≥ 1 which is known to the learner.
We also use the simplifying assumptions that

∑T
t=1 |mt| = D and T are both known to the learner.

These assumptions are without loss of generality, as we may employ the standard doubling trick to
overcome the need to know these parameters (Bistritz et al., 2019; Lancewicki et al., 2022), see also
Appendix E. We also make use of the following notations for FTRL on cumulative loss L, which
we denote by

w(L) = argmin
w∈W

L⊤w +R(w).

In the remainder of the paper we use the following cumulative losses:

L̂t =
∑
τ∈ot

ℓ̂τ , L
m
t = L̂t +

∑
τ∈mt

ℓτ , L̂m
t = L̂t +

∑
τ∈mt

ℓ̂τ , L̂⋆
t =

∑
τ∈[t]

ℓ̂τ

Note that L̂⋆
t = L̂t +

∑
τ∈[t]\ot ℓ̂τ , w(L̂t) = wt and that w(L̂m

t ) is equivalent to FTRL in the
non-delayed setting.

Additional notations. We define a filtration of all random events observed by the learner up to
round t as Ft =

{(
τ,aτ ,L(ℓτ ,aτ )

)
: τ + dτ < t

}
. For a twice-differentiable function ϕ such

that ∇2ϕ(w) ≻ 0I for all w ∈ W we will denote by ∥L∥ϕ,w =
√
L⊤
(
∇2ϕ(w)

)−1
L and by
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∥L∥⋆ϕ,w =
√
L⊤∇2ϕ(w)L. The Dikin ellipsoid with radius r around w induced by ϕ is defined as

Dϕ(w, r) = {x ∈ W : ∥x−w∥⋆ϕ,w ≤ r}. The notations Õ(·) and ≲ hide poly-logarithmic factors.

3. Analysis

We build on the analysis of Flaspohler et al. (2021) for delayed feedback in the full-information
setting, where they observe that delayed feedback can be interpreted as poor hints in the sense of
optimistic online learning (Rakhlin and Sridharan, 2013). Taking this idea one step further, we
analyze what would happen had the algorithm received slightly different hints, and subsequently
bound the difference between different instances of FTRL.

We assume that our loss estimates satisfy E[ℓ̂t|Ft] = ℓt + bt, where bt is the estimator’s bias.
Our analysis relies on the following decomposition of the instantaneous regret

T∑
t=1

E
[
(wt − u)⊤ℓt

]
=

T∑
t=1

−E
[
(w(L̂m

t )− u)⊤bt
]

︸ ︷︷ ︸
bias

+

T∑
t=1

E
[
(w(L̂⋆

t )− u)⊤ℓ̂t
]

︸ ︷︷ ︸
cheating regret

(2)

+
T∑
t=1

(
E
[
(wt −w(L

m
t ))⊤ℓt︸ ︷︷ ︸

H1

]
+ E

[
(w(L

m
t )−w(L̂m

t ))⊤ℓt︸ ︷︷ ︸
H2

]
+ E

[
(w(L̂m

t )−w(L̂⋆
t ))

⊤ℓ̂t︸ ︷︷ ︸
H3

])
.

Suppose that bt = 0, i.e., ℓ̂t is an unbiased estimator of the loss. This implies that the bias term of
the decomposition is 0. The cheating regret can be found in different forms in online learning—see,
for example, the proof of (Shalev-Shwartz, 2012, Lemma 2.3) or (Gyorgy and Joulani, 2021, Equa-
tion 4)—and can be bounded using the standard be-the-leader lemma (Lemma 11 in Appendix A,
see also, for example Theorem 3 of (Joulani et al., 2020)). Now, let us focus on the second line of
Equation (2). Once simplified, the second line becomes

∑T
t=1 E

[
(wt −w(L̂⋆

t ))
⊤ℓ̂t
]
,which can be

recognised as the drift term of Gyorgy and Joulani (2021, Equation (4)). Normally, we would like
to use standard tools from linear bandits or online convex optimization to bound such terms, such
as for example (a variation of) Lemma 1 below, the proof of which can be found in Appendix A.

Lemma 1 Suppose that ∇2R(w′) ⪰ 1
4∇

2R(w) for all w ∈ W , w′ ∈ DR(w, 12), and for some
twice-differentiable convex R. Let x ∈ W and L,L′ ∈ RK such that w(L′),w(L) ∈ DR(x,

1
2),

then ∥w(L)−w(L′)∥⋆R,x ≤ 8∥L′ −L∥R,x.

We can bound the drift term (wt − w(L̂⋆
t ))

⊤ℓ̂t by ∥wt − w(L̂⋆
t )∥⋆R,wt

∥ℓ̂t∥R,wt using Hölder
inequality, and then apply Lemma 1 to further bound the right-hand side. This would lead to the
problematic term

T∑
t=1

E

∥∥∥∥ ∑
τ∈[t]\ot

ℓ̂τ

∥∥∥∥
R,wt

∥ℓ̂t∥R,wt

 ≤
T∑
t=1

E
[
(1 + |mt|) max

τ∈[t]\ot
∥ℓ̂τ∥2R,wt

]
.

To see where the problem is, suppose we are in the multi-armed bandit setting, R is the negative
entropy scaled by 1

η , and ℓ̂t is the standard importance-weighted estimator. Then, the upper bound
above is O(η(1 + |mt|)K), where K is the number of arms. Summing over T rounds, using a
log(K)

η bound on the cheating regret, and tuning η, we see that this analysis delivers a regret of order
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O
(√

K(T +D) log(K)
)

where D =
∑

t |mt|. In the case of constant delay dt = d, the bound
becomes O

(√
KdT log(K)

)
which is known to be suboptimal, as the minimax regret in this case

is of order max
{√

dT log(K),
√
KT

}
(Cesa-Bianchi et al., 2019; Zimmert and Seldin, 2020).

The intuition behind the suboptimality of the above analysis is that the cost of bandit feedback
and the cost of delayed feedback are not separated. Indeed, the analysis of most lower bounds is
split in two cases: a lower bound for bandit feedback without delay and a lower bound for delayed
full-information feedback, see for example Cesa-Bianchi et al. (2019). Separating the impact of
delayed feedback and bandit feedback is precisely why we bound the terms H1, H2, and H3 of
Equation (2) separately, which leads to Lemma 2 below, whose proof can be found in Appendix A.

Lemma 2 Let R be convex and twice-differentiable such that 4∇2R(w) ⪰ ∇2R(w′) ⪰ 1
4∇

2R(w)
for all w ∈ W and w′ ∈ DR(w, 12). Let ∥ℓt∥R,w ≤ α ≤ 1

16dmax
for all t and w ∈ W , and

E
[
∥ℓ̂t∥2R,wt

]
≤ β2 for all t, where wt is given by (1). Suppose also that ∥ℓ̂t∥R,wt ≤ 1

64(1+dmax)
for

all t with probability 1. Then for all u ∈ W

E

[
T∑
t=1

(wt − u)⊤ℓt

]
≤ R(u)−R(w1) + 8β2T −

T∑
t=1

E
[
(w(L̂m

t )− u)⊤bt
]

+
T∑
t=1

(
8α2|mt|+ 8αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

])
.

The work of Van Der Hoeven and Cesa-Bianchi (2022) provides a similar result for the multi-
armed bandit setting. However, that result does not apply to the more general linear bandit opti-
mization setting, which Lemma 2 does. The result of Van Der Hoeven and Cesa-Bianchi (2022)
can not be easily extend to our setting: their analysis relies on the fact that the constraint in the
Lagrangian of the FTRL objective can be expressed in a simple manner in the multi-armed bandit
setting, which is not possible in our setting.

To interpret Lemma 2, consider the multi-armed bandit setting with the standard importance-
weighted estimator and regularizer R(w) =

∑K
i=1

1
ηw(i) log(w(i)) − 1

γ log(w(i)). The purpose
of the log barrier term in the regularizer is to ensure stability of the iterates, as required by the
assumptions of the lemma. In this case, if ∥ℓt∥∞ ≤ 1, then α is O(

√
η). The quantity β2 is a

bound on the expectation of the squared local norm of the loss estimate, which is O(ηK). Thus, by
choosing u(i) = ũ(i)

(
1− 1/ 1

T

)
+ 1

T w1(i), we have that the expected regret against ũ is of order

1

η
log(K) + d2maxK ln(T ) + η(KT +D) +

T∑
t=1

αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

]
, (3)

where we used that
∑T

t=1 |mt| = D. The d2maxK ln(T ) term in the above equation comes from
the log-barrier part of R, which when tuned properly is able to ensure that the iterates of FTRL
are close to each other. So far, it seems that we did not manage to separate the cost of delay and
bandit feedback because of the final summation in (3). However, observe that due to the delay, for
τ, τ ′ ∈ mt, ℓ̂τ and ℓ̂τ ′ are independent random variables and ℓτ and ℓτ ′ are their means. Recall that
the variance of the sum of independent random variables equals to the sum of their variances. Thus,
by applying Jensen’s inequality to the square root, and using that ∇2R(w) ⪰ diag

(
ηw
)−1, we can

6
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see that

αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

]
≤ 2αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wτ

]

≤ 2α

√√√√√E

 K∑
i=1

ηwτ (i)

(∑
τ∈mt

(ℓτ (i)− ℓ̂τ (i))

)2
 = 2α

√√√√E

[∑
τ∈mt

K∑
i=1

ηwτ (i)
(
ℓτ (i)− ℓ̂τ (i)

)2]

≤
√

α2|mt|ηK ,

where the first inequality is due to Lemma 10 in Appendix A, a new result that proves the multi-
round stability of FTRL iterates under certain conditions, which can be applied for sufficiently small
γ. Recalling that α is O(

√
η) and using

√
η|mt|ηK ≤ 1

2(η|mt| + ηK) we can see that (3) is in
fact of order log(K)/η + d2maxK ln(T ) + η(KT +D), which gives a O

(√
(KT +D) log(K) +

d2maxK ln(T )
)

bound for an appropriately tuned η.
To conclude, as long as loss estimates ℓ̂τ and ℓ̂τ ′ are independent for τ, τ ′ ∈ mt, Lemma 2 im-

plies that we have effectively split the cost of delayed feedback and bandit feedback. We formalize
the above in Corollary 3, whose proof can be found in Appendix A.

Corollary 3 Under the same assumptions as in Lemma 2, suppose that E[ℓ̂τ |Ft] = ℓτ and that
E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(w(L̂t))
)−1

(ℓ̂τ ′ − ℓτ ′)
∣∣∣Ft

]
= 0 for all t ∈ [T ] and all τ, τ ′ ∈ mt where

τ ′ ̸= τ . Then for all u ∈ W

E

[
T∑
t=1

(wt − u)⊤ℓt

]
≤ R(u)−R(w1) + 16β2T + 16α2D .

4. Combinatorial Bandits

In this section, we demonstrate how to apply our generic FTRL approach to combinatorial bandits
(CMAB) with delayed feedback. This yields the first algorithm to achieve optimal regret in that
setting. We start with the description of the model as an instance of our general setting.

Delayed combinatorial bandits with semi-bandit feedback is an instance of the online learning
framework where ℓt ∈ [−1, 1]K , A ⊆ {0, 1}K , W = Conv(A) (the convex hull of A), and the
feedback function is L(ℓτ ,aτ ) = aτ ⊙ ℓτ where ⊙ is the Hadamard (elementwise) vector product.

We define the pseudo-regret in this setting as

RT = E

[
T∑
t=1

(at − a∗)⊤ℓt

]
,

with a∗ = argmina∈A
∑T

t=1 a
⊤ℓt. The algorithm we use in this setting (Algorithm 1) is inspired

by the algorithm of Audibert et al. (2014). In any given round t, Algorithm 1 first computes wt, the
solution of the FTRL optimization problem (Eq. (1)) over the convex hull of the action set. Then,
it constructs a probability distribution pt over A such that Ea∼pt [a] = wt. The estimator of loss is

7
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Algorithm 1: Delayed FTRL for combinatorial bandits
Input: γ ∈ (0, 1), η.
for t ∈ [T ] do

Compute wt = argminw∈W
∑

τ∈ot ℓ̂
⊤
τ w +R(w) with R as in equation (4).

Find probability distribution pt such that Ea∼pt [a] = wt.
Draw and play at ∼ pt.
Observe loss aτ ⊙ lτ and compute ℓ̂τ (i) =

aτ (i)ℓτ (i)
wτ (i)

for all τ ∈ ot.
end for

given by ℓ̂t(i) =
at(i)ℓt(i)
wt(i)

, which is clearly unbiased. We use the regularizer

R(w) =
K∑
i=1

(1
η
w(i) log(w(i))− 1

γ
log(w(i))

)
, (4)

where η > 0 and γ > 0 are hyperparameters. We now state the main results of this section.

Theorem 4 Let maxa∈A ∥a∥1 ≤ B. Running Delayed FTRL for combinatorial bandits (Algo-

rithm 1) with γ = 1
642B(1+dmax)2

and η = min

{
1

162Bd2max
,

√
B(1+ln(K

B ))
16(KT+BD)

}
guarantees,

RT ≤ 12

√
B(KT +BD) ln

(
K

B

)
+ 642B(1 + dmax)

2K ln(T ) + 29B2d2max ln

(
K

B

)
.

We sketch the proof of Theorem 4 (see Appendix B for a full proof) which follows from an
application of Corollary 3. To apply this corollary we first need to verify its assumptions. The
assumptions on ∇2R(w) are implied by Lemma 16 in Appendix F. Next, we set α =

√
ηB and

verify that 1
16dmax

≥ α ≥ ∥ℓt∥R,w. Indeed, w ∈ Conv(A) implies
∑K

i=1w(i) ≤ B. This, together
with |ℓ(i)| ≤ 1 and η + γw(i) ≥ γw(i), implies

∥ℓt∥R,w =

√
ℓ⊤t
(
∇2R(w)

)−1
ℓt =

√√√√ K∑
i=1

ℓt(i)2
ηγw2(i)

η + γw(i)
≤
√
ηB = α .

Our choice of η then implies α ≤ 1
16dmax

. Similarly, by setting β2 = ηK we fulfill the condition

E
[
∥ℓ̂t∥2R,wt

|Ft

]
≤ β2. Finally, the condition on γ allows us to verify the assumption ∥ℓ̂t∥R,wt ≤

1
64(1+dmax)

. Since all the assumptions are verified, we can now apply Corollary 3 and finish the
proof of Theorem 4. The Algorithm is computationally efficient for a range of action-sets including
m-sets and spanning trees. In general the algorithm is efficient whenever OSMD of Audibert et al.
(2014) is efficient and we refer to that paper for more details.

We now state a lower bound for the delayed combinatorial semi-bandit setting. This implies
that, ignoring terms that are logarithmic in T , the result of Theorem 4 is optimal. The proof of our
lower bound follows from standard arguments in the delayed bandit feedback literature and can be
found in Appendix B.
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Theorem 5 Suppose that dt = d for all t and that B ≤ K/2 . Then for any algorithm there exists
a sequence of losses such that

E

[
T∑
t=1

(at − a⋆)⊤ℓt

]
= Ω

(
max

{√
BKT,B

√
dT
})

.

5. Adversarial Markov Decision Processes

In this section, we apply our FTRL approach to adversarial Markov Decision Processes (MDPs)
where the transition function is known to the learner in advance. We show that it yields the first
algorithm that handles delay optimally in this setting. We start with a presentation of the model and
regret minimization framework.

A finite-horizon episodic adversarial MDP is defined by M = (S ,A , H, p, {ℓt}Tt=1, sinit),
where S and A are finite state and action spaces of sizes S and A, respectively, H is the horizon,
T is the number of episodes, and sinit ∈ S is the initial state. p = {ph : S × A → ∆S }Hh=1

is the transition function such that ph(s′ | s, a) is the probability of moving to s′ when taking
action a in state s at time h. {ℓt,h : S × A → [0, 1]}T ,H

t=1,h=1 are cost functions chosen by an
oblivious adversary, where ℓt,h(s, a) is the cost of taking action a in state s at time h of episode
t. For the ease of presentation, we slightly abuse notation and treat each set of loss functions
{ℓt,h : S × A → [0, 1]}Hh=1 simply as a vector ℓt ∈ [0, 1]HSA.

The learner interacts with the environment over T episodes. At the beginning of episode t, it
picks a policy πt = {πt,h : S → ∆A }Hh=1, and starts in the initial state st,1 = sinit. At each
time h ∈ [H], it observes the current state st,h ∈ S , draws an action from the policy at,h ∼
πt,h(· | st,h) and transitions to the next state st,h+1 ∼ ph(· | st,h, at,h). The feedback of episode
t contains the cost function over the agent’s trajectory {ℓt,h(st,h, at,h)}Hh=1, i.e., bandit feedback,
and is observed only at the end of episode t + dt. The learner’s goal is to minimize the value
of its policies, where V π

t,h(s) = E[
∑H

h′=h ℓt,h′(sh′ , ah′) | sh = s, π, p] is the value function of
policy π with respect to the cost ℓt. The performance is measured by the regret, defined as the
difference between the cumulative expected cost of the learner and the best fixed policy in hindsight:
RT =

∑T
t=1 V

πt
t,1 (sinit)−minπ∈Π

∑T
t=1 V

π
t,1(sinit).

In order present the adversarial MDP model as an instance of the general online learning frame-
work we use the notion of occupancy measures. Given a policy π and a transition function p′, the oc-
cupancy measure wπ,p′ ∈ [0, 1]HS2A is a vector, where wπ,p′

h (s, a, s′) is the probability to visit state
s at time h, take action a and transition to state s′. We also denote wπ,p′

h (s, a) =
∑

s′ w
π,p′

h (s, a, s′)

and wπ,p′

h (s) =
∑

aw
π,p′

h (s, a). By Rosenberg and Mansour (2019b) (see also Zimin and Neu
(2013); Dick et al. (2014)), the occupancy measure encodes the policy and the transition function
through the relations πh(a | s) = wπ,p′

h (s,a)/wπ,p′
h (s); p′h(s

′ | s, a) = wπ,p′
h (s,a,s′)/wπ,p′

h (s,a). The
set of all occupancy measures with respect to an MDP M is denoted by ∆(M), and the set of all
policies by Π =

{
{πh : S → ∆A }Hh=1

}
. Importantly, the value of a policy from the initial state

(i.e., the expected loss in an episode) can be written as the dot product between its occupancy mea-
sure and the cost function, i.e., ⟨wπ,p′ , ℓ⟩ =

∑
h,s,aw

π,p′

h (s, a)ℓh(s, a). Thus, the regret becomes
RT =

∑T
t=1⟨wπt,p, ℓt⟩ − minw∈∆(M)

∑T
t=1⟨w, ℓt⟩. Whenever p′ is omitted from the notation

wπ,p′ , it is understood to be the true transition function p.

9



HOEVEN ZIERAHN LANCEWICKI ROSENBERG CESA-BIANCHI

Algorithm 2: Delayed FTRL for adversarial MDPs
for t = 1, ..., T do

Compute wt = argminw∈W L̂⊤
t w +R(w), and policy πt,h(a | s) = wt,h(s,a)

wt,h(s)
∀(s, a, h).

Play episode t with policy πt, and observe feedback {ℓt,h(sτ,h, aτ,h)}Hh=1 for all τ + dτ = t.
Compute upper occupancy bound uτ,h(s, a) = maxp̂∈P wπτ ,p̂

h (s, a).

Compute loss estimator ℓ̂τ,h(s, a) =
I{sτ,h=s,aτ,h=a}ℓτ,h(s,a)

uτ,h(s,a)
and update L̂t.

end for

With that in hand, adversarial MDPs is an instance of the online learning framework where
ℓt ∈ [0, 1]HSA, A as the set of occupancy measures ∆(M) and the feedback L(wπτ , ℓτ ) is the
loss over the trajectory {ℓτ,h(sτ,h, aτ,h)}Hh=1. W is a (slightly modified) set of occupancy measures
which we will define later.

Next, we present our FTRL algorithm (Algorithm 2), based on the general framework pre-
sented in Section 3. To satisfy the stability conditions required for Lemma 2, we employ a hy-
brid regularization of negative entropy and log-barrier similar to the combinatorial bandit case:
R(w) = 1

η

∑
h,s,a,s′ wh(s, a, s

′) logwh(s, a, s
′) − 1

γ

∑
h,s,a,s′ logwh(s, a, s

′). The main differ-
ence is that some of the elements of the occupancy measures may be 0 regardless of the cho-
sen policy (e.g., if ph(s

′ | s, a) = 0, then wπ
h(s, a, s

′) = 0), in which case the regularization
is not well-defined. To avoid that, we first augment the set of occupancy measures as follows:
∆(P) = {wπ,p̂ : π ∈ Π, p̂ ∈ P} where P =

{
{p̂h}Hh=1 : ∀h, ∥p̂h − ph∥∞ ≤ 1

THSA

}
. Then,

we intersect it with Ω =
{
w ∈ [0, 1]HS2A : ∀(h, s, a, s′). wh(s, a, s

′) ≥ 1
T 3H2S4A2

}
. This con-

struction allows us to establish the following properties (the proof can be found in Appendix C):

Lemma 6 Let W = ∆(P) ∩ Ω. It holds that W is non-empty and,

1. For any w ∈ ∆(M), there exists w̃ ∈ W such that ∥w − w̃∥1 ≤ 2H
T .

2. Given w ∈ W , let π be defined by πh(a | s) = wh(s,a)
wh(s)

and uh(s, a) = maxp̂∈P wπ,p̂
h (s, a).

Then, ∥wπ −w∥1 ≤ 2H
T and ∥u−w∥1 ≤ 4H2S

T .

With that in hand, the regularization R is well-defined on the the domain W and bounded by
Õ( 1η + HS2A

γ ). Moreover, we are guaranteed that given the iterate wt and the corresponding policy
πt,h(a | s) = wt,h(s, a)/wt,h(s), the true occupancy measure wπt is close to wt up to a small error.
Next, to keep the local norm of the estimator small (which affects the guarantee of Lemma 2), we
introduce a slightly biased importance-sampling estimator (inspired by Jin et al. (2020)) defined by
ℓ̂t,h(s, a) =

I{st,h=s,at,h=a}ℓt,h(s,a)
ut,h(s,a)

where ut,h(s, a) = maxp̂∈P wπt,p̂
h (s, a). Recall that the local

norm is evaluated at wt and note that the expectation of the indicator I{st,h = s, at,h = a} is
wπt
h (s, a). Thus, the fact that ut,h(s, a) upper bounds both wt,h(s, a) and wπt

h (s, a) would allow us
to keep local norm small. In addition, using the second property in Lemma 6, we can also show that
the estimator’s bias is only of order 1/T (ignoring S,H factors). Finally, note that W is a convex
set defined by linear constrains, and thus the optimization can be solved efficiently (Rosenberg
and Mansour, 2019b; Lee et al., 2020). In addition, ut can be computed efficiently as well using
dynamic programming (Jin et al., 2020).
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Algorithm 3: Delayed FTRL for linear bandits
for t = 1, ..., T do

Compute wt = argminw∈W L̂⊤
t w + R(w), where R(w) = 1

η∥w∥22 + 1
γΨ(w) and Ψ is a

ν-self concordant barrier for W .
Play at = wt +

(
∇2R(wt)

)−1/2
vt , where vt is uniformly sampled from the unit sphere.

Observe a⊤
τ ℓτ for τ : τ + dτ = t.

Compute loss estimators ℓ̂τ = Kℓ⊤τ aτ

(
∇2R(wτ )

)1/2
vτ for τ : τ + dτ = t and update L̂t.

end for

We finish this section with the regret bound of Algorithm 2. The proof relies on the following
regret decomposition

RT =
T∑
t=1

⟨wπt −w⋆, ℓt⟩ =
T∑
t=1

⟨wπt −wt, ℓt⟩︸ ︷︷ ︸
ERROR

+
T∑
t=1

⟨wt − w̃⋆, ℓt⟩︸ ︷︷ ︸
REG

+
T∑
t=1

⟨w̃⋆ −w⋆, ℓt⟩︸ ︷︷ ︸
SHIFT-PENALTY

,

where, by Lemma 6, ERROR is bounded by 2H and w̃⋆ ∈ W exists such that SHIFT-PENALTY is
bounded by 2H . Finally, REG is bounded by utilizing Lemma 2. Due to lack of space we defer the
full details of the proof to Appendix C.

Theorem 7 Running Delayed FTRL for adversarial MDPs (Algorithm 2) with γ = 1
4096H(1+dmax)2

and η = min

{
1

256H(1+dmax)2
, 1√

(SAT+D) log(HSAT )

}
guarantees

E[RT ] ≤ 10H
√

SAT log(HSAT ) + 10H
√
D log(HSAT ) + 7 · 105H2S2A(1 + dmax)

2.

Remarkably, the above regret bound matches the lower bound of Lancewicki et al. (2022) (up
to poly-logarithmic factors), making it the first optimal regret for adversarial MDPs with delayed
bandit feedback.

6. Linear Bandits

In this section, we show how to apply our analysis of FTRL to linear bandits with delayed
feedback. Linear bandits with delayed feedback is an instance of our general setting where ℓt ∈
RK such that maxt ∥ℓt∥2 ≤ 1, A = W ⊂ RK , and the feedback function is L(ℓ,a) = ℓ⊤a.
Additionally, we assume that W ⊆ B(B), where B(B) is an L2 ball with radius B.

Our algorithm for the linear bandit setting is inspired by Abernethy et al. (2008), who show a
regularizer delivering nearly optimal bounds for the linear bandit setting with an efficient algorithm.
For the delayed linear bandit setting we use a regularizer of the form R(w) = 1

η∥w∥22 + 1
γΨ(w),

where Ψ is a ν-self-concordant barrier function for W . Recall that a thrice-differentiable function Ψ
is called self-concordant if it is convex and satisfies |∇3Ψ(w)[h,h,h]| ≤ 2

(
∇2Ψ(w)[h,h]

)3/2
,

where ∇3Ψ(w)[h1,h2,h3] =
∂3

∂t1∂t2∂t3
|t1=t2=t3=0Ψ(w+ t1h1+ t2h2+ t3h3). A self-concordant

function Ψ is a ν-self-concordant barrier if |∇Ψ(w)[h]| ≤
√
ν∇2Ψ(w)[h,h] . As a specific ex-

ample, the log barrier, − log(x), is 1-self-concordant for the non-negative reals. For a thorough
introduction to self-concordant barriers, we refer the reader to Nesterov and Nemirovskii (1994).
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Here, we only recall the most important properties, which can be found in (Nemirovski and Todd,
2008, Section 2).

The first property will allow us to satisfy the stability condition of the Hessian in Lemma 2: For
w,w′ ∈ W , we have that if ∥w −w′∥⋆Ψ,w < 1 then(

1− ∥w −w′∥⋆Ψ,w

)2∇2Ψ(w) ⪯ Ψ(w′) ⪯
(
1− ∥w −w′∥⋆Ψ,w

)−2∇2Ψ(w) . (5)

Next, given y ∈ W denote by πy(x) = inf{z ≥ 0 : y+z−1(x−y) ∈ W} the Minkowsky function.
We denote by Wδ = {w : πw1(w) ≤ (1 + δ)−1}, where δ > 0. If Ψ is a ν-self-concordant barrier,
then for any w ∈ Wδ

Ψ(w)−Ψ(w1) ≤ ν ln
(
(1 + δ)δ−1

)
. (6)

This property will essentially allow us to show that for any benchmark point ũ ∈ W there is a
sufficiently close u such that the penalty term in the regret (namely, R(u) − R(w1)) is nicely
bounded (see Eq. (19) in the proof). Finally, we turn to the way we choose the played action at ∈ A
and the construction of the estimator. For that we use the fact that, DΨ(w, 1) ⊆ W = A for any
w ∈ W . Now, let v be in the K-dimensional unit sphere, denoted by S. For any w ∈ W , we have
that a = w+

(
∇2Ψ(w)

)−1/2
v ∈ A because ∥a−w∥Ψ,w = 1. For adversarial linear bandits with

delayed feedback, we use at = wt+
(
∇2R(wt)

)−1/2
vt, where vt is sampled i.i.d. from the uniform

distribution over the unit sphere. Note that at ∈ W still holds. As for the loss estimate, we use
ℓ̂t = Kℓ⊤t at

(
∇2R(wt)

)1/2
vt, which can be seen to an unbiased estimator for ℓt after observing

that E[vtv⊤
t |Ft] =

1
K I .

Theorem 8 Let u ∈ W . Running Delayed FTRL for linear bandits (Algorithm 3) with γ =

min

{
1

(64BK(1+dmax))2
,

√
ν ln
(
1+

√
T
)

16(BK)2T

}
and η = min

{
1

(16dmax)2
,
√

B2

16D

}
guarantees,

E

[
T∑
t=1

(at − u)⊤ℓt

]
≤ 14BK

√
νT ln(T ) + 8B

√
D + 214νB2K2(1 + dmax)

2 ln(T ).

The proof is similar to the proof of Theorem 4 and follows from an application of Corollary 3,
which we can apply after verifying its assumptions (see the full proof in Appendix D).

Let us interpret the result of Theorem 8. It is known that a K-self-concordant barrier exists
for all convex and closed W (Bubeck and Eldan, 2015; Chewi, 2021). Therefore, for dt = d,
our algorithm always guarantees a O(K3/2B

√
T ln(T ))+B

√
dT ) bound for delayed bandit linear

optimization. This makes our bound slightly suboptimal, as Ito et al. (2020a) show that the minimax
regret is Θ(KB

√
T ln(T )) +B

√
dT ). This trade-off between running time and regret bounds also

exists in non-delayed linear bandits: algorithms that obtain the optimal regret bound (Bubeck and
Eldan, 2015; Hazan and Karnin, 2016; Van der Hoeven et al., 2018; Ito et al., 2020b; Zimmert
and Lattimore, 2022) have running time polynomial in both T and K, whereas slightly suboptimal
algorithms in terms of regret, such as Scrible (Abernethy et al., 2008), have O(K3) runtime, given
that a self-concordant barrier for the set of interest can be efficiently computed. For particular action
sets, there exist algorithms that avoid this trade-off, see (Bubeck et al., 2012). There also exist
domains for which ν can be considerably smaller. For example, Ψ(w) = − log(1 − ∥w∥22) is a 1-
self-concordant barrier for the L2 unit ball, in which case our bound is O(KB

√
T ln(T ))+B

√
dT ).
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This matches the upper bound of Ito et al. (2020a) with less stringent assumptions, since Ito et al.
(2020a) assume constant delays whereas Algorithm 3 can handle variable delays.

Efficient implementation. Abernethy et al. (2008, section 9) provide an approximation of FTRL
with self-concordant barrier regularizers with a O(K3) per-round running time. Seemingly this im-
plies that we can not use the results of Abernethy et al. (2008) to approximate our algorithm since
our regularizer R is not a barrier, but only a self-concordant function on W—see also (Nemirovski,
2004, Proposition 2.1.1). However, even though Abernethy et al. (2008) assume that the regularizer
is a self-concordant barrier, the properties used to prove that the approximation has a suitable regret
bound rely on properties of self-concordant functions—see (Nemirovski, 2004, Chapter 2, State-
ment IX). Thus, we can use the approximation of Abernethy et al. (2008) to obtain a O(K3) per
round running time approximation of our algorithm.

7. Future Work and Discussion

We provided a new analysis of FTRL with delayed bandit feedback which leads to several new
results for combinatorial semi-bandits, adversarial Markov decision processes, and linear bandits.
The main downside of our approach is the additive d2max log(T ) term in our bounds. Even though
it is a lower order term, it prevents us from employing the skipping technique of Thune et al.
(2019). Therefore, an important open problem is removing the d2max log(T ) term and replacing
it with dmax log(T ) or removing it altogether. Another direction for future work is MDPs with
unknown transitions. Extending our ideas to that setting is not straightforward due the fact that
standard analyses for this prwoblem use a changing domain W . Finally, in the linear bandits setting
it would be interesting to see whether the results for non-delayed feedback and the specific choice
of W used by Bubeck et al. (2012) can be transferred to the delayed feedback setting.
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Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour, and Alberto Minora. Delay and coopera-
tion in nonstochastic bandits. In Conference on Learning Theory, pages 605–622, 2016.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Nonstochastic bandits with composite
anonymous feedback. In Conference On Learning Theory, pages 750–773, 2018.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Delay and cooperation in nonstochas-
tic bandits. The Journal of Machine Learning Research, 20(1):613–650, 2019.

Sinho Chewi. The entropic barrier is n-self-concordant. arXiv preprint arXiv:2112.10947, 2021.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochas-
tic optimization robust to arbitrary delays. Advances in Neural Information Processing Systems,
34:9024–9035, 2021.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, and Alexandre Proutiere. Combina-
torial bandits revisited. In Advances in Neural Information Processing Systems, 2015.

Thomas M Cover. Universal portfolios. Mathematical finance, 1(1):1–29, 1991.

Yan Dai, Haipeng Luo, and Liyu Chen. Follow-the-perturbed-leader for adversarial markov decision
processes with bandit feedback. arXiv preprint arXiv:2205.13451, 2022.

14



A UNIFIED ANALYSIS OF NONSTOCHASTIC DELAYED FEEDBACK

Varsha Dani and Thomas P Hayes. Robbing the bandit: Less regret in online geometric optimization
against an adaptive adversary. In SODA, volume 6, pages 937–943, 2006.

Travis Dick, Andras Gyorgy, and Csaba Szepesvari. Online learning in markov decision processes
with changing cost sequences. In International Conference on Machine Learning, pages 512–
520. PMLR, 2014.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. In Conference on Uncertainty in
Artificial Intelligence, pages 169–178, 2011.

Stephen G. Eick. The two-armed bandit with delayed responses. The Annals of Statistics, 1988.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online Markov decision processes. Math-
ematics of Operations Research, 34(3):726–736, 2009.

Genevieve E Flaspohler, Francesco Orabona, Judah Cohen, Soukayna Mouatadid, Miruna Oprescu,
Paulo Orenstein, and Lester Mackey. Online learning with optimism and delay. In International
Conference on Machine Learning, pages 3363–3373, 2021.

Manegueu Anne Gael, Claire Vernade, Alexandra Carpentier, and Michal Valko. Stochastic bandits
with arm-dependent delays. In International Conference on Machine Learning, pages 3348–
3356, 2020.

Andras Gyorgy and Pooria Joulani. Adapting to delays and data in adversarial multi-armed bandits.
In International Conference on Machine Learning, pages 3988–3997, 2021.
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International Conference on Machine Learning, pages 1453–1461, 2013.

Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári. Delay-tolerant online convex optimization:
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Appendix A. Deferred Proofs of Analysis (Section 3)

Lemma 2 Let R be convex and twice-differentiable such that 4∇2R(w) ⪰ ∇2R(w′) ⪰ 1
4∇

2R(w)
for all w ∈ W and w′ ∈ DR(w, 12). Let ∥ℓt∥R,w ≤ α ≤ 1

16dmax
for all t and w ∈ W , and

E
[
∥ℓ̂t∥2R,wt

]
≤ β2 for all t, where wt is given by (1). Suppose also that ∥ℓ̂t∥R,wt ≤ 1

64(1+dmax)
for

all t with probability 1. Then for all u ∈ W

E

[
T∑
t=1

(wt − u)⊤ℓt

]
≤ R(u)−R(w1) + 8β2T −

T∑
t=1

E
[
(w(L̂m

t )− u)⊤bt
]

+
T∑
t=1

(
8α2|mt|+ 8αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

])
.

Proof By Lemma 10, wt ∈ DR(wτ ,
1
2) for all τ ∈ [t] \ ot = mt ∪ {t} ⊆ {t− dmax, . . . , t} and all

t. We can use this to show

∑
τ∈mt

∥ℓ̂τ∥R,wt ≤
∑

τ∈[t]\ot

∥ℓ̂τ∥R,wt ≤ 2
∑

τ∈[t]\ot

∥ℓ̂τ∥R,wτ ≤ 1

16
,

by employing 4∇2R(wτ ) ⪰ ∇2R(wt) and the assumption on ∥ℓ̂t∥R,wt . By Lemma 9 and our
assumptions on ∥ℓ̂t∥R,wt and ∥ℓt∥R,wt , we can thus conclude that w(L

m
t ),w(L̂m

t ),w(L̂⋆
t ) ∈

DR(wt,
1
2). By Hölder’s inequality and Lemma 1

E
[
(wt −w(L

m
t ))⊤ℓt

]
≤ E

[
∥wt −w(L

m
t )∥⋆R,wt

∥ℓt∥R,wt

]
≤ E

[
8∥L̂t −L

m
t ∥R,wt∥ℓt∥R,wt

]
= E

[
8

∥∥∥∥ ∑
τ∈mt

ℓτ

∥∥∥∥
R,wt

∥ℓt∥R,wt

]
≤ 8α2|mt|, (7)

where the last inequality is due to the triangle inequality and the assumptions on ∥ℓτ∥R,w. Similarly
we bound

E
[
(w(L

m
t )−w(L̂m

t ))⊤ℓt

]
≤ 8αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

]
E
[
(w(L̂m

t )−w(L̂⋆
t ))

⊤ℓ̂t

]
≤ 8β2. (8)

By Lemma 11 we have that

T∑
t=1

(w(L̂⋆
t )− u)⊤ℓ̂t ≤ R(u)−R(w1). (9)
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Thus, by combining equations (2), (7), (8), and (9),

T∑
t=1

E
[
(wt − u)⊤ℓt

]
=

T∑
t=1

E
[
(w(L̂⋆

t )− u)⊤ℓ̂t
]
−

T∑
t=1

E
[
(w(L̂m

t )− u)⊤bt
]

+

T∑
t=1

(
E
[
(wt −w(L

m
t ))⊤ℓt

]
+ E

[
(w(L

m
t )−w(L̂m

t ))⊤ℓt
]
+ E

[
(w(L̂m

t )−w(L̂⋆
t ))

⊤ℓ̂t
])

≤ R(u)−R(w1) + 8β2T +
T∑
t=1

(
8α2|mt|+ 8αE

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

])

−
T∑
t=1

E
[
(w(L̂m

t )− u)⊤bt
]
,

which concludes the proof.

Corollary 3 Under the same assumptions as in Lemma 2, suppose that E[ℓ̂τ |Ft] = ℓτ and that
E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(w(L̂t))
)−1

(ℓ̂τ ′ − ℓτ ′)
∣∣∣Ft

]
= 0 for all t ∈ [T ] and all τ, τ ′ ∈ mt where

τ ′ ̸= τ . Then for all u ∈ W

E

[
T∑
t=1

(wt − u)⊤ℓt

]
≤ R(u)−R(w1) + 16β2T + 16α2D .

Proof We are looking to control E
[∥∥∑

τ∈mt
(ℓτ − ℓ̂τ )

∥∥
R,wt

]
for a given t ∈ [T ]. We start by

considering

E

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥2
R,wt

]
=
∑
τ∈mt

E
[∥∥ℓτ − ℓ̂τ

∥∥2
R,wt

]
=
∑
τ∈mt

(
E
[∥∥ℓ̂τ∥∥2R,wt

]
− E

[∥∥ℓτ∥∥2R,wt

])
≤
∑
τ∈mt

E
[∥∥ℓ̂τ∥∥2R,wt

]
,

where we used that E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(w(L̂t))
)−1

(ℓ̂τ ′ − ℓτ ′) | Ft

]
= 0 for τ ̸= τ ′ in the first

equality, and that E[ℓ̂τ | Ft] = ℓτ in the second equality. In turn, the above together with Jensen’s
inequality implies that

E

[∥∥∥∥ ∑
τ∈mt

(ℓτ − ℓ̂τ )

∥∥∥∥
R,wt

]
≤
√∑

τ∈mt

E
[∥∥ℓ̂τ∥∥2R,wt

]
≤
√

4
∑
τ∈mt

E
[∥∥ℓ̂τ∥∥2R,wτ

]
≤
√
4|mt|β2 , (10)
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where in the second inequality we used Lemma 10 together with 4∇2R(w) ⪰ ∇2R(w′) ⪰
1
4∇

2R(w) for all w ∈ W and w′ ∈ DR(w, 12). Finally, the third inequality of 10 is due to the
assumptions of Lemma 2. We conclude by substituting this bound into the results of Lemma 2,

T∑
t=1

E
[
(wt − u)⊤ℓt

]
≤ R(u)−R(w1) + 8β2T +

T∑
t=1

(
8α2|mt|+ 16

√
|mt|α2β2

)
≤ R(u)−R(w1) + 16β2T + 16α2

T∑
t=1

|mt|,

where in the last inequality we used that
√
ab ≤ 1

2(a+ b) for a, b > 0.

Lemma 1 Suppose that ∇2R(w′) ⪰ 1
4∇

2R(w) for all w ∈ W , w′ ∈ DR(w, 12), and for some
twice-differentiable convex R. Let x ∈ W and L,L′ ∈ RK such that w(L′),w(L) ∈ DR(x,

1
2),

then ∥w(L)−w(L′)∥⋆R,x ≤ 8∥L′ −L∥R,x.

Proof By Taylor’s theorem and the optimality of w(L′) we have that for some ζ on the line segment
between w(L′) and w(L)

L′⊤w(L) +R(w(L))−L′⊤w(L′)−R(w(L′))

≥ 1

2
(w(L′)−w(L))⊤∇2R(ζ)(w(L′)−w(L))

≥ 1

8
(w(L′)−w(L))⊤∇2R(x)(w(L′)−w(L)),

where the last inequality is due the assumption on ∇2R(w), which is applicable because if w(L′),w(L) ∈
DR(x,

1
2) it implies that the line segment between w(L′) and w(L) is also in DR(x,

1
2). Thus

ζ ∈ DR(x,
1
2).

By Taylor’s theorem we have that

L′⊤w(L) +R(w(L))−L′⊤w(L′)−R(w(L′))

= (L′ −L)⊤(w(L)−w(L′)) +L⊤w(L) +R(w(L))−L⊤w(L′)−R(w(L′))

≤ (L′ −L)⊤(w(L)−w(L′))

≤ ∥L′ −L∥R,x∥w(L)−w(L′)∥⋆R,x ,

where the first inequality is due to the optimality of w(L) and the second inequality is Hölder’s
inequality. Thus, we may conclude that

∥L′ −L∥R,x∥w(L)−w(L′)∥⋆R,x ≥ 1

8

(
∥w(L)−w(L′)∥⋆R,x

)2
,

which concludes the proof after multiplying both sides of the above inequality by 8
∥w(L)−w(L′)∥⋆R,x

.
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Lemma 9 Suppose that ∇2R(w′) ⪰ 1
4∇

2R(w) for all w ∈ W and w′ ∈ DR(w, 12) and for R
strictly convex and twice differentiable. Let z ⊂ N be a finite set, and define L′ = L +

∑
τ∈z yτ ,

where yτ ∈ RK . If
∑

τ∈z ∥yτ∥R,w(L) ≤ 1
16 , then w(L′) ∈ DR(w(L), 12).

Proof Because of the strict convexity of R, to show that w(L′) ∈ DR(w(L), 12) it suffices to show
that for all x on the boundary of DR(w(L), 12)

L′⊤x+R(x) ≥ L′⊤w(L) +R(w(L)). (11)

To see why the strict convexity of R is sufficient, suppose that all x on the boundary of DR(w(L), 12)
indeed satisfy equation (11). For the sake of contradiction suppose that w(L′) is not in DR(w(L), 12).
Let z = (1 − a)w(L) + aw(L′) be the point on the boundary of DR(w(L), 12) on the segment
between w(L) and w(L′). Then

L′⊤w(L) +R(w(L)) ≤ L′⊤z +R(z)

< (1− a)(L′⊤w(L) +R(w(L))) + a(L′⊤w(L′) +R(w(L′)))

≤ L′⊤w(L) +R(w(L)) ,

where the last inequality is by definition of w(L′). Thus, we have a contradiction, which implies
that if all x on the boundary of DR(w(L), 12) satisfy equation (11) then w(L′) ∈ DR(w(L), 12).

We proceed by showing that all x on the boundary of DR(w(L), 12) satisfy equation (11). De-
note by h = x − w(L). Using Taylor’s theorem, there exists ζ on the segment between x and
w(L) such that

L′⊤x+R(x)−L′⊤w(L)−R(w(L))

= (L′ −L)⊤h+ (L+∇R(w(L)))⊤h+ 1
2h

⊤∇2R(ζ)h

≥ (L′ −L)⊤h+ 1
2h

⊤∇2R(ζ)h

≥ (L′ −L)⊤h+ 1
8h

⊤∇2R(w(L))h

(12)

where the first inequality is due to the optimality of w(L) and the second inequality is because
ζ,w(L) ∈ DR(w, 12). Thus, by applying Hölder’s inequality we can see that

L′⊤x+R(x)−L′⊤w(L)−R(w(L))

≥ (L′ −L)⊤h+ 1
8h

⊤∇2R(w(L))h

≥ −
∑
τ∈z

∥yτ∥R,w(L)∥h∥⋆R,w(L) +
1
8h

⊤∇2R(w(L))h

= −1

2

∑
τ∈z

∥yτ∥R,w(L) +
1
32

≥ 0

where the equality is due to the fact that ∥h∥⋆R,w(L) =
1
2 , as x is on the boundary of D(w(L), 12)

and the final inequality is due to the assumption that
∑

τ ∥yτ∥R,w(L) ≤ 1
16 .
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Lemma 10 Suppose that 4∇2R(w) ⪰ ∇2R(w′) ⪰ 1
4∇

2R(w) for all w ∈ W and w′ ∈
DR(w, 12). Also suppose that ∥ℓ̂t∥R,wt ≤ 1

64(1+dmax)
for all t with probability 1. Then, for all

t and all δ ∈ [dmax + 1], we have that wt+δ ∈ DR(wt,
1
2).

Proof We prove the statement by induction on t. For the base case, we need to show that for
all δ ∈ [1 + dmax], w1+δ ∈ DR(w1,

1
2). We start by showing that w2 ∈ DR(w1,

1
2) where

L̂2 = L̂1 + ℓ̂1I{1 ∈ o2}. Since ∥ℓ̂1∥R,w1 ≤ 1
16 by assumption, this follows from Lemma 9. Now,

L̂3 = L̂1 + ℓ̂1I{1 ∈ o3 \ o2} + ℓ̂2I{2 ∈ o3}. Since 4∇2R(w) ⪰ ∇2R(w′) ⪰ 1
4∇

2R(w) for all
w ∈ W and w′ ∈ DR(w, 12) and ∥ℓ̂t∥R,wt ≤ 1

64(1+dmax)
for all t, we have that

∥ℓ̂1∥R,w1 + ∥ℓ̂2∥R,w1 ≤ ∥ℓ̂1∥R,w1 + 2∥ℓ̂2∥R,w2 ≤ 1

16

and Lemma 9 implies that w3 ∈ DR(w1,
1
2). We can now repeat this argument to show that

w1+δ ∈ DR(w1,
1
2) for δ ∈ [dmax + 1], which completes the proof for the base case.

For the induction step, assume that wt ∈ DR(wτ ,
1
2) for τ ∈ {t− dmax − 1, . . . , t− 1}. Recall

that L̂t+1 = L̂t +
∑

τ∈ot+1\ot ℓ̂τ . Since ot+1 \ ot ⊆ {t− dmax, . . . , t− 1, t}, we have that

∑
τ∈ot+1\ot

∥ℓ̂τ∥R,wt ≤ 2
∑

τ∈ot+1\ot

∥ℓ̂τ∥R,wτ ≤ |ot+1 \ ot|
32(dmax + 1)

≤ 1

32
,

where in the first inequality we used that ∇2R(wt) ⪰ 1
4∇

2R(wτ ) if wt ∈ DR(wτ ,
1
2) which for

τ ∈ {t− dmax, . . . , t− 1} is true by the inductive assumption, and in the second inequality we used
the assumption ∥ℓ̂τ∥R,wτ ≤ 1

64(1+dmax)
. Then Lemma 9 implies wt+1 ∈ DR(wt,

1
2) which in turn

implies ∇2R(wt) ⪰ 1
4∇

2R(wt+1). Using this last inequality, we can see that∑
τ∈ot+2\ot

∥ℓ̂τ∥R,wt ≤
∑

τ∈ot+2\(ot∪{t+1})

∥ℓ̂τ∥R,wt + ∥ℓ̂t+1∥R,wt

≤ 1

32
+ 2∥ℓ̂t+1∥R,wt+1 ≤ 1

16
.

Thus, by Lemma 9, wt+2 ∈ DR(wt,
1
2). We can repeat this argument to show that for all δ ∈

[1 + dmax], wt+δ ∈ DR(wt,
1
2).

Lemma 11 (Be-The-Leader Lemma) For any fixed u ∈ W we have that

T∑
t=1

ℓ̂⊤t (w(L̂⋆
t )− u) ≤ R(u)−R(w1)

Proof We will prove the statement by induction on T . The base case holds by definition of w1. For
the induction step, assume that

T−1∑
t=1

ℓ̂⊤t w(L̂⋆
t ) +R(w1) ≤

T−1∑
t=1

ℓ̂⊤t w +R(w)
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for any w ∈ W . Adding ℓ̂⊤Tw(L̂⋆
t ) to both sides of the above inequality and setting w = w(L̂⋆

t )
on the right-hand side of the above inequality we find

T∑
t=1

ℓ̂⊤t w(L̂⋆
t ) +R(w1) ≤ argmin

w∈W

T∑
t=1

ℓ̂⊤t w +R(w)

≤
T∑
t=1

ℓ̂⊤t u+R(u),

which proves the statement after reordering the above inequality.
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Appendix B. Deferred Proof for Combinatorial Semi-Bandits (Section 4)

Theorem 4 Let maxa∈A ∥a∥1 ≤ B. Running Delayed FTRL for combinatorial bandits (Algo-

rithm 1) with γ = 1
642B(1+dmax)2

and η = min

{
1

162Bd2max
,

√
B(1+ln(K

B ))
16(KT+BD)

}
guarantees,

RT ≤ 12

√
B(KT +BD) ln

(
K

B

)
+ 642B(1 + dmax)

2K ln(T ) + 29B2d2max ln

(
K

B

)
.

Proof We are looking to apply Corollary 3. We start by showing that indeed 4∇2R(w) ⪰ ∇2R(w′) ⪰
1
4∇

2R(w) for all w ∈ W and w′ ∈ DR(w, 12). With ϕ, as defined in Lemma 16,(
∇2R(w)

)
(i, i) =

1

γw2(i)
+

1

ηw(i)
≥ 1

γw2(i)
=
(
∇2ϕ(w)

)
(i, i) ,

and we conclude that ∇2R(w) ⪰ ∇2ϕ(w) as both matrices are diagonal. Together with W ⊆ RK
+ ,

R being strictly convex, and γ ∈ (0, 1), we are in a position to apply Lemma 16 to conclude that
1
2w(i) ≤ w′(i) ≤ 2w(i) for all w′ ∈ DR(w, 12) and all i ∈ [K]. We can use this fact to show that(

∇2R(w′)
)
(i, i) =

1

γw′2(i)
+

1

ηw′(i)
≥ 1

γ4w2(i)
+

1

η2w(i)
≥ 1

4

(
∇2R(w)

)
(i, i)

and (
∇2R(w′)

)
(i, i) =

1

γw′2(i)
+

1

ηw′(i)
≤ 1

γ 1
4w

2(i)
+

1

η 1
2w(i)

≤ 4
(
∇2R(w)

)
(i, i) .

With ∇2R(w) being a diagonal matrix, we can conclude that 4∇2R(w) ⪰ ∇2R(w′) ⪰ 1
4∇

2R(w)
for all w ∈ W and w′ ∈ DR(w, 12).

As the next step, we find an appropriate α such that ∥ℓt∥R,w ≤ α ≤ 1
16dmax

. For that we use∑K
i=1w(i) ≤ B, ∥ℓ∥∞ ≤ 1, and η + γw(i) ≥ γw(i) to bound

∥ℓt∥R,w =

√√√√ K∑
i=1

ℓt(i)2
ηγw2(i)

η + γw(i)
≤
√
ηB︸ ︷︷ ︸
α

. (13)

and it is clear that α ≤ 1
16dmax

, by η ≤ 1
162Bd2max

. Next is E
[
∥ℓ̂t∥2R,wt

]
≤ β2, for which we

commence by using the tower rule.

E
[
∥ℓ̂t∥2R,wt

]
= EFt

[
Eat

[
∥ℓ̂t∥2R,wt

|Ft

]]
.

Next we consider Eat

[
∥ℓ̂t∥2R,wt

|Ft

]
in isolation

Eat

[
∥ℓ̂t∥2R,wt

|Ft

]
= Eat

[
K∑
i=1

(
at(i)ℓt(i)

wt(i)

)2 (
∇2R(wt)

)−1
(i, i)|Ft

]

=

K∑
i=1

ℓt(i)
2

wt(i)

ηγw2
t (i)

η + γwt(i)
≤ ηK︸︷︷︸

β2

, (14)
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where we also used that Eat [at] = wt, and η + γw(i) ≥ γw(i). Next is showing that ∥ℓ̂t∥R,wt ≤
1

64(1+dmax)
:

∥ℓ̂t∥R,w(L̂t)
=

√√√√ K∑
i=1

(
at(i)ℓt(i)

wt(i)

)2 ηγw2
t (i)

η + γwt(i)
≤
√
γB ≤ 1

64(1 + dmax)
,

where we used that γ ≤ 1
642B(1+dmax)2

. Finally we show that ℓ̂τ and ℓ̂τ ′ are independent for all

τ, τ ′ ∈ mt where τ ′ ̸= τ . Recall that ℓ̂τ (i) = aτ (i)ℓτ (i)
wτ (i)

, for all i. Conditioned on the observed

history Ft, the only random element of ℓ̂τ ′ is aτ ′ ∼ pτ ′ . Since ℓ̂τ can not be used in round t to
compute pτ ′ we have that ℓ̂τ ′ is independent of ℓ̂τ . We conclude that

E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(wt)
)−1

(ℓ̂τ ′ − ℓτ ′)
∣∣∣Ft

]
= E

ℓ̂τ

[
E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(wt)
)−1

(ℓ̂τ ′ − ℓτ ′)
∣∣∣Ft, ℓ̂τ

]]
= 0

where we used that ℓ̂τ ′ is and unbiased estimator of ℓτ ′ . Now we are able to apply Corollary 3, from
which it follows that for any u ∈ W

E

[
T∑
t=1

(at − u)⊤ℓt

]
≤ R(u)−R(w1) + 16ηKT + 16ηBD , (15)

by substituting α from equation (13) and β2 from equation (14). The next step is finding an appro-
priate bound on R. We can do this for all u ∈ W for the negative entropy component as follows

−
K∑
i=1

u(i) lnu(i) = ∥u∥1
K∑
i=1

u(i)

∥u∥1
ln

1

w(i)

≤ ∥u∥1 ln

(
K∑
i=1

u(i)

∥u∥1
1

u(i)

)

≤ ∥u∥1 ln
(

K

∥u∥1

)
+ ∥u∥1 ≤ B

(
1 + ln

(
K

B

))
, (16)

where we used Jensen’s inequality in the second step and the fact that x ln(Kx ) + x is in increasing
on x ∈ [1,K] in the last inequality. The negative logarithm component however is unbounded and
tends to infinity when any element of u tends to 0. Thus we cannot compare to a∗ directly, which
might lie on the boundary on W . Instead we define u = (1− θ)a∗ + θw1 for an θ ∈ [0, 1]. θ now
acts as a trade-off between an upper bound on the regularizer and an additional bias-like term that
stems from comparing a∗ to u in terms of pseudo-regret. We now bound the negative logarithm of
u by simply using (1− θ)a∗(i) ≥ 0

ln(w1(i))− ln(u(i)) = ln

(
w1(i)

(1− θ)a∗(i) + θw1(i)

)
≤ ln

(
1

θ

)
. (17)
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Combining equation (16) and equation (17) allows us to bound R(u)−R(w1)

R(u)−R(w1) =
K∑
i=1

(u(i)
η

ln(u(i))− 1

γ
ln(u(i))

)
−

K∑
i=1

(w1(i)

η
ln(w1(i))−

1

γ
ln(w1(i))

)
≤

B
(
1 + ln

(
K
B

))
η

+
K ln

(
1
θ

)
γ

, (18)

where we applied that ln(x) ≤ 0 for all x ∈ (0, 1). To finish the proof, we start from the regret

RT = E

[
T∑
t=1

(at − a∗)⊤ℓt

]
= E

[
T∑
t=1

(at − u)⊤ℓt

]
+ θE

[
T∑
t=1

(w1 − a∗)⊤ℓt

]

≤ E

[
T∑
t=1

(at − u)⊤ℓt

]
+ 2θBT ,

where we bound (w1 − a∗)⊤ℓt ≤ 2B in the inequality. We continue by using equation (15) and
equation (18)

E

[
T∑
t=1

(at − u)⊤ℓt

]
+ 2θBT ≤ R(u)−R(w1) + 16ηKT + 16ηBD + 2θBT

≤
B
(
1 + ln

(
K
B

))
η

+
K ln

(
1
θ

)
γ

+ 16ηKT + 16ηBD + 2θBT

=
B
(
1 + ln

(
K
B

))
η

+
K ln (T )

γ
+ 16ηKT + 16ηBD + 2B ,

where in the equality we set θ = 1
T . Substituting

γ =
1

642B(1 + dmax)2
and η = min

 1

162Bd2max

,

√
B
(
1 + ln

(
K
B

))
4
√
(BD +KT )


yields

RT ≤ 8

√
B

(
1 + ln

(
K

B

))
(KT +BD)

+ 642B(1 + dmax)
2K ln (T ) + 28B2d2max

(
1 + ln

(
K

B

))
.

Theorem 5 Suppose that dt = d for all t and that B ≤ K/2 . Then for any algorithm there exists
a sequence of losses such that

E

[
T∑
t=1

(at − a⋆)⊤ℓt

]
= Ω

(
max

{√
BKT,B

√
dT
})

.
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Proof By Audibert et al. (2014), we have that any algorithm without delay must suffer at least
Ω(

√
BKT ) regret in the combinatorial semi-bandit setting.

Next, we assume full information feedback, which is easier from the point of view of the algo-
rithm. We take inspiration from Langford et al. (2009, Lemma 3). For simplicity we will assume
that T/d is an integer. We divide the T rounds into T/d blocks of d rounds. We take the losses
of the lower bound for B-sets in (Koolen et al., 2010, Section 4), which states that any algorithm
in the full information setting must suffer at least Ω(B

√
T ′) regret after T ′ rounds. We take the

loss of the first round of the lower bound (Koolen et al., 2010) and copy it d times, which we use
as the losses for the first block. We repeat this process for the remaining blocks. Since the algo-
rithm can not respond to the copied losses, we must have that any algorithm must suffer at least
Ω(dB

√
T/d) = Ω(B

√
dT ) regret, which completes the proof.
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Appendix C. Deferred Proofs for Adversarial MDPs (Section 5)

Theorem 7 Running Delayed FTRL for adversarial MDPs (Algorithm 2) with γ = 1
4096H(1+dmax)2

and η = min

{
1

256H(1+dmax)2
, 1√

(SAT+D) log(HSAT )

}
guarantees

E[RT ] ≤ 10H
√

SAT log(HSAT ) + 10H
√
D log(HSAT ) + 7 · 105H2S2A(1 + dmax)

2.

Proof First, we decompose

RT =
T∑
t=1

⟨wπt −w⋆, ℓt⟩ =
T∑
t=1

⟨wπt −wt, ℓt⟩︸ ︷︷ ︸
ERROR

+
T∑
t=1

⟨wt − w̃⋆, ℓt⟩︸ ︷︷ ︸
REG

+
T∑
t=1

⟨w̃⋆ −w⋆, ℓt⟩︸ ︷︷ ︸
SHIFT-PENALTY

,

where, by Lemma 6, ERROR is bounded by 2H and w̃⋆ ∈ W exists such that SHIFT-PENALTY is
bounded by 2H . For REG we use Lemma 2. Much like in the proof of Lemma 4, 4∇2R(w) ⪰
∇2R(w′) ⪰ 1

4∇
2R(w) for all w ∈ W and w′ ∈ DR(w, 12). For any t and w ∈ W

∥ℓt∥R,w ≤
√

η
∑
h,s,a

wh(s, a)ℓh(s, a)2 ≤
√
η
∑
h,s,a

wh(s, a) =
√

ηH =: α ≤ 1

16(1 + dmax)
,

where the last inequality is by the definition of η. For any t,

E[∥ℓ̂t∥2R,wt
] = ηE

∑
h,s,a

wt,h(s, a)ℓ̂t,h(s, a)
2

 ≤ ηE

∑
h,s,a

E [I{st,h = s, at,h = a} | Ft]

ut,h(s, a)


= ηE

∑
h,s,a

wπt
h (s, a)

ut,h(s, a)

 ≤ ηHSA =: β2,

where the inequalities follow since ut,h(s, a) = maxp̂∈P wπτ ,p̂
h (s, a) ≥ max{wt,h(s, a),w

πt
h (s, a)}.

Finally, for all t,

∥ℓ̂t∥R,wt ≤
√
γ
∑
h,s,a

wt,h(s, a)2ℓ̂h(s, a)2 ≤
√
γ
∑
h,s,a

I{st,h = s, at,h = a} =
√
γH ≤ 1

64(1 + dmax)
,

where the second is since ut,h(s, a) ≥ wπt
h (s, a) and the last is by definition of γ. Thus, applying

Lemma 2 with bt = E[ℓ̂t − ℓt | Ft], we get

REG ≤ R(w̃⋆)−R(w1)︸ ︷︷ ︸
PENALTY

+8ηHSAT + 8ηH(T +D)

+

T∑
t=1

E[w(L̂m
t )⊤(ℓt − ℓ̂t)]︸ ︷︷ ︸

BIAS1

+

T∑
t=1

E[w̃⋆
⊤
(ℓ̂t − ℓt)]︸ ︷︷ ︸

BIAS2

+8
√
ηH

T∑
t=1

E[∥
∑
τ∈mt

(ℓτ − ℓ̂τ )∥R,wt ]︸ ︷︷ ︸
DRIFT

.
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Using standard arguments, PENRALTY ≤ 4HS2A log(HSAT )
γ + 2H log(SAT )

η since w1, w̃
⋆ ∈ Ω. Recall

that by definition ut,h(s, a) ≥ wπt
h (s, a). Thus, E[ℓ̂t,h(s, a) | Ft] ≤ ℓt and BIAS2 ≤ 0. BIAS1 is

the bias of the estimator due to the fact that we use an upper confidence bound on the occupancy
measure instead of the actual occupancy measure. By Lemma 12 we have BIAS1 ≤ 8H2S. Finally,
for the DRIFT term, for each t,

E∥
∑
τ∈mt

(ℓτ − ℓ̂τ )∥R,wt = E
√

(
∑
τ∈mt

ℓτ − ℓ̂τ )∇−2R(wt)(
∑
τ∈mt

ℓτ − ℓ̂τ )

= E
√∑

τ∈mt

∥(ℓτ − ℓ̂τ )∥2R,wt
+
∑
τ∈mt

∑
τ ′∈mt\{τ}

(ℓτ − ℓ̂τ )∇−2R(wt)(ℓτ ′ − ℓ̂τ ′)

≤
√∑

τ∈mt

E∥(ℓτ − ℓ̂τ )∥2R,wt
+ E

√∑
τ∈mt

∑
τ ′∈mt\{τ}

(ℓτ − ℓ̂τ )∇−2R(wt)(ℓτ ′ − ℓ̂τ ′),

where the inequality is by
√
a+ b ≤

√
a+

√
b and Jensen. For the first term, by Lemma 10,∑

τ∈mt

E∥(ℓτ − ℓ̂τ )∥2R,wt
≤ 4

∑
τ∈mt

E∥(ℓτ − ℓ̂τ )∥2R,wτ
≤ 4

∑
τ∈mt

E∥ℓτ∥2R,wτ
+ 4

∑
τ∈mt

E∥ℓ̂τ∥2R,wτ

≤ 4|mt|(α2 + β2) ≤ 8ηHSA|mt|.

In Lemma 13 we bound the second term similarly to BIAS1 by 4
√

H2S
T due to the estimator’s small

bias. Overall,

√
ηH·DRIFT ≤ 8ηH

T∑
t=1

√
SA|mt|+ 4

√
ηH3ST ≤ 8ηH

T∑
t=1

√
S2A2 + |mt|2 + 4

√
ηH3ST

≤ 8ηHSAT + 8ηH
T∑
t=1

|mt|+ 4
√

ηH3ST ≤ 8ηHSAT + 8ηHD + 4
√
ηH3ST ,

where we used ab ≤ a2 + b2 and
∑T

t=1 |mt| = D. Finally, we sum all the different terms.

Lemma 6 Let W = ∆(P) ∩ Ω. It holds that W is non-empty and,

1. For any w ∈ ∆(M), there exists w̃ ∈ W such that ∥w − w̃∥1 ≤ 2H
T .

2. Given w ∈ W , let π be defined by πh(a | s) = wh(s,a)
wh(s)

and uh(s, a) = maxp̂∈P wπ,p̂
h (s, a).

Then, ∥wπ −w∥1 ≤ 2H
T and ∥u−w∥1 ≤ 4H2S

T .

Proof

1. Define p̃ = {p̃h : S ×A → ∆S }Hh=1 by p̃h(s
′ | s, a) = (1− 1

THSA)ph(s
′ | s, a) + 1

THS2A
and notice that p̃ ∈ P since |ph(s′ | s, a) − p̃h(s

′ | s, a)| ≤ 1
THSA . Next, let πu be the

uniformly random policy, and define w̃ = (1 − 1
T )w + 1

T w
πu,p̃. It holds that w̃ ∈ ∆(P)
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because ∆(P) is a convex set. Moreover, notice that wπu,p̃
h (s, a, s′) ≥ 1

(THS2A)2A
which

implies that w̃h(s, a, s
′) ≥ 1

T 3H2S4A2 . Thus, w̃ ∈ W . Finally,

∥w − w̃∥1 =
∑

h,s,a,s′

∣∣wh(s, a, s
′)− w̃h(s, a, s

′)
∣∣

=
∑

h,s,a,s′

∣∣∣∣ 1Twh(s, a, s
′)− 1

T
wπu,p̃

h (s, a, s′)

∣∣∣∣
≤ 1

T

∑
h,s,a,s′

wh(s, a, s
′) +

1

T

∑
h,s,a,s′

wπu,p̃
h (s, a, s′) =

2H

T
.

2. Define loss function ℓ̃h(s, a) = sign(wπ
h(s, a) − wt,h(s, a)) and note that ∥wπ − w∥1 =

V π,p,ℓ̃
1 (sinit) − V π,p̂,ℓ̃

1 (sinit) for some p̂ ∈ P . Combining Lemma 151 and the fact that ∥p −
p̂∥∞ ≤ 1

THSA proves that ∥wπ − w∥1 ≤ 2H
T . Now, let p̂h,s be the transition function that

corresponds to uh(s). We have that, ∥p̂h,s − p̂∥∞ ≤ ∥p̂h,s − p∥∞ + ∥p − p̂∥∞ ≤ 2
THSA .

Thus, using the same argument as the above,

∥u−w∥1 ≤
∑
h,s

∥wπ,p̂h,s −w∥1 ≤
4H2S

T
.

Lemma 12 (BIAS1) When running Delayed FTRL for adversarial MDPs we have,

BIAS1 =
T∑
t=1

E[w(L̂m
t )⊤(ℓt − ℓ̂t)] ≤ 8H2S.

Proof Let Gt be the history of all episodes in [t − 1], and note that wt,ut and w(L̂m
t ) are all

determined by Gt. Therefore,

BIAS1 = E

 ∑
t,h,s,a

w(L̂m
t )h(s, a)(ℓt,h(s, a)− E[ℓ̂t,h(s, a) | Gt])


= E

 ∑
t,h,s,a

w(L̂m
t )h(s, a)ℓt,h(s, a)

(
1−

wπt
h (s, a)

ut,h(s, a)

)
≤ E

 ∑
t,h,s,a

w(L̂m
t )h(s, a)

|ut,h(s, a)−wπt
h (s, a)|

ut,h(s, a)


1. We note that Even-Dar et al. (2009) (see also Shani et al. (2020)) apply the value difference lemma (Lemma 15) on

positive losses (or rewards), where here we use loss function supported in [−1, 1]. However, the proof of the lemma
in fact holds for any loss functions ℓ̃, ℓ ⊆ RHSA.
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Now, as in the proof of Lemma 2, w(L̂m
t ) ∈ DR(wt,

1
2). Thus, by Lemma 16, w(L̂m

t )h(s, a) ≤
2wt,h(s, a) ≤ 2ut,h(s, a). Therefore,

BIAS1 ≤ 2

T∑
t=1

E[∥ut −wπt∥1] ≤ 8H2S

where the last is by article 2 in Lemma 6.

Lemma 13 When running Delayed FTRL for adversarial MDPs, for any t,

E
√∑

τ∈mt

∑
τ ′∈mt\{τ}

(ℓτ − ℓ̂τ )∇−2R(wt)(ℓτ ′ − ℓ̂τ ′) ≤ 4

√
H2S

T
.

Proof We first apply the law of total expectation and Jensen inequality,

E
√∑

τ∈mt

∑
τ ′∈mt\{τ}

(ℓτ − ℓ̂τ )∇−2R(wt)(ℓτ ′ − ℓ̂τ ′)

≤ E
√

η
∑
τ∈mt

∑
τ ′∈mt/{τ}

∑
h,s,a

wt,h(s, a)(ℓτ,h(s, a)− E[ℓ̂τ,h(s, a) | Gt])(ℓτ ′,h(s, a)− E[ℓ̂τ ′,h(s, a) | Gt])

Now, let Gt be the history of all episodes in [t− 1], and note that ℓτ ′,h(s, a)− E[ℓ̂τ ′,h(s, a) | Gt] ∈
[0, 1]. Thus, we can further bound the above by,

E
√

η
∑
τ∈mt

∑
τ ′∈mt/{τ}

∑
h,s,a

wt,h(s, a)(ℓτ,h(s, a)− E[ℓ̂τ,h(s, a) | Gt])

≤ E

√√√√η|mt|
∑
τ∈mt

∑
h,s,a

wt,h(s, a)ℓτ,h(s, a)
uτ,h(s, a)−wτ,h(s, a)

uτ,h(s, a)

≤ 2E

√√√√η|mt|
∑
τ∈mt

∑
h,s,a

wτ,h(s, a)
uτ,h(s, a)−wτ,h(s, a)

uτ,h(s, a)

≤ 2E
√

η|mt|
∑
τ∈mt

∑
h,s,a

uτ,h(s, a)−wτ,h(s, a)

= 2E
√

η|mt|
∑
τ∈mt

∥uτ −wτ∥1

≤ 4

√
η|mt|2

H2S

T
≤ 4

√
H2S

T
,

where the third inequality is by Lemma 16, the forth is since wτ,h(s, a) ≤ uτ,h(s, a), the fifth
inequality is by Lemma 6, and the last is since η ≤ 1

d2max
≤ 1

|mt|2 .

33



HOEVEN ZIERAHN LANCEWICKI ROSENBERG CESA-BIANCHI

Appendix D. Deferred Proofs for Linear Bandits (Section 6)

Theorem 8 Let u ∈ W . Running Delayed FTRL for linear bandits (Algorithm 3) with γ =

min

{
1

(64BK(1+dmax))2
,

√
ν ln
(
1+

√
T
)

16(BK)2T

}
and η = min

{
1

(16dmax)2
,
√

B2

16D

}
guarantees,

E

[
T∑
t=1

(at − u)⊤ℓt

]
≤ 14BK

√
νT ln(T ) + 8B

√
D + 214νB2K2(1 + dmax)

2 ln(T ).

Proof We start by verifying the assumptions of Corollary 3. Using E[vt] = 0 and E[vtv⊤
t ] =

1
K I

we see that E[ℓ̂t] = ℓt. Observe that the distribution of ℓ̂τ ′ is fully determined given Ft because
Fτ ′ ⊆ Ft. Furthermore, since ℓ̂τ can not be used in round τ ′ because τ is not available in round t
due to the delay, we must have that ℓ̂τ ′ is independent of ℓ̂τ . Thus, by the tower rule

E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(wt)
)−1

(ℓ̂τ ′ − ℓτ ′) | Ft

]
= E

ℓ̂τ

[
E
[
(ℓ̂τ − ℓτ )

⊤(∇2R(wt)
)−1

(ℓ̂τ ′ − ℓτ ′) | Ft, ℓ̂τ
]]

= 0 ,

where we used that E[ℓ̂τ ′ |Ft] = E[ℓ̂τ |Ft, ℓ̂τ ] = ℓt. Next, observe that because ∇2R(w) ⪰
1
γ∇

2Ψ(w) we have that

∥ℓ̂t∥2R,wt
≤ γK2(ℓ⊤t at)

2v⊤
t vt = γK2(ℓ⊤t at)

2 .

Since ∥ℓt∥2 ≤ 1 and W ⊆ B(B), we have that (ℓ⊤t at)
2 ≤ B2 and thus

∥ℓ̂t∥R,wt ≤
√
γ(BK)2︸ ︷︷ ︸

β

≤ 1

64(1 + dmax)
,

where the last inequality is because γ ≤ (64BK(1 + dmax))
−2. Because ∇2R(w) ⪰ 1

ηI and
∥ℓt∥2 ≤ 1 we have that

∥ℓt∥R,w ≤ √
η︸︷︷︸

α

≤ 1

16dmax
,

where the last inequality is because η ≤ (16dmax)
−2. The final assumption to verify is 4∇2R(w) ⪰

∇2R(w′) ⪰ 1
4∇

2R(w) for all w ∈ W and w′ ∈ DR(w, 12), which is immediate due to equa-
tion (5).

Pick ũ ∈ W and δ > 0. Set u = ũ−w1
1+δ +w1 ∈ Wδ. Using equation (6) and W ⊆ B(B) we

have that

R(u)−R(w1) ≤
B2

η
+

ν

γ
ln
(1 + δ

δ

)
. (19)

Furthermore, by using that W ∈ B(B) and ∥ℓt∥2 ≤ 1 , we have that

T∑
t=1

(ũ− u)⊤ℓt =
T∑
t=1

(
1− 1

1 + δ

)
(ũ−w1)

⊤ℓt ≤ 2TB

(
δ

1 + δ

)
.
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Thus, by setting δ = 1√
T

and then applying Corollary 3 with β2 = γ(BK)2 we obtain

E

[
T∑
t=1

(at − ũ)⊤ℓt

]
≤ E

[
T∑
t=1

(at − u)⊤ℓt

]
+ 2B

√
T

≤ R(u)−R(w1) + 16γ(BK)2 + 16η
T∑
t=1

|mt|+ 2B
√
T

≤ B2

η
+

ν

γ
ln
(
1 +

√
T
)
+ 16γ(BK)2T + 16ηD + 2B

√
T (using (19))

≤ 8B
√
D + 256d2max

+ 8BK

√
νT ln

(
1 +

√
T
)
+
(
64BK(1 + dmax)

)2
ν ln

(
1 +

√
T
)
+ 2B

√
T ,

where in the last step we used our choices for η and γ.
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Algorithm 4: Doubling procedure
Input: T,D and algorithm ALG (for known T,D and dmax).
Set epoch index e = 1 and initialize ALG with T,D and 2e as dmax.
for t = 1, ..., T do

if maxj∈ot dj ≥ 2e then
Start a new epoch e = e+ 1, and re-initiate ALG with T,D and 2e as dmax.

end if
Play according to ALG.

end for

Appendix E. Doubling with Delayed Feedback

In this section we show how to handle unknown problem parameters. For simplicity of presentation
we assume that only dmax is unknown. The case of unknown T and D can be done in a similar
fashion (e.g., see Bistritz et al. (2019); Lancewicki et al. (2022)).

Theorem 14 Let ALG be an algorithm for known T,D and dmax and assume that ALG guaran-
tees regret of RT,D(dmax) whenever initiated properly. Then, running Algorithm 4 with unknown
dmax guarantees regret,

RT ≤ 2RT,D(2dmax) log T + 2Mdmax log T,

where M = maxt∈[T ],a,ã∈A(a−ã)⊤ℓt is the maximal regret per round (e.g., in Section 5, M ≤ H).

Proof Let Te = {t : 2e−1 ≤ maxj∈ot dj ≤ 2e} be the set of indices of epoch e, and let T̃e =

{t ∈ Te : dt ≤ 2e} be the indices of epoch e with delay ≤ 2e . The regret in rounds t ∈ T̃e is at
most RT,D(2

e) ≤ RT,D(2dmax) since the maximal delay in these rounds is indeed bounded by 2e.
In addition, the regret in Te\T̃e is at most Mdmax since |Te\T̃e| ≤ dmax. Thus, the total regret in
epoch e is at most,

RT,D(2dmax)︸ ︷︷ ︸
Regret in T̃e

+ Mdmax︸ ︷︷ ︸
Regret in Te\T̃e

.

Finally, the total number of epochs is at most log dmax + 1 ≤ 2 log T and thus, the total regret is
bounded by,

RT ≤ 2RT,D(2dmax) log T + 2Mdmax log T.
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Appendix F. Auxiliary Lemmas

Lemma 15 (Value Difference Lemma Even-Dar et al. (2009)) For any two triplets (π, p, ℓ) and
(π̃, p̃, ℓ̃) of policy, transition and cost function,

V π,p,ℓ
1 (sinit)− V π̃,p̃,ℓ̃

1 (sinit) =
H∑

h=1

E
s∼wπ̃,p̃

h

[ 〈
πh(· | s)− π̃h(· | s), Qπ,p,ℓ

h (s, ·)
〉 ]

+
H∑

h=1

E
s,a∼wπ̃,p̃

h

[
ℓ(s, a)− ℓ̃(s, a)

]
+

H∑
h=1

E
s,a∼wπ̃,p̃

h

[ 〈
ph(· | s)− p̃h(· | s), V π,p,ℓ

h+1

〉 ]
Lemma 16 Let W ⊆ {w ∈ Rn : ∀i ∈ [n], w(i) > 0}. Let R : W → R be some twice-
differentiable convex function, and let ϕ(w) = − 1

γ

∑n
i=1 logw(i) be the log barrier with γ ∈

(0, 1). Assume that for any w ∈ W , ∇2R(w) ⪰ ∇2ϕ(w). Then for any w′ ∈ DR(w, 12),

∀i ∈ [n],
1

2
w(i) ≤ w′(i) ≤ 2w(i).

Proof Since ∇2R(w) ⪰ ∇2ϕ(w), for any w′ ∈ DR(w, 12),

(∥w′ −w∥∗ϕ,w)2 ≤ (∥w′ −w∥∗R,w)
2 ≤ 1

4
.

On the other hand,

(∥w′ − w∥∗ϕ,w)2 =
n∑

j=1

(w′(j)−w(j))2

γw(j)2
≥ (w′(i)−w(i))2

γw(i)2
≥ (w′(i)−w(i))2

w(i)2
.

Thus, |w′(i)−w(i)| ≤ 1
2w(i) which implies that 1

2w(i) ≤ w′(i) ≤ 2w(i).
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