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Abstract

In this work we propose a novel method to evaluate the
quality of enhanced videos. Perceived quality of a video
depends on both technical aspects, such as the presence of
distortions like noise and blur, and non-technical factors,
such as content preference and recommendation. Our ap-
proach involves the use of three deep learning based models
that encode video sequences in terms of their overall tech-
nical quality, quality-related attributes, and aesthetic qual-
ity. The resulting feature vectors are adaptively combined
and used as input to a Support Vector Regressor to estimate
the video quality score. Quantitative results on the recently
released VQA Dataset for Perceptual Video Enhancement
(VDPVE) introduced for the NTIRE 2023 Quality Assess-
ment of Video Enhancement Challenge demonstrates the ef-
fectiveness of the proposed method.

1. Introduction
Evaluating the perceived quality of in-the-wild videos is

a critical task in the fields of video capture, transmission,
compression, reproduction, and processing. Video Qual-
ity Assessment (VQA) methods are tools that use com-
putational models to mimic the human perception about
video quality. Conventionally, VQA studies have focused
on measuring the technical quality of User-Generated Con-
tent (UGC) videos that might be corrupted by in-capture
artifacts, such as motion blur, noise, and color artifacts
[2, 19, 28–30].

Several video enhancement methods have been devel-
oped to reduce or remove in-capture artifacts in videos,
from the perspective of color, contrast, brightness and sta-
bility, to bring people a more comfortable viewing experi-
ence [11, 17, 18]. Therefore, how to evaluate the best video

quality consistently with human visual perception becomes
pivotal. The quality assessment of enhanced versus UGC
videos has different facets, which can lead current VQA
methods to unsatisfactory results. First, VQA methods typ-
ically model videos that are very different from each other,
and as a result, may not detect small variations between sev-
eral versions of the same video content. Second, enhance-
ment methods may introduce artifacts that do not belong
to typical in-capture distortions and which are not correctly
encoded by data-driven VQA models [7].

To address the need to evaluate different video enhance-
ment methods, it is therefore necessary to collect datasets
where human judgments are gathered for various versions
of the same video and to develop VQA metrics for this spe-
cific problem. For this purpose, VQA Dataset for Percep-
tual Video Enhancement (VDPVE) [5] was recently pro-
posed for the NTIRE 2023 Quality Assessment of Video
Enhancement Challenge [6].

This work presents our method to the aforementioned
NTIRE challenge, in which each participant is provided
with a set of low quality videos processed with multiple en-
hancement techniques. For each enhanced video, human
judgments (i.e. Mean Opinion Score, MOS) were gathered.
The aim is therefore to obtain a method capable of estimat-
ing quality scores that highly correlate with the correspond-
ing MOS. To this end, we propose a solution that encodes
a video in terms of: technical aspects, such as the pres-
ence of distortions like noise and blur; non-technical fac-
tors, such as content preference and recommendation. The
Disentangled Objective Video Quality Evaluator (DOVER)
was designed precisely to model video quality with respect
to previous perspectives [29]. In our method we exploit
the DOVER to encode the video frames also making some
changes that improve its effectiveness. As demonstrated in
[1,4], a model trained for the estimation of the overall qual-
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Figure 1. A graphical representation of the proposed method.

ity together with the estimation of color and artifact degra-
dations improves quality prediction. For this reason, in the
proposed method we encode video frames also regarding of
quality-related attributes. The proposed method therefore
encodes the videos in terms of three aspects, namely over-
all technical quality, quality-related attributes, and aesthetic
quality. The resulting feature vectors are processed and con-
catenated. Finally, a Support Vector Regression (SVR) ma-
chine maps the feature vector into a video quality score.

The proposed method ranks sixth at the NTIRE 2023
Quality Assessment of Video Enhancement Challenge.

2. Method
As depicted in Figure 1, the proposed method consists

of three components: (i) the feature extraction module in-
cludes three encoders capturing both technical and non-
technical aspects of video sequences; (ii) the feature com-
bination module provides a feature reduction and spatio-
temporal pooling of the extracted features obtained by all
the encoders; (iii) the quality prediction module exploits a
SVR for mapping the feature vector into the video quality
score.

2.1. Feature extraction module

The feature extraction module encodes video frames in
terms of overall technical quality, quality-related attributes
and aesthetics as described in the following sections.

2.1.1 Technical quality

The technical quality encoder exploits a tiny Video Swin
Transformer [15] which takes as input sequences of 32 frag-
ments of 224× 224 resolution as in DOVER.

The frames of the sequence are sampled with a stride of
4. During training, the beginning of the sequence is ran-
domly chosen. At inference time, two sequences are sam-
pled, one at the beginning of the video and one at the end
of the video, each sequence is processed independently and
the predicted scores are averaged.

The fragment sampling pipeline is different from the one
proposed in [29]. For videos with a resolution equal to or
higher than 1080p, a crop is first performed to a size of
1708×960 (that is about 80% of the original frame area) and
then a soft pooling operation [22] with kernel 2 × 2 is ap-
plied to halve the size at 480p. For videos with a resolution
lower than 1080p, we directly crop a portion of the frame
to 480p. Each 480p frame is logically divided into a 7 × 7
grid, patches of size 32 × 32 pixels are randomly selected
from each grid cell to obtain a fragment of size 224 × 224
pixels. The proposed fragment sampling pipeline compared
to that of DOVER ensures a higher coverage of the frame
content, i.e. about 15% versus 3%, respectively. This means
that more of the semantic content of the frame is preserved
as can be seen in Figure 2. Additionally, using soft pooling
to downscale video frames helps to better preserve video
distortions and avoid masking effects.

Given a sequence of T fragments with resolution H×W ,
the technical quality encoder first applies a 3D patch parti-
tioning layer to obtain T

2 × H
4 × W

4 ×C tokens, where each
token C consists of 96 features. After the previous layer, a
stack of operations that reduce spatial resolution while pre-
serving temporal resolution is applied to the feature blocks.
The previous operations output a feature map Ft with shape
T
2 × H

32 × W
32 × 8C. For a sequence of T = 32 fragments

with resolution 224 × 224, we obtain a feature map with
shape 16× 7× 7× 768.

2.1.2 Quality-related attributes

The quality-related attribute encoder uses an EfficientNet-
v2 [23] backbone followed by ten heads used to encode the
overall technical quality as well as ten quality-related at-
tributes, i.e. brightness, colorfulness, contrast, graininess,
lightness, noisiness, saturation, and sharpness (two distinct
heads because this attribute is present in the two datasets
used for training). Each head has a convolutional part fol-
lowed by fully connected layers. Our architecture is similar
to the one proposed in [1], where the MobileNet-v2 [20]
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Original frame Fragments
(a) DOVER fragment sampling. Video frame at the original resolution is
partitioned into a 7 × 7 grid and from each cell a random 32 × 32 pixels
patch is cropped as a fragment.

Original frame Fragments
(b) Our fragment sampling. A subregion covering 80% of the original
frame area is cropped and then downscaled through soft pooling to 480p.
The resulting frame is partitioned into a 7 × 7 grid and from each cell a
random 32× 32 pixels patch is cropped as a fragment.

Figure 2. Comparison between the DOVER and our fragment sam-
pling pipeline on a 1080p video frame.

backbone is replaced with EfficientNet-v2 [23] because of
its higher capability in capturing relevant quality informa-
tion.

For a sequence of 32 equally-spaced frames, the quality-
related attribute encoder extracts the features at the frame-
level. For each frame, the central 720p crop is obtained
and passed to the model. The features obtained before the
fully connected layers of each head are flattened and then
concatenated. The resulting feature map Fr with shape 32×
768× 10 is used as input for the next processing steps.

2.1.3 Aesthetics

The aesthetic encoder consists of a tiny inflated-ConvNext
[14] as defined in DOVER [29]. The aesthetic encoder
has an overall view of the video as it uses a total of 32
equally-spaced frames covering the entire video sequence.
The frames processed by this encoder are downscaled to a
224×224 resolution to increase efficiency and reduce sensi-
tivity to technical distortions, such as blur and noise, which
are captured instead by the technical quality encoder.

Given a sequence of T frames with resolution H × W
pixels, the aesthetic encoder applies a 3D patch partition-
ing layer to obtain T

2 × H
4 × W

4 × C tokens, where each
token C consists of 96 features. After the previous layer, a

stack of operations that reduce spatial resolution while pre-
serving temporal resolution is applied to the feature blocks.
Previous operations output a feature map Ft with shape
T
2 × H

32 × W
32 × 8C. In our method a sequence of frames

T = 32 with resolution 224 × 224 pixels is fed to the
aesthetic encoder which produces in output a map with
16× 7× 7× 768 features.

2.2. Feature combination

The feature combination module refines and combines
the representations coming from the previously described
encoders.

First, the temporal relationship between the frame-level
features Fr is modeled by a Gated Recurrent Unit (GRU)
[3]. Specifically, a 2-layer GRU is applied on the 32 fea-
ture vectors obtained by flattening the 768× 10 matrix into
7680-dimensional vectors. The 768-dimensional output of
the last frame is then reduced to a feature vector fr with 64
dimensions by using a fully connected layer.

Second, the number of channels for technical, Ft, and
aesthetic, Fa, features is reduced through two convolutional
layers with kernel size and stride equal to 1. The resulting
feature maps having shape 16×64×7×7 are both spatially
and temporally reduced by average pooling.

Finally, the three feature vectors, namely ft ∈ R64,
fa ∈ R64 and fr ∈ R64, are combined into the feature
vector, f ∈ R192, by applying the weighted concatenation
procedure described in Algorithm 1.

Algorithm 1 Weighted concatenation procedure.

1: Input: Overall technical quality features ft, quality-
related attribute features fr, aesthetic features fa, W ∈
R128×64 and b ∈ R64.

2: Concatenate technical and aesthetic feature vectors, i.e.
ft+a = ft ⊕ fa.

3: Compute the scale vector s = σ(Wft+a + b).
4: Scale quality-related features, f̂r = fr ◦ s.
5: Concatenate feature vectors, f = ft ⊕ fa ⊕ f̂r.
6: Return: f

2.3. Quality prediction

In the quality prediction module, the 192-dimensional
feature vector is mapped into the final video quality score
through a SVR with Radial Basis Function (RBF) kernel.

3. Experimental setup

In this section, the VDPVE dataset [5] is presented. The
training procedure of the three encoders and the overall
method is then described. Finally, the implementation de-
tails and evaluation metrics are detailed.
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3.1. Dataset

In our experiments, we use the new VDPVE dataset [5]
proposed for the NTIRE 2023 Quality Assessment of Video
Enhancement Challenge. The dataset consists of 1211 en-
hanced videos and is divided into three subsets: the first one
contains 600 videos with color, brightness, and contrast en-
hancements applied using 8 different methods; the second
one contains 310 videos with deblurring performed using
5 different methods; the third one contains 301 videos de-
shaked by using 7 different methods. The dataset is split
into training set (839 videos), validation set (119 videos)
and test set (253 videos). Ground-truth scores and the in-
formation regarding the applied enhancement method are
only available for the training videos. Both information is
instead kept private for the validation and test videos by the
challenge organizers. For this reason, we internally split
the training set to conduct our experiments into an inter-
nal training set (668 videos) and an internal test set (171
videos), where each scene is either in the training set or in
the test set.

3.2. Training procedure

The technical quality and aesthetic encoders of DOVER
are pre-trained by mixing together the LSVQ [30], LIVE-
VQC [21], KoNViD-1k [8], CVD2014 [16] and YouTube-
UGC [27] datasets and fine-tuned using the VDPVE train-
ing set. Random video fragments are used at training time,
as done in [29], while five-crop video fragments and 2 non-
overlapped views of the video are used at inference time.
The batch size is set to 5, the learning rate is set to 1×10−4

for the technical quality encoder and 1 × 10−3 for the rest
of the network with a cosine decay. The model is trained
for a total of 50 epochs.

The quality-related attribute encoder is trained using the
CID [26] and SPAQ [4] datasets. Images are first randomly
cropped to the closest resolution that is multiple of 720p,
and then soft pooling is applied to obtain a 720p resolution.
The batch size is set to 8. The model is trained for a total of
10K iterations. The learning rate is initially set to 1× 10−4

and later decreased by a factor of 10 after 5K iterations.
Random horizontal flip is used as data augmentation.

The three encoders are trained using the Norm-in-Norm
(NiN) loss with monotonicity regularization [13] between
the MOS, ŷ, and the predicted scores, y, as follows:

L = LNiN (ŷ, y) + 0.3Lmon(ŷ, y). (1)

The SVR for the final score prediction is trained on the
VDPVE training set. The required hyperparameters for the
RBF kernel of the SVR are γ = 12.20 and C = 364.83, se-
lected via Bayesian optimization framework1 using Leave-
One-Out cross-validation. The latter uses a surrogate model

1pyGPGO: https://pygpgo.readthedocs.io/ (last access:
05/04/2023)

to approximate the objective function and chooses to opti-
mize it according to some acquisition function. The surro-
gate model used is Random Forest, while the acquisition
function is Upper Confidence Bound (UCB). The search
value ranges for C and γ are [0.01, 1000].

3.3. Implementation details

We implement the proposed method in Python3.8 us-
ing the PyTorch package with CUDA-v11.6 as back-end.
The proposed model is trained on a workstation equipped
with an Intel i7-4770 CPU @3.40GHz, 16GB DDR4 RAM
2400MHz, NVIDIA Titan Xp GPU with 3840 CUDA cores.

3.4. Evaluation metrics

The evaluation consists of the comparison of the
predicted scores with the reference ground-truth, MOS.
The Pearson’s Linear Correlation Coefficient (PLCC) and
Spearman’s Rank Order Correlation Coefficient (SROCC)
indexes are used consistently with the literature.

The PLCC is used to evaluate the linear correlation be-
tween MOS and predicted scores and it is calculated as fol-
lows:

PLCC =

∑N
i=1(si − µsi)(ŝi − µŝi)√∑N

i=1(si − µsi)
2

√∑N
i=1(ŝi − µŝi)

2

(2)

Where N is the number of testing images, si and ŝi re-
spectively indicate the ground-truth and predicted quality
scores of i-th image, and µsi and µŝi indicate the mean of
them. Let di denote the difference between the ranks of i-th
test image in ground-truth and predicted quality scores. Be-
fore calculating the PLCC index, the third-order polynomial
nonlinear regression is performed.

The SROCC measures the monotonic relationship be-
tween MOS and predicted scores and it is defined as:

SROCC = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
, (3)

with N representing the number of testing images and
di = (rank(si) − rank(ŝi)). Both metrics, PLCC and
SROCC, are in [−1, 1], and higher values indicate better
performance.

The overall estimate of the goodness of a method is ex-
pressed in the MainScore which is obtained by ignoring
the sign and reporting the average of the absolute values
((PLCC + SROCC)/2).

4. Results
In this section, we present the experiments and the re-

lated results that led us to the design of the final method. In
Section 4.1, we first report the results on the validation set
and then conduct a deeper analysis on our internal test set
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Exp. Main backbone
Fine-tuning

head
Soft
pool.

Feature
combination

Multi-crop
evaluation

Quality
pred. Train set SROCC PLCC MainScore

1 FAST-VQA [28] – – MLP Subset 0.6252 0.6035 0.6144
2 IP-NLR – MLP Subset 0.6951 0.6914 0.6933

3

DOVER [29]

Tech. & Aesth. – AVG Subset 0.7251 0.6852 0.7052
4 Tech. – AVG Subset 0.7365 0.6876 0.7120
5 Tech. ✓ – AVG Subset 0.7559 0.7129 0.7344
6 Tech. ✓ Tech. & Aesth. MLP Subset 0.7577 0.7394 0.7486
7 Tech. ✓ Tech. & Aesth. ✓ MLP Subset 0.7660 0.7430 0.7545
8 Tech. ✓ Tech. & Aesth. & Attr. ✓ SVR Subset 0.7671 0.7666 0.7669
9 Tech. ✓ Tech. & Aesth. & Attr. ✓ SVR Entire 0.7850 0.7790 0.7820

10
Quality-related

attribute encoder MLP Other 0.4916 0.5766 0.5341

Table 1. Results for the different configurations of the proposed method on the VDPVE validation set. Here we train the model using
the internal training set, and use the internal test set to select the best results. IP-NLR: Intra-Patch Non-Linear Regression Head, MLP:
Multi-Layer Perceptron, AVG: Average of the predicted scores, SVR: Support Vector Regression, Other: Model trained on datasets for
image quality assessment.

in Section 4.2. The comparison between the performance
obtained by our method on the test set is carried out with
other state-of-the-art methods (see Section 4.3) and with the
other participants in the NTIRE 2023 Quality Assessment
of Video Enhancement Challenge (see Section 4.4).

4.1. Ablation study

In order to motivate the different choices adopted for
the development of the proposed solution, we construct ab-
lation experiments to show how results change when one
or more features are omitted. Table 1 reports the results
obtained under different configurations of the proposed
method on the validation set of the VDPVE dataset [5].
Main backbone. The choice of backbone for encoding
video sequences is crucial. The use of FAST-VQA [28] and
DOVER [29] has been experimented due to their effective-
ness in estimating the quality of UGC videos. Experiments
have been carried out by fine-tuning the whole model or
only the head. As it is possible to see from Table 1, DOVER
outperforms FAST-VQA and for this reason it is chosen as
the backbone.
End-to-end DOVER. The DOVER architecture consists
of the technical quality encoder and the aesthetics encoder
[29]. When only the technical encoder is fine-tuned on the
dataset, the results are better than when both the encoders
are fine-tuned. For this reason, we fine-tune only the tech-
nical encoder.
Fragment sampling procedure. The technical encoder
uses frame fragments to infer the technical video quality.
However, since fragments are typically obtained from the
original video without any downscaling operation [28, 29],
they have a limited view of the scene depicted in a video
frame, resulting in poor performance. As we can see, down-
scaling frames to a smaller resolution (i.e., 1708 × 960)
before creating fragments allows to have more content in-

formation, leading to a considerable increase in perfor-
mance (about 2.24%). Moreover, using five-crop fragments
for evaluation increases the spatial frame coverage, further
boosting the overall performance.
Late vs. early fusion strategy. In DOVER [29], each en-
coder individually predicts the quality score of a video, and
the final score is their simple average. Instead, we propose
an early-fusion strategy, where we directly predict one score
learned by the combination of the features obtained from
all the encoders. This more sophisticated mechanism al-
lows the model to better make use of the encoded informa-
tion, obtaining a considerable improvement in performance
(about 1.42%).
Feature combination. The naive quality-related attribute
encoder alone (i.e. the scores are predicted for each frame
and the video score is their simple average) without any
fine-tuning on the VDPVE dataset [5] obtains a MainScore
of 0.5341. It is possible to see that adding the quality-
related attributes provides complementary information and
contributes to increasing the performance by about 1.24%.
Subset vs. entire training set. Once the method and hy-
perparameters are defined, the model is trained on the en-
tire training set without considering the internal split. In
Table 1, experiment 9 corresponds to our method trained on
the entire training set. We highlight that the availability of
more training data allows the model to generalize better on
the validation data. In particular, experiment 9 improves the
MainScore by about 2% with respect to experiment 8.

4.2. Internal test set results

The configurations presented in Section 4.1 are also eval-
uated on the internal test set with the aim of obtaining an ef-
fectiveness feedback. The quality-related attribute encoder
is directly evaluated on VDVPE videos without any fine-
tuning, while the overall model is trained with the Bayesian
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Exp. SROCC PLCC MainScore

1 0.7140 0.7288 0.7214
2 0.7692 0.7364 0.7528

3 0.7929 0.7818 0.7874
4 0.8298 0.8289 0.8294
5 0.7835 0.7957 0.7896
6 0.8303 0.8181 0.8242
7 0.8282 0.8150 0.8216
8 0.8217 0.8149 0.8183

Table 2. Results for the different configurations of the proposed
method related to the internal test set.

Enhancement type PLCC SROCC MainScore

A (Enhanced) 0.8399 0.8450 0.8424
B (Stabilized) 0.5709 0.5684 0.5697
C (Deblurred) 0.7143 0.6784 0.6964

Table 3. Internal test set results of the proposed method grouped
by enhancement type.

optimization using Leave-One-Out cross-validation. Then
the best hyper-parameters are used for the evaluation on the
internal test set.

Table 2 underlines that, although the internal test set is
designed to reflect the MOS distribution of the training set,
the results are not correlated with the submissions on the
validation set reported in Table 1.

Figure 3 presents the scatter plots of the quality-related
attribute encoder and the proposed model. A logistic regres-
sion function is drawn for highlighting the silhouette of the
fit. We can see that the quality predictions of the quality-
related attribute encoder are more spread than the ones of
the overall model, showing the need for feature combin-
ing. This is also exemplified in Figure 4, which presents
two examples of predictions where the quality-related at-
tribute encoder (blue line) directly predicts the quality score
of each video frame. The frame-level predictions are highly
sensitive to the scene changes and the overall frame qual-
ity. To this end, the adaptive combination of quality-related
features with technical and aesthetic features uniforms and
weighs both features to obtain the final video score (red
points).

The internal test split allows also to analyze the evalua-
tion metrics between the different enhancement types. From
Table 3, it is possible to notice that our model performs
better on enhanced videos than on stabilized and deblurred
ones. This may be explained by two reasons. First, the
number of enhanced videos is about twice the number of
stabilized and deblurred videos. Second, the quality-related
attribute encoder is trained using images containing various

Method SROCC PLCC MainScore

VIDEVAL [24] 0.5005 0.4724 0.4865
RAPIQUE [25] 0.5434 0.5393 0.5414

TLVQM [9] 0.5474 0.5509 0.5492
V-BLIINDS [19] 0.5652 0.5503 0.5578

VSFA [12] 0.5871 0.5424 0.5648
BVQA [10] 0.6995 0.6674 0.6835

FAST-VQA [28] 0.7350 0.7310 0.7330
Ours – – 0.7859

Table 4. Comparison with state-of-the-art methods for video qual-
ity assessment on the test set of the VDPVE dataset. The higher
the better.

enhancements and therefore can provide more powerful fea-
tures leading to better performance on enhanced videos than
on the other video types.

4.3. Comparison with state-of-the-art methods

We compare the proposed solution with other state-of-
the-art VQA methods. In particular, we use V-BLIINDS
[19], TLVQM [9], VIDEVAL [24], RAPIQUE [25], FAST-
VQA [28], VSFA [12] and BVQA [10]. The results evalu-
ated in terms of SROCC and PLCC are reported in Table 4.
We can see that our solution considerably outperforms the
other methods, obtaining a higher mean score of about 0.05
with respect to FAST-VQA [28], which is the second-best
method.

4.4. Results of the NTIRE 2023 Quality Assessment
of Video Enhancement Challenge

The NTIRE 2023 Quality Assessment of Video En-
hancement Challenge has the goal of developing a solu-
tion for video quality assessment capable to produce high-
quality results with the best correlation to the reference
ground truth (i.e., Mean Opinion Score). A total of 19 teams
were involved in the final stage of the challenge and were
included in the leaderboard. The final results of the compe-
tition are reported in Table 5 and are related to the test set
split of the VDPVE dataset [5]. Here, the proposed method
won sixth place.

5. Conclusion
In this paper, we presented a novel method to evalu-

ate the quality of enhanced videos. Our method relies on
three different neural networks to get multiple informa-
tion from video sequences related to technical quality, aes-
thetic quality and several quality-related aspects, such as
video sharpness, contrast and saturation. The features ob-
tained from these three encoders are adaptively combined
by taking into account their relevance in the final predic-
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Figure 3. Scatter plots of the predicted quality scores versus MOS on the VDPVE internal test set for (a) the quality-related attribute
encoder, and (b) the overall proposed model. The PLCC and SROCC for (a) are 0.5352 and 0.5462 and for (b) are 0.8217 and 0.8149.

Team MainScore Ranking

TB-VQA 0.8576 1
QuoVadis 0.8396 2
OPDAI 0.8289 3

Transsion Image Algorithm Team 0.8199 4
VCCIP 0.7994 5

IVL 0.7859 6
HXHHXH 0.7850 7

fmgtv 0.7727 8
KKARC 0.7635 9
DTVQA 0.7325 10

sqiyx 0.7302 11
402Lab 0.7136 12

NTU-SLab 0.6990 13
HNU LIMMC 0.6972 14

Drealitym 0.6923 15
LION Vaader 0.6863 16
Caption Timor 0.6596 17

IVLab 0.6499 18
one for all 0.5851 19

Table 5. Results of the NTIRE 2023 Quality Assessment of Video
Enhancement Challenge. Our solution won sixth place in the com-
petition.

tion. The video quality score is finally obtained using a Sup-
port Vector Regression machine. Experimental results con-
ducted on the new VDPVE dataset [5] show the effective-
ness of our method, which considerably outperforms other
existing state-of-the-art approaches for video quality assess-
ment. In the context of the NTIRE 2023 Quality Assess-
ment of Video Enhancement Challenge, our method won

sixth place, further demonstrating its effectiveness.
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