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Abstract: The paper is an introduction to the use of the classical Newton–Puiseux procedure, oriented
towards an algorithmic description of it. This procedure allows to obtain polynomial approximations
for parameterizations of branches of an algebraic plane curve at a singular point. We look for an
approach that can be easily grasped and is almost self-contained. We illustrate the use of the algorithm
first in a completely worked out example of a curve with a point of multiplicity 6, and secondly, in
the study of triple points on reduced plane curves.
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1. Introduction

The study of singular points of algebraic plane curves is a very classical subject in
algebraic geometry, and a renewed interest in this subject has come from its connections
with applications (e.g., in CAD). Rational curves have been of particular interest from
this point of view, since they can be parameterized and so they are particularly suited for
plotting a design. Hence, finding ways to describe plane rational curves at their singular
points (more specifically, finding algorithms that can do that) has been quite a prominent
subject of research; many results have been obtained by attacking this problem from
different points of view (e.g., see [1–3]).

When the curve is not rational, one cannot rely on the advantage of a parameterized
curve, nevertheless, there are local parameterizations of the branches of the curve at one
of its points, albeit not given by polynomials, but rather by power series. Namely, if
the curve is defined by a polynomial f (x, y) ∈ C[x, y], with f (0, 0) = 0, one can find
parameterizations T → (Tm, p(T)), p(T) ∈ C{T}, the ring of convergent power series in
T, such that f (Tm, p(T)) = 0, p(0) = 0. Every such parameterization (where p(T) gives a
holomorphic function defined in a neighborhood of the point) describes a branch of f (x, y)
at (0, 0). For example, the curve C, defined by 2xy2 − y3 + x2y2 − 2x6 + x5y + x7 − x6y +
x8 − x9 = 0, has two branches at O = (0, 0), given by (T, 2T + . . . ) and (T2, T5 + . . . ). The
first branch is a smooth one, while the second has a double point (a ramphoid cusp).

The way to obtain these parameterizations is via the Puiseux series and the Newton–
Puiseux algorithm; these are quite a classical subject of study (the idea goes back to Newton,
then was rediscovered by Puiseux, see [4–6]), but their knowledge is not so widespread.
Hence, we consider it worthwhile to present a concise and self-contained introduction to
their use which could be useful, especially for graduate students and young researchers.

We work on C and we consider a Puiseux series as a power series where positive
rational exponents also appear; we denote by C{{x}} the ring of such series (for this
ring there is not a standard symbol). In some texts, the name Puiseux series is used for
series where also a finite number of negative rational exponents is allowed and in this case,
Puiseux series would form a field K (namely, the quotient field of our ring C{{x}}). With
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this approach, the core result of this theory can be stated as The field K is algebraically closed.
This theorem, also called the Newton–Puiseux Theorem, can be found with a concise but
not constructive proof in [7] and with a different and somewhat simpler (but again non-
constructive) proof in [8]. From this point of view, the branches of an algebraic curve given
by f ∈ C[x, y] are given by the linear factors of f as an element of K[y]: f = a ∏m

i=1(y− yi),
where a, and the yi’s (not necessarily distinct) are in K, while m is the multiplicity of C at O
(e.g., see the exposition in [9]).

Detailed treatises of the theory (apart from the early references of Newton and Puiseux
themselves) can be found for example in ([chs. 6, 7], [10]), ([chs. 7, 8 and appx. 4], [11]),
([ch. 1 sec. 3], [12]), ([ch. IV],[9]). A constructive approach, in order to find explicitly the
parameterization of the branches, is given by the Newton–Puiseux Algorithm; e.g., this is
the way the Newton–Puiseux Theorem is proved in [9] (but also there the algorithm is not
completely constructive, see ([Intro], [13])).

For a more constructive approach, which also considers non-algebrically closed fields
or finite ones instead of just C, one can consider [13–16], and the references therein, where
also discussions about the search for efficient computational versions of the algorithm can
be found.

The first aim of this paper is to expound a handy and compact version of the Newton–
Puiseux procedure (over C), which avoids involving negative exponents and is given by
an algorithm “as concise as possible”, together with a self-contained justification of why
it actually works (which avoids the proof of the Newton–Puiseux Theorem, although we
use [9] as the main reference for some details) and a “Stop criterion” which allows to obtain
good polynomial approximations of the series which give the local branches of the curve.

The plan of the paper is as follows: after a section of preliminaries (Section 2), in
Section 3, we describe our version of the Newton–Puiseux Algorithm for the branches of a
reduced algebraic curve at a singular point. The way we proceed is the following: first, we
describe two essential tools for the Algorithm: the ∗-procedure and a graph G f associated
to the curve. Such a graph G f will guide the steps of the Algorithm. The next essential
tool for the Algorithm is the “Stop criterion”, which we describe immediately after, and we
show how it works in making G f a finite graph (so that the procedures can come to an end).
After that, we have all the main ingredients for the Algorithm and we have also pointed
out what is still missing to obtain a complete justification of why it works; in the following
Section 3.3, we present all the necessary lemmata which answer those remaining questions
(this subsection is quite technical, so a reader who is less interested in such matter can
skip it and still have a good understanding of how the Algorithm works). Eventually, in
Section 3.4, we write the formal Algorithm (Algorithm 1) and then an easier version of it
(Algorithm 2), which can be used in case one already knows the irreducible decomposition
of the curve, also when f is not reduced. In order to fully illustrate the way the given
Algorithm works, in Section 3.5, we present an example of its application on a curve which
possesses several branches at a point of multiplicity 6.

In Section 4, we present an application of Algorithm 1, which is the second aim of the
paper: in Theorem 4.3, we use it in order to obtain the description of all possible structures
of a triple point with a triple tangent (of course, one can apply the Algorithm also if the
triple point has two or three tangents, but in this case, the possibilities for its structure are
well known). Moreover, when C is of cuspidal type, i.e., it has only a 3-branch, we see
that its parameterization can be characterized by an invariant which we call its type (see
Definition 8). The type is a number s ∈ N with s ≥ 4 and s 6≡ 0 (mod 3) and the triple
point is of type s if and only if the curve is analytically equivalent to (T3, asTs + . . . ) and
topologically equivalent to (T3, Ts).

2. Preliminaries

In the following, C is a reduced plane algebraic curve in A2(C), of equation f = 0,
where f ∈ C[x, y] (we write for short C: f = 0) and O := (0, 0) is a point of C; we denote
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with mO(C) the multiplicity of C at O. Given a formal power series s(T) ∈ C[[T]], o(s)
denotes the order of s(T).

Definition 1. A formal parameterization of C at O is a pair (p(T), q(T)), with p(T), q(T) ∈
C[[T]], such that f (p(T), q(T)) = 0, p(0) = 0 and q(0) = 0. Two formal parameterizations,
(p1, q1) and (p2, q2), are equivalent if there exists an invertible series s ∈ C[[T]] such that
(p1, q1) = (p2 ◦ s, q2 ◦ s). Moreover, a formal parameterization is called reduced if it is not
equivalent to a formal parameterization of the form (p(Tm), q(Tm)), m > 1.

Definition 2. A branch of C at O is a class of equivalent formal reduced parameterizations of C
at O.

Remark 1. It can be shown (see, for example, ([ch. IV, Theorem 2.2], [9])) that in a suitable
coordinate system any given parameterization is equivalent to one of the type

(Tn, p(T))

where p(T) ∈ C[[T]]. Moreover, two such parameterizations

(Tn, p(T)), (Tm, q(T))

are equivalent if and only if n = m and there exists an n-th root of the unity ω such that p(ωT) = q(T).

Remark 2. Sometimes, what we defined as a branch of C at O is called a place of C at O and it can
be viewed as the algebraic counterpart of the more usual analytical definition of branch. However,
the two definitions are equivalent; more details can be found in (pp. 96–97, [9]).

Definition 3. Let R = (p(T), q(T)) be a branch of C at O. We define the multiplicity of R at
O to be the number m = mO(R) := min{o(p), o(q)} and we say that R is an m-branch of C.
Moreover, if c and d are the coefficients of Tm, respectively, in p and q, the line passing through O
with direction (c, d) is called the tangent line of R.

Remark 3. It can be checked that the equation of the tangent cone to C at O is the product of the
tangent lines (possibly repeated) to the different branches of C at O, with each one raised to the
multiplicity of the corresponding branch. It follows that:

• C has in each of its points a finite number of branches;
• If t is a tangent of C at O with multiplicity mt and R1, . . . , Rs are the branches of C at O

whose tangent is t, then ∑s
i=1 mO(Ri) = mt

• If R1, . . . , Rn are the branches of C at O, then ∑n
i=1 mO(Ri) = mO(C).

In order to find explicitly the branches of a curve, we will use the Newton–Puiseux
Algorithm, which uses the Newton polygon and Puiseux series, which are nothing but
power series where positive rational exponents are admitted. More formally, we have

Definition 4. A Puiseux series is an element p ∈ C{{x}} :=
⋃∞

r=1 C[[x
1
r ]]. The minimum r

such that p ∈ C[[x
1
r ]] is called the lowest common denominator of p ∈ C{{x}} (it is also called

order of polydromy, e.g., see [17]). The order of p is defined analogously to the formal series order.

Notice that a finite sum of Puiseux series is a Puiseux series, since if s1 ∈ C[[x
1
r1 ]], . . . ,

sn ∈ C[[x
1

rn ]], then s1 + · · ·+ sn ∈ C[[x
1

r1...rn ]].
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Definition 5. A Puiseux y-polynomial is a polynomial f ∈ C{{x}}[y] of the form

f (x, y) =
n

∑
i=0

pi(x)yi

where each pi(x) has a finite number of terms, i.e., p1 ∈ C[x
1
r1 ], . . . , pn ∈ C[x

1
rn ]. Setting

r = r1 · · · rn, we have that p1, . . . , pn ∈ C[x
1
r ], hence, f is polynomial in C[x

1
r , y].

A root of f is a series p(x
1
q ) such that f (x, p(x

1
q )) = 0.

Definition 6. A Puiseux y-polynomial f ∈ C[x
1
r , y] is called Newton convenient if f (O) = 0

and both x
1
r and y do not divide f (i.e., there are a, b ∈ N such that the monomials x

a
r and yb appear

in f with non-zero coefficients).

We want to define the Newton polygon associated to such an f ; the definition can ac-
tually be given for polynomials in any number of variables and, in general, is called Newton
diagram (e.g., see ([Definition 2.14 pp. 121–122],[12])). We use only the two-dimensional
Newton diagram for Newton-convenient Puiseux y-polynomials and we refer to it as
Newton polygon (see also [9]).

Definition 7. Let f =
d

∑
i+j=1

aij(x
1
r )iyj ∈ C[x

1
r , y] be a Newton-convenient Puiseux y-polynomial

and let supp( f ) := {( i
r , j) ∈ Q2, aij 6= 0} be the support of f . The Newton Polygon of f , denoted

by Γ( f ), is defined as follows:

• Let P1 be the leftmost point of supp( f ) (notice that P1 is on the y-axis; if there are more
points with abscissa 0, we choose the lowest one). From P1, we rotate a vertical downward ray
counterclockwise and stop rotating it when it meets the first point of supp( f ). We call P2 the
rightmost point of supp( f ) met by this ray;

• From P2, we rotate a vertical downward ray counterclockwise and we stop rotating it when it
meets the first point of supp( f ). We call P3 the rightmost point of supp( f ) met by this ray;

• We repeat this procedure until we reach a point Pk+1 on the x-axis.

For all Pn, Pn+1, we denote by bn the segment PnPn+1; we set Γ( f ) = {b1 . . . bk} and we say
that b1, . . . , bk are the edges of Γ( f ). The difference between the ordinates of Pn and Pn+1 is called
height of bn. For each b ∈ Γ( f ), we define the b-truncation of f as

f b = ∑
( i

r ,j)∈b∩Q2

aij(x
1
r )iyj.

Remark 4. We would like to point out a few easy properties of the Newton polygon which will be
useful in the following: in the notation of the previous definition, consider the unbounded subset N
of the first quadrant, x ≥ 0, y ≥ 0, whose border is given by the Newton Polygon, the ray from P1
on the y-axis and the ray from Pk+1 on the x-axis. Then, by construction, N is convex. Hence, it
is clear that there are neither vertical nor horizontal edges in the Newton Polygon and that all the
edges have negative slope.

Example 1. Let us consider the following polynomial f ∈ C[x
1
2 , y]:

f = 2y6 + x
3
2 y4 − 3x3y3 + x

7
2 y4 + 3x4y3 − x

9
2 y2 + x

11
2 y2 − 4x7y2 + x

15
2 y + x

19
2 y− 7x12 + 4x

25
2 .

Its Newton Polygon is given in Figure 1:
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Figure 1. The Newton Polygon of f .

and we write Γ( f ) = {b1, b2, b3, b4}. Moreover, we have:

f b1 = 2y6 + x
3
2 y4, f b2 = x

3
2 y4 − 3x3y3 − x

9
2 y2, f b3 = −x

9
2 y2 + x

15
2 y, f b4 = x

15
2 y− 7x12.

The next theorem is well known and it will be very useful in the following (its proof
can be found, for example, in ([Theorem 6.4], [10])).

Theorem 1 (Implicit Function Theorem for Puiseux series). Let

f =
d

∑
i=0

pi(x)yi ∈ C{{x}}[y].

If p0(0) = 0 and p1(0) 6= 0, then ∃! p ∈ C{{x}} such that p(0) = 0 and f (x, p(x)) = 0.
Moreover, if pi ∈ C[[x

1
r ]] for i = 1, . . . , d, then p ∈ C[[x

1
r ]].

3. The Newton–Puiseux Algorithm

The aim of this section is to present our version of the Newton–Puiseux Algorithm: for
a reduced polynomial f = ∑d

i+j=1 aijxiyj, it yields an approximation of all the branches at
O of the algebraic plane curve C: f = 0. With this in mind, we present some preliminaries
needed for the algorithm.

3.1. The ∗-Procedure and the Graph G f

In the following, h denotes a Puiseux y-polynomial with h(O) = 0, h ∈ C[x
1
r , y], and

such that x
1
r - h (recall that r ∈ N, r > 0). Hence, we consider powers of x with rational

exponents, while the powers of y always have an integer exponent.
For the moment, we are just going to describe this procedure, which is the main tool

for our Algorithm; later on (Section 3.3), we shall give the needed justifications in detail. In
the procedure, we distinguish two cases, according to whether y | h or not.

Case y - h : By assumption, x
1
r - h, h(O) = 0 and y - h, hence, h is Newton-convenient.

We consider the Newton Polygon Γ(h) = {b1, . . . , bk} of h. We set

h(i) :=
hbi

xui yvi
; ∀ i = 1, . . . , k

where xui and yvi are respectively the highest power of x and y such that h(i) ∈ C[x
1
r , y].

Moreover, we have h(i)(O) = 0 (this will be proved later).
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We find all the si roots qi1, . . . qisi of h(i), considered as a polynomial in y; if − 1
ri

is the

slope of bi, then h(i) has all its roots in C[xri ] and each qij is of the form qij(x) = cijxri with
cij ∈ C (this will be proved later).

We finally set

h(ij) :=
h(x, xri (cij + z))

xmi
, ∀ i = 1, . . . , k, ∀ j = 1, . . . , si

where mi is the greatest power of x such that h(ij) ∈ C{{x}}[z].
By construction, h(ij) is a Puiseux z-polynomial, and if h(ij) is in, say, C[x

1
b , y], then

x
1
b - h. Moreover, we have h(ij)(O) = 0 (this will be proved later). Therefore, the result of

the procedure is:

si = si(h), qij = qij(h), cij = cij(h), ri = ri(h), h(ij), i = 1, . . . , k, j = 1, . . . , si.

Case y | h: Let ye be the greatest power of y such that ĥ := h(x,y)
ye ∈ C{{x}}[y]. We have

two subcases: ĥ(O) 6= 0 and ĥ(O) = 0.

• If ĥ(O) 6= 0, we ignore ĥ and we take into account uniquely the contribution given by
the root y = 0 of h, in the following way: we define a virtual Newton Polygon Γ(h)
with just one edge and we set, with an abuse of notation:

Γ(h) := {b1}, s1 := 1, q11 := 0, c11 = 0, r1 := 0, h(11) := 0.

• If ĥ(O) = 0, we take into account the contribution given by ĥ as well as the one given
by the root y = 0, in the following way: ĥ being Newton-convenient, we can consider
the Newton Polygon Γ(ĥ) = {b1 . . . bk} of ĥ and apply the procedure defined in Case
y - h to the Puiseux y-polynomial ĥ; we rename the results of the procedure as follows:

si(h) := si(ĥ), qij(h) = qij(ĥ), cij(h) := cij(ĥ), ri(h) := ri(ĥ), h(ij) := ĥ(ij), i = 1, . . . , k, j = 1, . . . , si.

Moreover, we add a further virtual edge bk+1 and we set, with an abuse of notation:

Γ(h) := {b1, . . . , bk, bk+1}, sk+1 := 1, q(k+1)1 := 0, c(k+1)1 = 0, rk+1 := 0, h((k+1)1) := 0.

Summarizing, the input of the ∗-procedure is a Puiseux y-polynomial h ∈ C[x
1
r , y]

such that x
1
r - h and h(O) = 0, and the output is made of:

si = si(h) ∈ N, ri = ri(h) ∈ Q+, cij = cij(h) ∈ C

and some Puiseux z-polynomials h(ij) ∈ C{{x}}[z], for any choice of the edge bi of Γ(h)
and for any qij relative to that edge.

Moreover, each polynomial h(ij) in the output either satisfies the necessary conditions
to apply again the ∗-procedure, or h(ij) = 0.

Example 2. Let us apply the ∗-procedure to the polynomial

h = y2(2y6 + x
3
2 y4 − 3x3y3 + x

7
2 y4 + 3x4y3 − x

9
2 y2 + x

11
2 y2 − 4x7y2 + x

15
2 y + x

19
2 y− 7x12 + 4x

25
2 ) ∈ C[x

1
2 , y].

Following the notation of the ∗-procedure, we are in case y|h with e = 2 and

ĥ = 2y6 + x
3
2 y4 − 3x3y3 + x

7
2 y4 + 3x4y3 − x

9
2 y2 + x

11
2 y2 − 4x7y2 + x

15
2 y + x

19
2 y− 7x12 + 4x

25
2

so ĥ(O) = 0 and we apply the ∗-procedure to ĥ. By Example 1, we know the Newton
Polygon of ĥ and Γ(ĥ) = {b1, b2, b3, b4}, with
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ĥb1 = 2y6 + x
3
2 y4, ĥb2 = x

3
2 y4 − 3x3y3 − x

9
2 y2, ĥb3 = −x

9
2 y2 + x

15
2 y, ĥb4 = x

15
2 y− 7x12.

As a consequence, we have

(u1, v1) = (0, 4), (u2, v2) =

(
3
2

, 2
)

, (u3, v3) =

(
9
2

, 1
)

, (u4, v4) =

(
15
2

, 0
)

and thus

ĥ(1) =
2y6 + x

3
2 y4

y4 = 2y2 + x
3
2 , ĥ(2) =

x
3
2 y4 − 3x3y3 − x

9
2 y2

x
3
2 y2

= y2 − 3x
3
2 y− x3

ĥ(3) =
−x

9
2 y2 + x

15
2 y

x
9
2 y

= −y + x3, ĥ(4) =
x

15
2 y− 7x12

x
15
2

= y− 7x
9
2 .

By computing the roots of the ĥ(i)’s, considered as polynomials in y, we find:

q11(cĥ) =
√

2
2

ix
3
4 , q12(ĥ) = −

√
2

2
ix

3
4

q21(ĥ) =
3 +
√

13
2

x
3
2 , q22(ĥ) =

3−
√

13
2

x
3
2

q31(ĥ) = x3, q41(ĥ) = 7x
9
2

and we can compute the ĥ(ij)’s just applying the definition but, since they are very long
to write, we avoid giving them explicitly. At the end of the procedure, we add the virtual
edge b5 and we have our output:
the si(h)’s:

s1(h) = 2, s2(h) = 2, s3(h) = 1, s4(h) = 1, s5(h) = 1

the qij(h)’s:

q11(h) =
√

2
2

ix
3
4 , q12(h) = −

√
2

2
ix

3
4 , q21(h) =

3 +
√

13
2

x
3
2 , q22(h) =

3−
√

13
2

x
3
2

q31(h) = x3, q41(h) = 7x
9
2 , q51(h) = 0

the cij(h)’s:

c11(h) =
√

2
2

i, c12(h) = −
√

2
2

i, c21(h) =
3 +
√

13
2

, c22(h) =
3−
√

13
2

c31(h) = 1, c41(h) = 7, c51(h) = 0

the ri(h)’s:

r1(h) = −
3
4

, r2(h) = −
2
3

, r3(h) = −
1
3

, r4(h) = −
2
9

, r5(h) = 0

and the h(ij)’s, with h(ij) = ĥ(ij) for i = 1, 2, 3, 4 and h(51) = 0.

Now, let f ∈ C[x, y] be a given polynomial, with f (O) = 0 and x - f . We apply the
∗-procedure successively to all the polynomials f , f (ij), f (ij) (lt), . . . obtaining a graph G f ,
as described in Figure 2.
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Figure 2. The graph G f .

The 0-level consists only of the vertex f , the 1-level consists of the vertices f (ij) and so
on, so that the n-level is composed of the vertices marked with 2n indices.

Since, in general, Puiseux series have infinite terms, the ∗-procedure, in general, does
not end without a stop criterion.

Stop criterion 3.1. In order to have that G f is a finite graph, we stop the procedure every time
that we meet a polynomial f such that one of the following conditions occurs:

(i) f = 0;
(ii) f satysfies the assumptions of Theorem 1, i.e., the monomial z appears in f with a non-zero

coefficient (graphically, the Newton Polygon Γ( f ) has a unique edge of height one).

3.2. The Paths on G f and the Branches of the Curve

We proceed considering every possible descending path γ in G f , starting from f0 := f
and stopping when we reach an f (i1 j1)...(in jn), which satisfies (i) or (ii) of Section 3.1 above.
Notice that, in general, we obtain paths of different lengths.

For each path γ, we call n-th step the passage from the n-level to the (n + 1)-level of
γ; graphically, it is given by 3 vertices and 2 edges: the highest vertex is a polynomial
f (i1 j1)...(in jn) which from now on is denoted by fn(γ) and, since the ∗-procedure introduces a
new variable at each step, we consider fn(γ) ∈ C{{x}}[yn]. The middle vertex is associated
with an edge of Γ( fn) which is now called an(γ) and the lowest one is now called fn+1(γ).
When no confusion is possible, we will just write fn, an, fn+1.

Once a path is fixed, we use the following notation for the ∗-procedure at the n-th step,
assuming that fn ∈ C[x

1
r , yn], where r depends on γ and n, and that an is not a “virtual

edge” which sprouts from a zero root:

• xun and yvn
n are, respectively, the highest power of x and yn such that:

gn =
f an
n (x, yn)

xun yvn
n
∈ C{{x}}[yn];

• qn = cnxrn is the chosen root of gn;
• mn is the highest power of x such that

fn+1 =
fn(x, xrn(cn + yn+1))

xmn
∈ C{{x}}[yn+1].
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If, instead, an is a “virtual edge”, we only have cn = 0, rn = 0, fn+1 = 0 (so the path
γ stops here by the stop criterion).

3.2.1. Each Path γ Gives the Approximation of a Branch

Let us consider an algebraic curve C, associated to f (x, y) = 0 and passing through
the origin. In the notation above, each path γ gives the approximation of a branch of C at O
in the following way:

If n is the lenght of the path γ, we set

pγ(x) :=
n

∑
n=0

cnxr0+···+rn .

If no confusion arises we just write p(x) for pγ(x).
Let r be the common lowest denominator of p(x); Theorem 1 guarantees that p(x) is

the truncation of a Puiseux series p̃(x), with common lowest denominator r. Moreover,
the way the algorithm is constructed guarantees that f (x, p̃(x)) = 0 and p̃(0) = 0, so that
(Tr, p(Tr)) is the approximation of a branch (Tr, p̃(Tr)) of C at O. For more details, see
(pp. 98–99, [9]).

The above procedure is summarized in the forthcoming Algorithm 1. Notice that in
the Algorithm we start with a reduced curve C : f (x, y) = 0, i.e., the polynomial f = f0
is supposed to be without multiple factors. This, the forthcoming Lemma 6 implies that
the case relative to a “virtual edge” (which would occur when fn−1 has a zero root, forcing
the path γ to stop) can never occur, unless C has a branch coming from a component that
is a rational curve, i.e., there is an algebraic branch at O. In other words, if (i) of the Stop
criterion 3.1 occurs, it means that yn−1 | fn−1, i.e., 0 ∈ C{{x}} is a root of fn−1: hence, we
can stop following the path in question because the corresponding Puiseux series has a
finite number of terms and we have found all of them.

Of course, the roots of f have, in general, infinite terms. Every time we apply the
∗-procedure, we obtain a new polynomial which has a Newton Polygon whose height is
≤the previous one by Lemma 3. The criterion actually yields to a stop on any descending
path in G f because f is reduced and this implies that each path on the graph ends with
a step of height 1 (see also (p. 105, [9])), hence, we end in case (ii) of the step, unless we
ended in case (i) before.

If, once arrived at the n̄th step, we are in case (ii) of the Stop criterion 3.1, i.e., fn(x, yn)
satisfies the hypothesis of Theorem 1, we have that for any n ≥ n, there is a unique choice
for cn and rn. This means that the root p(x) does not split anymore, i.e., if we were to go
on along the path, from now on, there would be a unique possible choice at each step.
Hence, we have found enough terms of pγ(x) to distinguish it from the other branches,
therefore, we can stop the algorithm. Clearly, if one wants to calculate more terms of p(x),
it is enough to continue the procedure.

In conclusion, the Stop criterion 3.1 is a good one.

3.2.2. Justification of the Procedure

There are several results that are needed in order to show that we can actually perform
the ∗-procedure described in Section 3.1, namely:

(1) In the ∗-procedure, we need h(i)(O) = 0, and the roots qi1, . . . qisi of h(i) need to be in

C[x
1
r ], with qij of the form qij(x) = cijxri , cij ∈ C;

(2) In order to keep applying the ∗-procedure, we must show that the Puiseux z-polynomial
h(ij) satisfies h(ij)(O) = 0.

Rephrasing (1) and (2) in the language used above in this Section 3.2, we must
show that:

(1) gn(O) = 0, and the roots qi1, . . . qisi of gn need to be in C[x
1
r ], with qij of the form

qij(x) = cijxri , cij ∈ C;
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(2) fn+1(O) = 0.

Finally, notice that we need to distinguish when the parameterizations we obtain in
the algorithm are equivalent, in which case they give the same branch. Lemma 1 provides
a criterion to do that. The fact that (1) and (2) above hold will be proved by Lemma 3 and
Lemma 2 in the next section, respectively.

3.3. The Lemmata

This subsection is of a more technical sort. We present the lemmata which justify why
the algorithm actually works.

Lemma 1. Let C : f (x, y) = 0 be a reduced curve such that x - f and let

p(x
1
r ) =

∞

∑
i=0

ci(x
1
r )i, p′(x

1
r′ ) =

∞

∑
i=0

c′i(x
1
r′ )i

be two roots of f . Moreover, let γ and γ′ be the paths associated to p and p′ with the respective
notation and set n = min{n ∈ N | fn(x, yn) and f ′n(x, yn) satisfy Theorem 1}. Then the parame-
terizations

(Tr, p(T)), (Tr′ , p′(T))

are equivalent if and only if r = r′ and it exists ω such that ωr = 1 and

n

∑
i=0

ci(ωx
1
r )i =

n

∑
i=0

c′i(x
1
r )i.

Proof. If the parameterizations are equivalent, we conclude by Remark 1. By ([Ch. IV,
Theorem 4.1], [9]), it follows that since p(x

1
r ) is a root of f (x, y), then also p(ωx

1
r ) is a root

of f (x, y), where ωr = 1. Moreover, since f ′n satisfies the assumptions of Theorem 1, there
exists a unique root q(x

1
r ) of f (x, y) such that

q(x
1
r ) =

n

∑
i=0

c′i(x
1
r )i + . . .

hence, this root has to be p′(x
1
r ). By assumption, we have

p(ωx
1
r ) =

∞

∑
i=0

ci(ωx
1
r )i =

n

∑
i=0

ci(ωx
1
r )i + · · · =

n

∑
i=0

c′i(x
1
r )i + . . .

so that p(ωx
1
r ) = q(x

1
r ). Hence, we have p(ωx

1
r ) = p′(x

1
r ) and the result follows by

Remark 1.

Lemma 2. Notation as in Section 3.2. Let an ∈ Γ( fn), let ρ denotes its slope, and let c1 . . . ct
be the distinct roots of gn(1, yn), of multiplicity m1, . . . , mt. Then, gn(O) = 0, and the roots
of gn(x, yn) ∈ C{{x}}[yn] are qn1(x) = c1xrn , . . . , qnt(x) = ctxrn , where rn = − 1

ρ ; more
precisely, there is a constant α such that

gn(x, yn) = α
t

∏
s=1

(yn − csxrn)ms

where ∑t
i=1 mi is equal to the height of an. We say that ms is the multiplicity of cs as a root of gn.

Proof. We can assume that y - fn, hence fn is Newton-convenient and we can consider its
Newton Polygon Γ( fn); moreover, all its edges have strictly negative slopes by Remark 4.
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Hence, if (i1, j1), . . . , (ir, jr) are the points of an ordered from left to right, we have i1 < i2 <
· · · < ir and j1 > j2 > · · · > jr. Therefore, if we set

fn(x, yn) = ∑
(i,j)∈supp( fn)

aijxiyj
n

we have

f an
n =

r

∑
k=1

aik jk xik yjk
n , ui = i1, vi = js

which in turn gives

gn(x, yn) =
r

∑
k=1

aik jk xik−i1 yjk−jr
n

so we can see that gn(O) = 0. The slope of an is ρ = jr−j1
ir−i1

; we consider the possible roots of

gn(x, yn) ∈ C{{x}}[yn] of the form yn = uxrn , u ∈ C, rn = − 1
ρ . We have

gn(x, yn) = gn(x, uxrn) =
r

∑
k=1

aik jk xik−i1+rn(jk−jr)ujk−jr .

Since (ik, jk) ∈ an, k = 1, . . . , r, the following equation holds:

(j1 − jr)(ik − i1) = (jk − j1)(i1 − ir), k = 1, . . . , r

and therefore,

ik − i1 + rn(jk − jr) =
(ik − i1)(jr − j1)− (jk − jr)(ir − i1)

jr − j1
= ir − i1, k = 1, . . . , r.

Hence, we have

gn(x, yn) = xir−i1
r

∑
k=1

aik jk ujk−jr .

Now, we define

h(yn) := gn(1, yn) =
r

∑
k=1

aik jk yjk−jr
n .

Since h(yn) ∈ C[yn] and deg(h) = j1 − jr, h(yn) factorizes as

h(yn) = ai1 j1

t

∏
s=1

(yn − cs)
ms , withci 6= cj and

t

∑
s=1

ms = j1 − jr.

Thus, we have

gn(x, yn) = xir−i1 h(u) = ai1 j1 xir−i1
t

∏
s=1

(u− cs)
ms = ai1 j1 xir−i1

t

∏
s=1

(
yn

xrn
− cs)

ms .

Since

rn

t

∑
s=1

ms = rn(j1 − jr) = ir − i1,

we obtain

gn(x, yn) = ai1 j1

t

∏
s=1

xrnms(
yn

xrn
− cs)

ms = ai1 j1

t

∏
s=1

(yn − csxrn)ms .
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Therefore, the roots of gn are

qn1 = c1xrn , . . . , qnt = ctxrn

and we conclude the proof by observing that j1 − jr = ∑t
s=1 ms is exactly the height of

an.

Lemma 3. Notation as in Section 3.2. If cxrn is a root of gn(x, yn) of multiplicity m, then the
lowest pure power of yn+1 in fn+1(x, yn+1) is ym

n+1. Moreover, fn+1(O) = 0.

Proof. We use the same notation introduced in the proof of Lemma 2. We can write fn as

fn = f an
n + ( fn − f an

n )︸ ︷︷ ︸
f̃n

= xi1 yjr
n gn + f̃n.

Hence, it follows that

fn(x, xrn(c + yn+1)) = xi1+rn jr (c + yn+1)
jr gn(x, xrn(c + yn+1))︸ ︷︷ ︸

A

+ f̃n(x, xrn(c + yn+1)).

By Lemma 2

gn(x, xrn(c + yn+1)) = ai1 j1

t

∏
s=1

(xrn yn+1 + (c− cs)xrn)ms = ai1 j1 xrn ∑t
s=1 ms

t

∏
s=1

(c− cs + yn+1)
ms

and

rn =
i1 − ir
jr − j1

and
t

∑
s=1

ms = j1 − jr.

Without loss of generality, we can suppose that c = c1 (and, as a consequence, that m = m1).
Therefore, we have

gn(x, xrn(c + yn+1)) = ai1 j1 xir−i1 ym
n+1

t

∏
s=2

(c− cs + yn+1)
ms

and, by substituting this in A, we obtain

A = ai1 j1 xrn jr+ir ym
n+1(c + yn+1)

jr
t

∏
s=2

(c− cs + yn+1)
ms .

Now, let aijx
iyj

n be a monomial of f̃n. Its evaluation in (x, xrn(c + yn+1)) is

aijx
i+rn j(c + yn+1)

j.

Since (ī, j̄) ∈ (supp( fn) \ an), the point (ī, j̄) does not belong to an. Let ãn be the line
containing the edge an; ãn has equation i + rn j = ir + rn jr. Since Γ( fn) is part of the border
of the convex hull of supp( fn), the point (ī, j̄) is in the half plane i + rn j > ir + rn jr, hence,

ī + rn j̄ > ir + rn jr. (1)

This shows that the power of x for which we have to divide fn(x, xrn(c + yn+1)) is xrn jr+ir

and that the pure powers of yn+1 in fn+1 are uniquely the ones coming from

A
xrn jr+ir

= ai1 j1 ym
n+1(c + yn+1)

jr
t

∏
s=2

(c− cs + yn+1)
ms .
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Hence, the monomial with the lowest pure power of yn+1 is(
ai1 j1 cjr

t

∏
s=2

(c− cs)
ms

)
ym

n+1

so the lowest pure power of yn+1 in fn+1(x, yn+1) is ym
n+1. We have

fn+1(x, yn+1) =
A

xrn jr+ir
+

f̃n(x, xrn(c + yn+1))

xrn jr+ir

and A
xrn jr+ir (O) = 0 since it is divided by yn+1, while f̃n(x,xrn (c+yn+1))

xrn jr+ir (O) = 0 by (1).

Lemma 4. Notation as in Section 3.2. Let n ∈ N be the minimum such that there exists t ∈ N,
t ≥ 1 such that yt

n+1 | fn+1. Then:

yt
n+1 | fn+1 in C{{x}}[yn+1]⇔ (y−

n

∑
i=0

cixri+ri−1+···+r0)t | f in C{{x}}[y]

Proof. Let

fn(x, yn) = ∑
(i,j)∈supp( fn)

aijxiyj
n ; fn+1(x, yn+1) = ∑

(i′ ,j′)∈supp( fn+1)

bi′ j′x
i′yj′

n+1

and recall that the exponents of x are rationals, while those of y are integers.
⇒) Since yt

n+1 | fn+1(x, yn+1) it exists hn+1 ∈ C{{x}}[yn+1] such that fn+1(x, yn+1) =
yt

n+1hn+1(x, yn+1). Moreover, we have

fn(x, yn) = xmn fn+1

(
x,

yn

xrn
− cn

)
= xmn

( yn

xrn
− cn

)t
hn+1

(
x,

yn

xrn
− cn

)
=

= (yn − cnxrn)t xmn−trn hn+1

(
x,

yn

xrn
− cn

)
︸ ︷︷ ︸

hn(x,yn)

.

Now, we want to show that hn(x, y) ∈ C{{x}}[yn]. We have

hn+1(x, yn+1) =
fn+1(x, yn+1)

yt
n+1

= ∑
(i′ ,j′)∈supp( fn+1)

bi′ j′x
i′yj′−t

n+1

therefore,

hn(x, yn) = xmn−trn hn+1

(
x,

yn

xrn
− cn

)
= xmn−trn ∑

(i′ ,j′)∈supp( fn+1)

bi′ j′x
i′
( yn

xrn
− cn

)j′−t
=

= ∑
(i′ ,j′)∈supp( fn+1)

bi′ j′x
mn−trn+i′−rn(j′−t)(yn − cnxrn)j′−t.

Since j′ − t ≥ 0, it is enough to prove that

mn − trn + i′ − rn(j′ − t) ≥ 0, ∀ (i′, j′) ∈ supp( fn+1). (2)

By definition

fn+1(x, yn+1) =
fn(x, xrn(cn + yn+1))

xmn
= ∑

(i,j)∈supp( fn)

aijxi+jrn−mn(cn + yn+1)
j =
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= ∑
(i,j)∈supp( fn)

aijxi+jrn−mn
j

∑
k=0

(
j
k

)
yk

n+1cj−k
n

hence

(i′, j′) ∈ supp( fn+1)⇒ ∃ (i, j) ∈ supp( fn), k ∈ N, k ≤ j such that i′ = i + jrn −mn and j′ = k.

Thus, in order that (2) holds, it suffices that

mn − trn + i + jrn −mn − rn(k− t) = i + (j− k)rn ≥ 0 ∀ (i, j) ∈ supp( fn), 0 ≤ k ≤ j

and this inequality holds because i, (j − k), rn ≥ 0. Thus, we showed that
hn(x, yn) ∈ C{{x}}[y].

Now, by the same reasoning, we have

fn−1(x, yn−1) = xmn−1 fn

(
x,

yn−1

xrn−1
− cn−1

)
= xmn−1

( yn−1

xrn−1
− cn−1 − cnxrn

)t
hn

(
x,

yn−1

xrn−1
− cn−1

)
=

= (yn−1 − cn−1xrn−1 − crn+rn−1
n )t xmn−1−trn−1 hn

(
x,

yn−1

xrn−1
− cn−1

)
︸ ︷︷ ︸

hn−1(x,yn−1)∈C{{x}}[yn−1]

.

Hence, since f = f0, iterating the same procedure, we find h(x, y) ∈ C{{x}}[y] such that

f (x, y) =

(
y−

n

∑
i=0

cixri+ri−1+···+r0

)t

h(x, y).

⇐) The proof is analogous to the previous one.

Lemma 5. Let us consider f , g ∈ C[u, v] such that g is irreducible, deg g > 0, and let t ∈ N, t > 0.
Then, gt | f if and only if g divides f and all its partial derivatives up to the order of t− 1.

Proof. ⇒) Is trivial.
⇐) Let us prove the statement for t = 1. Let f = gh; since g | fu and g | fv, there exist
h1, h2 ∈ C[u, v] such that fu = gh1 and fv = gh2. We have

gh1 = fu = (gh)u = guh + ghu, gh2 = fv = (gh)v = gvh + ghv.

Thus, we have that g(h1 − hu) = guh and g(h2 − hv) = gvh so that g | guh and g | gvh.
Since g is irreducible, it follows that either g | gu or g | h and either g | gv or g | h. Since
deg gu < deg g, we have that g | gu if and only if gu = 0, and similarly for gv. Now,
notice that since deg g > 0, at least one between gu and gv is not the zero polynomial and
hence, g | h.

Now, let us suppose that t > 1 and that g divides f and all its derivatives up to the
order of t− 1. In particular, g divides all derivatives of order t− 2 and their first partial
derivatives. Thus, by the previous part of the proof, it follows that g2 divides all partial
derivatives of f of order t− 2. By iterating this argument, we have that ga divides all partial
derivatives of f of order t− a and hence, gt | f .

Lemma 6. Notation as in Section 3.2. Let t, n ∈ N, t ≥ 1, n ≥ 0, and let
yt

n+1 | fn+1. Then, if r is the lowest common denominator of ∑n
i=0 cixri+ri−1+···+r0 , we have

thatR = (Tr, ∑n
i=0 ciTr(ri+ri−1+···+r0)) is a branch of C : f = 0 at O. Moreover, if g(x, y) = 0 is

an equation of the parametric curveR, then gt | f in C[x, y].

Proof. We use the same notation introduced in the proof of Lemma 4.
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By assumption yt
n+1 | fn+1, hence, by Lemma 4, we have that there exists

h ∈ C{{x}}[y] such that f = h · (y−∑n
i=0 cixri+ri−1+···+r0)t. In particular,

f (x,
n

∑
i=0

cixri+ri−1+···+r0) = 0

and hence,R is a branch of C at O.
Since R has a polynomial parameterization, it is an algebraic rational curve and

therefore, there exists g ∈ C[x, y], g irreducible, such that R : g = 0. In order to prove
that gt | f in C[x, y], we start proving that gt | f in C{{x}}[y]. Notice that, by the proof
of Lemma 4, it follows that there exists m ∈ N such that h, (y − ∑n

i=0 cixri+ri−1+···+r0) ∈
C[x

1
m , y]. As a consequence, we can prove that gt | f in C[x

1
m , y]. To do this, we apply

Lemma 5 to f , g ∈ C[x
1
m , y]. Let

P = (Tr,
n

∑
i=0

ciT
r(ri+ri−1+···+r0)) ∈ R,

then

f (P) = f (Tr,
n

∑
i=0

ciT
r(ri+ri−1+···+r0)) = 0, ∀P ∈ R ⇒ P ∈ C ∀P ∈ R ⇒ g | f .

In order to calculate the partial derivatives of f with respect to x
1
m and y, that we denote

respectively by f
x

1
m

and fy , we set ai := mri ∈ Z and rewrite f as follows

f (x
1
m , y) = (y−

n

∑
i=0

ci(x
1
m )ai+ai−1+···+a0)t · h(x

1
m , y)

so that the first-order partial derivates of f are

f
x

1
m
= −t(

n

∑
i=0

ci(ai + ai−1 + · · ·+ a0)(x
1
m )ai+ai−1+···+a0−1)(y−

n

∑
i=0

ci(x
1
m )ai+ai−1+···+a0)t−1h(x

1
m , y)+

+(y−
n

∑
i=0

ci(x
1
m )ai+ai−1+···+a0)th

x
1
m
(x

1
m , y)

and

fy = t(y−
n

∑
i=0

ci(x
1
m )ai+ai−1+···+a0)t−1h(x

1
m , y) + (y−

n

∑
i=0

ci(x
1
m )ai+ai−1+···+a0)thy(x

1
m , y).

Therefore, we have

f
x

1
m
(P) = fy(P) = 0 ∀P ∈ R ⇒ g | f

x
1
m

and g | fy.

In the same way, each partial derivative up to the order of t− 1 is the sum of products
that have at least one factor (y−∑n

i=0 ci(x
1
m )ai+ai−1+···+a0), thus, all of them vanish in each

P ∈ R. As a consequence, by Lemma 5, we have that gt | f in C[x
1
m , y], that is, there exists

p ∈ C[x
1
m , y] such that f = gt p. Since f , g ∈ C[x, y] ⊆ C[x

1
m , y], in order to show that gt | f

in C[x, y] it is enough to show that p ∈ C[x, y]. Let us write p as p = p1 + p2, where each
monomial of p1 is in C[x, y] and each monomial of p2 is in C[x

1
m , y] \C[x, y]. We have that

gt p2 = f − gt p1
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so that, since f , g, p1 ∈ C[x, y], also gt p2 ∈ C[x, y]. Now, we observe that if xayb is a
monomial of gt p2 then a is sum of an integer, coming from a monomial of gt, and of a
rational that is not an integer, coming from a monomial of p2, and thus a is a rational but
not an integer. As a consequence, we have that gt p2 = 0. Hence, since C[x

1
m , y] is a domain

and g 6= 0, we have that p2 = 0 and p = p1 ∈ C[x, y] and this ends the proof.

3.4. The Algorithm
The Newton–Puiseux Algorithm

Now, we present the Newton–Puiseux Algorithm based on the procedures described
and justified in the above sections. Notice that we suppose x - f , since we used this
hypothesis in the ∗-procedure; of course, if one wants to study a curve that has the y-axis
as a component, it is sufficient to remove the factor x from f and then to add the vertical
branch {x = 0} (parameterized by (0, T)) to the branches at O obtained by the Algorithm.

We gave Algorithm 1 for reduced curves; notice that when f is not irreducible, it can
be much easier, computationally, to work separately on its irreducible components (if they
are known, to find them is not computationally easy, e.g., see [18], where an algorithm is
given) and then consider the union of the branches of any such component.

Algorithm 1 Study of the branches at (0, 0) of a reduced plane curve C of equation f =

∑d
i+j=1 aijxiyj, aij ∈ C, such that x - f

Input: C: f = ∑d
i+j=1 aijxiyj, O = (0, 0).

Output: Integers r1, . . . , rs and p1 ∈ C[x
1
r1 ], . . . , ps ∈ C[x

1
rs ] such that C possesses s branches

at O, and each branch is approximated by (Tri , pi(Tri )).

1: Apply the ∗-procedure to f and go on with the f (i1,j1)...(in ,jn)’s thus obtained. Form
the graph G f , applying the Stop criterion.

2: For any descending path γ in G f , work as in 3.2, until you obtain a pγ(x) ∈ C[x
1

rγ ],
which yields an approximation of a branch of C at O.

3: Consider all pγ’s obtained at the previous step and find the ones that give equivalent
parameterizations. If pγ and pγ′ are the truncations of Puiseux series p̃γ and p̃γ′ , they
give equivalent parameterizations if and only if they have the same lowest common
denominator r and it exists ωr ∈ C with ωr

r = 1, such that p̃γ(x
1
r ) = p̃γ′(ωrx

1
r ) up to

n, where n = min{n ∈ N | fn(x, yn) and f ′n(x, yn) satisfy Theorem 1}.
Keep only one of the pγ’s for each class of equivalence.

4: The number s of equivalence classes found at step 3 is the number of branches of

C at O. The data r1, . . . , rs and p1 ∈ C[x
1
r1 ], , . . . , ps ∈ C[x

1
rs ] obtained before are the

required output, and (Tri , pi(Tri )), i = 1, . . . , s give approximations of the s branches
of our curve. END

We summarize this (quite obvious) procedure in the next algorithm, where we also
drop the “ f reduced” hypothesis, by adding that any branch must be counted as “n-ple” if
obtained from a factor f n

i .
Notice that also in Algorithm 2, we suppose that x = 0 is not a component of C;

obviously, if there is a factor of f which is xn, we just remove it before applying the
Algorithm and then we add the branch {x = 0} counted n times to the output.
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Algorithm 2 Study of the branches at (0, 0) of a plane curve C of equation f = ∑d
i+j=1 aijxiyj,

aij ∈ C, f = f n1
1 . . . f nm

m (the irreducible decomposition of f ), with f` 6= x, ` = 1, . . . , m

Input: C: f = ∑d
i+j=1 aijxiyj = f n1

1 . . . f nm
m , O = (0, 0).

Output: Integers r`,1, . . . , r`,s` and p`,1 ∈ C[x
1

r`,1 ], . . . , p`,s` ∈ C[x
1

r`,s` ], ` = 1, . . . , m′ ≤ m,
such that C possesses s = s1 + . . . + sm′ branches at O, and each branch is approximated by
(Tr`,i , p`,i(Tr`,i )), i ∈ {1, . . . , s`}.

1: For each f`, ` = 1, . . . , m, consider f`(O); let (up to reordering the f`’s) f1(O) = . . . =
fm′(O) = 0, while f`(O) 6= 0 for ` > m′.

2: Apply Algorithm 1 to any f`, 1 ≤ ` ≤ m′, so to get p`,1 ∈ C[x
1

r`,1 ], . . . , p`,s` ∈ C[x
1

r`,s` ]
such that (Tr`,i , p`,i(Tr`,i )) are the (non-equivalent) approximations of the s` branches
of C` : { f` = 0} at O.

3: Consider all (Tr`,i , p`,i(Tr`,i )), i ∈ {1, . . . , s`}, ` ∈ {1, . . . , m′} obtained in the previous
step. They give the approximations of all the branches of C at O; each of them must
be considered n` times.

4: END

3.5. An Example

The following example illustrates how the Algorithm works.

Example 3. Consider the integral curve C : f = 0, where

f = 2y6 + 6xy5 − 8x3y3 + 2x3y4 + (2
√

3 + 2)x4y3 + (4
√

3− 4)x5y2 + (
√

3− 2)x7y +

√
3− 2
8

x10 + 2x11.

We have mO(C) = 6. The Newton polygon Γ( f0) = Γ( f ) is given in Figure 3:

Figure 3. The Newton Polygon of f0.

We start setting f0 = f . Let us analyze each possible choice individually:

• a0 = a
We have

f a0
0 = f a0 = 2y6 + 6xy5 − 8x3y3

g0 =
f a0
0
y3 = 2(y3 + 3xy2 − 4x3) = 2(y + 2x)2(y− x).
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Thus, we have two distinct roots of g0, namely, q01 = −2x double and q02 = x simple,
and, as a consequence, two possible choice for q0:

* q0 = q01
We have

f0(x, x(−2 + y1)) = x6(48y2
1 − 88y3

1 + 60y4
1 − 18y5

1 + 2y6
1 + (8

√
3− 24)xy1 + (−8

√
3 + 32)xy2

1+

+(2
√

3− 14)xy3
1 + 2xy4

1 + (−2
√

3 + 4)x2 + (
√

3− 2)x2y1 + (

√
3

8
− 1

4
)x4 + 2x5)

hence,

f1(x, y1) =
f0(x, x(−2 + y1))

x6 = 48y2
1 − 88y3

1 + 60y4
1 − 18y5

1 + 2y6
1 + (8

√
3− 24)xy1 + (−8

√
3 + 32)xy2

1+

+(2
√

3− 14)xy3
1 + 2xy4

1 + (−2
√

3 + 4)x2 + (
√

3− 2)x2y1 + (

√
3

8
− 1

4
)x4 + 2x5.

The Newton polygon Γ( f1) is given in Figure 4

Figure 4. Newton Polygon of f1.

We have an unique edge a1 = d, therefore, we obtain

g1 = f a1
1 = 48y2

1 + (8
√

3− 24)xy1 + (−2
√

3 + 4)x2 = (4
√

3y + (−
√

3 + 1)x)2.

There is an unique root of g1, which is

q1 = −−
√

3 + 1
4
√

3
x =

3−
√

3
12

x.

Thus, we have

f1(x, x(
3−
√

3
12

+ y2)) = x2(48y2
2 + (

−
√

3
18

+
1
6
)x + (

8
√

3
3
− 4)xy2 + (−

√
3

72
− 1

16
)x2 + (14

√
3− 34)xy2

2+

+(−23
√

3
12

+
13
4
)x2y2 + (

41
√

3
1152

+
2233
1152

)x3 − 88xy3
2 + (−10

√
3 + 18)x2y2

2 + (
35
√

3
72
− 27

32
)x3y2+

+(− 5
√

3
2304

+
13

3456
)x4 + (−18

√
3 + 46)x2y3

2 + (
21
√

3
8
− 37

8
)x3y2

2 + (−19
√

3
576

+
11

192
)x4y2 + 60x2y4

2+

+(
41
√

3
6
− 13)x3y3

2 + (−5
√

3
24

+
35
96

)x4y2
2 + (

15
√

3
2
− 41

2
)x3y4

2 + (−25
√

3
36

+
5
4
)x4y3

2 − 18x3y5
2+

+(−5
√

3
4

+
5
2
)x4y4

2 + (−
√

3 + 3)x4y5
2 + 2x4y6

2)

f2(x, y2) =
f1(x, x( 3−

√
3

12 + y2))

x2 .
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The Newton polygon Γ( f2) is given in Figure 5.

Figure 5. Newton Polygon of f2.

We have an unique edge a2 = e and we obtain:

g2 = f a2
2 = 48y2

2 + (
−
√

3
18

+
1
6

x)

whose roots are

q21 = i

√
3−
√

3
864

x
1
2 q22 = −i

√
3−
√

3
864

x
1
2 .

By Lemma 3, choosing either q2 = q21 or q2 = q22, the polynomial f3 satisfies the
hypothesis of Theorem 1; hence, by 3.1, we can stop. Since

r0 = 1, r1 = 1, r2 =
1
2

,

we obtain

p1 = −2x +
3−
√

3
12

x2 + i

√
3−
√

3
864

x
5
2 + . . .

p2 = −2x +
3−
√

3
12

x2 − i

√
3−
√

3
864

x
5
2 + . . . .

Therefore, we have the following parameterizations

R1 = (T2,−2T2 +
3−
√

3
12

T4 + i

√
3−
√

3
864

T5 + . . . )

R2 = (T2,−2T2 +
3−
√

3
12

T4 − i

√
3−
√

3
864

T5 + . . . ).

We have that p1(x) = p2(−x), at O, so by Step 3 of the Algorithm with ω2 = −1,
we conclude that R1 and R2 are equivalent parameterizations of the same 2-
branch of C.

* q0 = q02
We have

f0(x, x(1 + y1)) = x6(18y1 + 6
√

3x + 66y2
1 + (14

√
3 + 6)xy1 + (

√
3− 2)x2 + 92y3

1 + (10
√

3 + 14)xy2
1+

+(
√

3− 2)x2y1 + 60y4
1 + (2

√
3 + 10)xy3

1 + (

√
3

8
− 1

4
)x4 + 18y5

1 + 2xy4
1 + 2x5 + 2y6

1)

and hence,
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f1(x, y1) =
f0(x, x(1 + y1))

x6 = 18y1 + 6
√

3x + 66y2
1 + (14

√
3 + 6)xy1 + (

√
3− 2)x2 + 92y3

1+

+(10
√

3 + 14)xy2
1 + (

√
3− 2)x2y1 + 60y4

1 + (2
√

3 + 10)xy3
1 + (

√
3

8
− 1

4
)x4 + 18y5

1 + 2xy4
1 + 2x5 + 2y6

1).

The Newton polygon Γ( f1) is given in Figure 6.

Figure 6. Newton Polygon of f1 (Case q0 = q02).

We can just choose a1 = f obtaining

g1 = f f
1 = 18y1 + 6

√
3x

whose unique root is

q1 = −
√

3
3

x.

Moreover, f1 satisfies the hypothesis of Theorem 1, therefore, by Remark 3.1, we
can stop by obtaining the following root of f

p3(x) = x−
√

3
3

x2 + . . . .

Hence, we have the parameterization

R3 = (T, T −
√

3
3

T2 + . . . )

which is a 1-branch of C at O.

• a0 = b
We have

f a0
0 = f a0 = −8x3y3 + (4

√
3− 4)x5y2 + (

√
3− 2)x7y

g0 =
f a0
0

x3y
= −8y2 + (4

√
3− 4)x2y2 + (

√
3− 2)x4 = −(2

√
2y +

√
2−
√

6
2

x2)2.

Hence, we have only one choice for q0, that is,

q0 = −
√

2−
√

6
4
√

2
x2 =

√
3− 1
4

x2.

Proceeding, we obtain

f0(x, x2(

√
3− 1
4

+ y1)) = x9((−2
√

3 + 2)y2
1 + (

3
√

3
4
− 3

4
)xy1 + (

17
√

3
128

+
227
128

)x2 − 8y3
1 + 3xy2

1+

+(−9
√

3
8

+
65
32

)x2y1 + (
−15
√

3
256

+
13

128
)x3 + (2

√
3 + 2)xy3

1 + (
33
√

3
8
− 51

8
)x2y2

1 + (
33
√

3
64
− 57

64
)x3y1+

+(−11
√

3
2

+ 13)x2y3
1 + (−15

√
3

8
+

105
32

)x3y2
1 + (

15
√

3
2
− 11

2
)x2y4

1 + (
15
√

3
4
− 25

4
)x3y3

1 + 6x2y5
1+
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+(−15
√

3
4

+
15
2
)x3y4

1 + (3
√

3− 3)x3y5
1 + 2x3y6

1)

f1(x, y1) =
f0(x, x2(

√
3−1
4 + y1))

x9 .

The Newton Polygon Γ( f1) is given in Figure 7:

Figure 7. The Newton Polynomial of f0(x,x2(
√

3−1
4 +y1))

x9 .

We can only choose a1 = g, obtaining

g1 = f g
1 = (−2

√
3 + 2)y2

1 + (
3
√

3
4
− 3

4
)xy1 + (

17
√

3
128

+
227
128

)x2

whose roots are

q11 =
3− 3

√
3 + 2

√
35 + 48

√
3

16(−
√

3 + 1)
x

q12 =
3− 3

√
3− 2

√
35 + 48

√
3

16(−
√

3 + 1)
x.

By Lemma 3, choosing either q1 = q11 or q1 = q12, the polynomial f2 satisfies the
hypothesis of Theorem 1. Hence, by Remark 3.1, we can stop obtaining the following
roots of f

p4 =

√
3− 1
4

x2 +
3− 3

√
3 + 2

√
35 + 48

√
3

16(−
√

3 + 1)
x3 + . . .

p5 =

√
3− 1
4

x2 +
3− 3

√
3− 2

√
35 + 48

√
3

16(−
√

3 + 1)
x3 + . . . .

Hence we have the parameterizations

R4 = (T,

√
3− 1
4

T2 +
3− 3

√
3 + 2

√
35 + 48

√
3

16(−
√

3 + 1)
T3 + . . . )

R5 = (T,

√
3− 1
4

T2 +
3− 3

√
3− 2

√
35 + 48

√
3

16(−
√

3 + 1)
T3 + . . . )

that give two distinct 1-branches of C at O.
• a0 = c

We have

f c
0 = f c = (

√
3− 2)x7y +

√
3− 2
8

x10

g0 =
f c
0

x7 = (
√

3− 2)y +

√
3− 2
8

x3.

We have just a choice for q0, that is,

q0 = −1
8

x3.
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Proceeding, we obtain

f0(x, x3(−1
8
+ y1)) = x10((

√
3− 2)y1 + (

√
3

16
+

31
16

))x + (−
√

3 + 1)xy1 +
1
64

x2 + (4
√

3− 4)xy2
1 −

3
8

x2y1+

+(−
√

3
256
− 1

256
)x3 + 3x2y2

1 + (
3
√

3
32

+
3
32

)x3y1 − 8x2y3
1 + (−3

√
3

4
− 3

4
)x3y2

1 +
1

2048
x5 + (2

√
3 + 2)x3y3

1+

− 1
64

x5y1 −
3

16384
x6 +

3
16

x5y2
1 +

15
2048

x6y1 − x5y3
1 −

15
128

x6y2
1 +

1
131072

x8 + 2x5y4
1 +

15
16

x6y3
1 −

3
8192

x8y1+

−15
4

x6y4
1 +

15
2048

x8y2
1 + 6x6y5

1 −
5

64
x8y3

1 +
15
32

x8y4
1 −

3
2

x8y5
1 + 2x8y6

1

f1(x, y1) =
f0(x, x3(− 1

8 + y1))

x10 .

The Newton polygon Γ( f1) is given in Figure 8.
We can only choose a1 = h, obtaining

g1 = f h
1 = (

√
3− 2)y1 + (

√
3

16
+

31
16

)x

whose unique root is

q1 = −33
√

3 + 65
16

x.

Moreover, f1 satisfies the hypothesis of Theorem 1, therefore, by Remark 3.1, we can
stop obtaining the following root of f

p6 = −1
8

x3 − 33
√

3 + 65
16

x4 + . . .

which gives the parameterization

R6(T,−1
8

T3 − 33
√

3 + 65
16

T4 + . . . )

which is a 1-branch of C at O.

Figure 8. The Newton polygon of f0(x,x3(− 1
8 +y1))

x10 .

We have studied all possible choices so we can stop the analysis.
Since we saw that R1 and R2 are equivalent parameterizations of the same 2-branch of

C, we have found five branches of C, see Figure 9.
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Figure 9. The six branches of the curve at O.

4. Triple Points
4.1. Output of the Newton–Puiseux Algorithm for Triple Points

In this section, we use the Newton–Puiseux algorithm to study triple points for a
reduced algebraic plane curve. Let C: f = 0 be a plane curve of degree d and let P be a
triple point for C (i.e., mP(C) = 3).

We recall that, by Remark 3, the curve C can have three 1-branches, or one 2-branch
and one 1-branch, or a 3-branch at P. Anyway, if the tangent cone is made up of three
distinct tangent lines, P is an ordinary singularity, and it is analytically equivalent to
y(y2 − x2), while if there are two distinct tangents, the singularity is analytically equivalent
to y(y2 − xn), n ≥ 3, see [12].

Hence, we focus on the most interesting case, i.e., when C has a unique triple tangent
r at P (for an analysis modulo analytic equivalence of the branches at a triple point, see
[HH]). It is not restrictive to assume that P = O and that r is given by y = 0, hence,

f = y3 +
d

∑
i+j=4

aijxiyj.

The cases where f is divisible by y are trivial, so we can assume that y - f , that is, f is
Newton-convenient. Notice that if C has one 3-branch at O, then its parameterization will
be of type (T3, ∑n≥4 anTn) (this follows by Definition 3, since the unique tangent to the
branch is y = 0).

We use the notation of Section 3.2, with the unique exception that the gn associated to
f an
n will be denoted by gan

n , in order to specify which edge we refer to. Notice that if an is an
edge of the Newton polygon, the height of an is denoted by h(an), while the height of the
Newton polygon, denoted by h(Γ( fn)), is defined to be the sum of the heights of its edges.

We indicate with naij the xiyj
n coefficient in fn. We also denote by Acn ,rn the sub-

algorithm of Algorithm 1 starting inside step n with the choice of the root qn = cnxrn

for gn.
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In order to describe the output of the algorithm, we have to answer the following
questions:

1. Which are the possible choices of cn and rn in each case?
2. When, for each choice of (cn, rn), does the algorithm Acn ,rn stop?

The Stop Criterion 3.1 is an answer to question 2, but we can improve on it:

Remark 5. By Lemma 3, if cn has multiciplity 1 as a root of gn, then fn+1 satisfies the
hypothesis of Theorem 1, because in fn+1, there is the monomial cnyn+1. Hence, if cn has
multiplicity 1 as a root of gn, Acn ,rn stops at the step n− 1, i.e., without calculating fn+1.
From now on, we use this new Stop criterion because it is more efficient.

To answer question 1, we observe that the following statements hold:

(i) Since the height of the Newton Polygon decreases at each step, i.e., h(Γ( fn+1)) ≤
h(Γ( fn)), and h(Γ( f )) = 3, we have to consider Newton Polygons of height ≤ 3 only;

(ii) In general, fn ∈ C{{x}}[y]. However, since f ∈ C[x, y], there exists n ∈ N such that
fn ∈ C[x, y] ∀ n ≤ n. Hence, for n ≤ n̄, the vertices of Γ( fn) are in N2.

We start answering question 1 just for n ≤ n̄; we shall see later (see Remark 7) that this
is enough.

Remark 6. The possible shapes of the Newton Polygons arising when applying our algo-
rithm in the case of a triple point with a triple tangent and for n ≤ n are described in the
Figure 10, and each of the corresponding cases is discussed below. Namely, in each case,
we write explicitly the gn associated with each edge and its roots cnxrn with their relative
multiplicities, so that we have a complete answer to question 1 first; after that, we examine
the algorithms Acn ,rn for each (cn, rn).

Case 1: Γ( fn) = {a}, h(a) = 1, and we have

ga
n = na01yn + nai10xi1

ga
n has a unique root of multiplicity 1, c1xi1 with c1 = − nai10

na01
, which by Remark 5, gives a

1-branch of C, and the algorithm Ac1,i1 stops here.

Case 2.1: Γ( fn) = {a}, h(a) = 2, and i1 6≡ 0 (mod 2), so we have

ga
n = na02y2

n +n ai10xi1 ;

ga
n has two distinct roots of multiplicity 1 each:

c1x
i1
2 , c2x

i1
2 where c2

1 = − nai10

na02
, c2 = −c1.

By Remark 5, the algorithms A
c1, i1

2
and A−c1, i1

2
stop here; moreover, they give equivalent

parameterizations of the same 2-branch of C, since, if that were not true, the sum of the
multiplicities of the branches at O would be ≥ 4. The parameterization (T2, · · ·+ c1Ti1 +
. . . ), composed with the biolomorphic function T 7→ −T, is equal to (T2, · · ·+ c2Ti1 + . . . );
in fact, since they are equivalent, by Remark 1, there is an ω, ω2 = 1, such that R2 is
obtained from R1 by substituting T → ωT; since c1(−T)i1 = c2Ti1 , we obtain ω = −1.

Case 2.2: Γ( fn) = {a}, h(a) = 2, and i1 ≡ 0 (mod 2), so we have

ga
n = na02y2

n + na i1
2 1

x
i1
2 yn + nai10xi1 .

Let c1x
i1
2 , c2x

i1
2 denote the roots of ga

n; we distinguish two cases:
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Case 2.2.1: If c1 6= c2, i.e., if ga
n has two roots of multiplicity 1, they give two distinct

1-branches of C and the algorithms A
c1, i1

2
and A

c2, i1
2

stop here.

Notice that if na i1
2 1

= 0, we apparently are in the same situation as Case 2.1, but here k := i1
2

is a positive integer, so the two simple roots are

c1xk, −c1xk

and the biolomorphic function T 7→ −T used in 2.1 does not work here: it does not give the
equivalence of (T, · · ·+ c1Tk + . . . ) and (T, · · · − c1Tk + . . . ). In fact, the two simple roots
correspond to two non-equivalent parameterizations, each one for a different 1-branch.

Figure 10. Newton Polygons for a triple point with a triple tangent.
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Case 2.2.2: If c1 = c2, i.e., if ga
n has one double root, the algorithm A

c1, i1
2

goes on: it can

yield either two 1-branches or one 2-branch of C, hence, globally, we may find either three
1-branches or one 2-branch and one 1-branch. Notice that fn+1 is still in C[x, y], since
i1 ≡ 0 (mod 2).

Case 3: Γ( fn) = {a, b}, h(a) = 1, h(b) = 1; we have

ga
n = na02yn + nai11xi1 , gb

n = nai11yn + nai20xi2−i1 .

Both ga
n and gb

n have a unique root of multiplicity 1, − nai11

na02
xi1 and− nai20

nai11
xi2−i1 ; each of them

gives a different 1-branch of C, and the algorithms stops here.

Case 4.1: Γ( fn) = {a}, h(a) = 3, and i1 6≡ 0 (mod 3), so we have

ga
n = na03y3

n + nai10xi1

ga
n has three distinct roots of multiplicity 1, namely:

c1x
i1
3 , c2x

i1
3 , c3x

i1
3 , where c3

1 = − nai10

na03
, c2 = ei 2π

3 c1, c3 = ei 4π
3 c1

and, as in Case 2.1, all of them give equivalent parameterizations of the same 3-branch
of C, since otherwise, the sum of the multiplicities of the branches at O would be ≥ 6;
for example the parameterization (T3, · · ·+ c1Ti1 + . . . ) composed with the biolomorphic
function T 7→ ei 2π

3 T is equal to (T3, · · ·+ c2Ti1 + . . . ). Since the three roots have multiplicity
1, the algorithms stop.

Case 4.2: Γ( fn) = {a}, h(a) = 3, and i1 ≡ 0 (mod 3), so we have

ga
n = na03y3

n + na i1
3 2

x
i1
3 y2

n + na 2i1
3 1

x2 i1
3 yn + nai10xi1 .

Let c1x
i1
3 , c2x

i1
3 , c3x

i1
3 denote the roots of ga

n; we distinguish three cases:

Case 4.2.1: If c1 6= c2 6= c3 6= c1, i.e., if ga
n has three roots of multiplicity 1, they give three

distinct 1-branches of C so the algorithms stop here.
Notice that if na i1

3 2
= na 2i1

3 1
= 0, we apparently are in the same situation as Case 4.1,

but here k := i1
3 is a positive integer, the three simple roots are

c1xk, ei 2π
3 c1xk, ei 2π

3 c1xk

and the biolomorphic function T 7→ ei 2π
3 T used in 4.1 does not work here: it does not give

the equivalence of (T, · · ·+ c1Tk + . . . ) and (T, · · ·+ c2Tk + . . . ). In fact, the three simple
roots correspond to three non-equivalent parameterizations (each of a different 1-branch).

Case 4.2.2: If c1 6= c2 = c3, , i.e., if ga
n has two roots, one double and one simple; the

algorithm A
c1, i1

3
stops and gives a 1-branch of C. On the other hand, A

c2, i1
3

does not stop

because the relative root has multiplicity 2; continuing, it can give two 1-branches or one
2-branch of C. Notice that in this case fn+1 is still in C[x, y], since i1 ≡ 0 (mod 3).

Case 4.2.3: If c1 = c2 = c3, i.e., if ga
n has one triple root, the algorithm A

c1, i1
3

goes on. Notice

that in this case, fn+1 is still in C[x, y], since i1 ≡ 0 (mod 3).

Case 5.1: Γ( fn) = {a, b}, h(a) = 2, h(b) = 1 and i1 6≡ 0 (mod 2), so we have

ga
n = na03y2

n + nai11xi1 , gb
n = nai11yn + nai20xi2−i1
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ga
n has two distinct roots of multiplicity 1: c1x

i1
2 , c2x

i1
2 , with c2

1 = − nai11

na03
, c2 = −c1, which

give equivalent parameterizations of the same 2-branch of C, while gb
n has one root of

multiplicity 1: − nai20

nai11
xi2−i1 , giving one 1-branch. The algorithms stop here.

Case 5.2: Γ( fn) = {a, b}, h(a) = 2, h(b) = 1 and i1 ≡ 0 (mod 2), so we have

ga
n = na03y2

n + na i1
2 2

x
i1
2 yn + nai11xi1 , gb

n = nai11yn + nai20xi2−i1

gb
n has one root of multiplicity 1, which gives a 1-branch of C and the relative algorithm

stops here, while, if c1x
i1
2 , c2x

i1
2 denote the roots of ga

n, we distinguish two cases (notice that
na i1

2 2
may be 0, in which case, we are apparently in the same situation as Case 5.1):

Case 5.2.1: If c1 6= c2, i.e., if ga
n has two roots of multiplicity 1, each of them gives a 1-branch

of C, so we have three 1-branches of C and the algorithms stop here.

Case 5.2.2: If c1 = c2, i.e., if ga
n has the double root c1x

i1
2 , the algorithm A

c1, i1
2

does not

stop; continuing, it can give two 1-branches or one 2-branch of C, hence, we may find three
1-branches or one 2-branch and one 1-branch, in all. Notice that in this case, fn+1 is still in
C[x, y], since i1 ≡ 0 (mod 2).

Case 6.1: Γ( fn) = {a, b}, h(a) = 1, h(b) = 2 and i1 + i2 6≡ 0 (mod 2), so we have

ga
n = na03yn + nai12xi1 , gb

n = nai12y2
n + nai20xi2−i1 .

Since i2 − i1 6≡ 0 (mod 2), the discussion is analogous to Case 5.1: C has one 1-branch and
one 2-branch, and the algorithms stop here.

Case 6.2: Γ( fn) = {a, b}, h(a) = 1, h(b) = 2 and i1 + i2 ≡ 0 (mod 2), so we have

ga
n = na03yn + nai12xi1 , gb

n = nai12y2
n + na i1+i2

2 1
x

i2−i1
2 yn + nai20xi2−i1 .

Notice that the assumption i1 + i2 ≡ 0 (mod 2) gives i2 − i1 ≡ 0 (mod 2), hence, the
discussion is analogous to Case 5.2, namely, we distinguish two cases:

Case 6.2.1: if gb
n has two roots of multiplicity 1, each of them gives a 1-branch of C, so

we have globally three 1-branches of C and the algorithms stop here. Notice that na i1+i2
2 1

may be 0, in which case, we are apparently in the same situation as Case 6.1, but here
i2 − i1 ≡ 0 (mod 2).

Case 6.2.2: if gb
n has one double root c1x

i1
2 , the relative algorithm does not stop; continuing,

it can give two 1-branches or one 2-branch of C, hence, globally, we may find three 1-
branches or one 2-branch and one 1-branch. Notice that in this case, fn+1 is still in C[x, y],
since i1 + i2 ≡ 0 (mod 2).

Case 7: Γ( fn) = {a, b, c}, h(a) = h(b) = h(c) = 1 and we have

ga
n = na03yn + nai12xi1 , gb

n = nai12yn + nai21xi2−i1 , gc
n = nai21yn + nai30xi3−i2

ga
n, gb

n and gc
n have one simple root each and the three roots give a 1-branch of C each: the

algorithms stop here.

Remark 7. Notice that, in all the cases we have just considered, we obtain a polynomial
fn+1 (for the following step of the Algorithm) which is always in C[x, y], i.e., we are always
in case n < n.

4.2. A Theorem for Triple Points

Now we are ready to see what happens when we run the Newton-Puiseux Algorithm 1
in the case of a triple point with a triple tangent.
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Theorem 2. Let C : f (x, y) = 0 be a plane curve of degree d, such that O is a triple point for C
and the x-axis is its triple tangent at O, so that

f (x, y) = y3 +
d

∑
i+j=4

aijxiyj.

With the previous notation, the output of the Newton–Puiseux Algorithm 1 is as follows:

A finite sequence of n steps like case 4.2.3 with n ≥ 0, and then the following four cases are possible:

(i) step n + 1 is a case 4.1; the algorithm stops: C has one 3-branch at O, and a parameterization for
it is of the form (

T3, b0T3h0 + · · ·+ bnT3hn + c1Ts + . . .
)

s 6≡ 0 (mod 3);

(ii) step n + 1 is one of the following cases: 4.2.1, 5.2.1, 6.2.1, 7; the algorithm stops:
C has three 1-branches at O, each of which with a parameterization of the form(

T, b0Th0 + · · ·+ bnThn + cjTqj . . .
)

where q1 = q2 = q3 in case 4.2.1, q1 = q2 in cases 5.2.1, 6.2.1;

(iii) step n + 1 is one of the following cases: 5.1, 6.1; the algorithm stops:
C has one 1-branch and one 2-branch at O, with parameterizations of the form:(

T, b0Th0 + · · ·+ bnThn + c1Tq + . . .
)

(
T2, b0T2h0 + · · ·+ bnT2hn + d1T2h+1 + . . .

)
.

(iv) step n + 1 is one of the following cases: 4.2.2, 5.2.2, 6.2.2; in order to decide if C has one
1-branch and one 2-branch or three 1-branches at O, the sub-algorithm relative to the double root
must go on, so that we find a finite sequence of m ≥ 0 steps like case 2.2.2, and then:
if the next step is a case 2.1, the algorithm stops: C has one 1-branch and one 2-branch at O, with
parameterizations of the form(

T, b0Th0 + · · ·+ bnThn + c1Tp + . . .
)

(
T2, b0T2h0 + · · ·+ bnT2hn + c2T2p + d1T2k1 + · · ·+ dmT2km + a1T2h+1 + . . .

)
if the next step is a case 2.2.1 or 3, the algorithm stops: C has three 1-branches at O, with parameter-
izations of the form (

T, b0Th0 + · · ·+ bnThn + c1Tp + . . .
)

(
T, b0Th0 + · · ·+ bnThn + c2Tp + d1Tk1 + · · ·+ dmTkm + e1Tq1 + . . .

)
(

T, b0Th0 + · · ·+ bnThn + c2Tp + d1Tk1 + · · ·+ dmTkm + g1Tq2 + . . .
)

where q1 = q2 in case 2.2.1.

Proof. First, we claim that, in order to compute the number and multiplicities of the
branches of C at a triple point with a triple tangent, it is enough to consider Newton
polygons whose vertices are in N2; that is, applying the Newton–Puiseux Algorithm to f ,
we encounter only the cases described in Remark 6 above.

Proof of the claim. This is true for n = 0, since f ∈ C[x, y]. Now, we choose a path as
described in Algorithm 1, and assume the claim is true for the steps 1, . . . , n; then the
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Newton Polygon of fn is one of those described above. If the algorithm does not stop, we
are in one of the following five cases: 2.2.2, 4.2.2, 4.2.3, 5.2.2, 6.2.2, and since in each of these
cases the vertices of the Newton Polygon of fn+1 are again in N2, the same is true for n + 1.
On the other hand, if the algorithm stops, we do not need to go any further, so the claim
is true.

Now, we are going to analyze what happens in the assumption that yn - fn; if, on the
contrary, yn | fn, there is a branch coming from an algebraic component of C, and thus, the
corresponding series is in fact a polynomial.

Assume that after n steps, we are in case 4.2.3. Since 3 ≥ h(Γ( f )) ≥ h(Γ( fm)) ≥
h(Γ( fn)) = 3 for m ≤ n, we have h(Γ( fm)) = 3 for m ≤ n, hence, each previous step was
one of the cases between 4.1 and 7. If one of the previous steps was a case among 4.1, 4.2.1,
5.1, 5.2.1, 6.1, 6.2.1, 7, we would have already stopped. If one of the previous steps was
a case among 4.2.2, 5.2.2, 6.2.2, only the sub-algorithm relative to the double root would
have gone on, and in the next steps, the height of the Newton Polygon would have been 2.
Therefore, all the previous steps were of type 4.2.3.

Let us start with the step 0 which is a case 4.2.3, and set k = i1
3 ; since i1 ≡ 0 (mod 3), k

is a positive integer, and for a suitable coefficient b, we have

f = (y− bxk)3 + ∑
i+kj>3k

aijxiyj.

Applying the algorithm, we obtain: ga = f a = (y− bxk)3, q0 = bxk,

f (x, xk(b + y1)) = (xk(b + y1)− bxk)3 + ∑
i+kj>3k

aijxi(xk(b + y1))
j = x3ky3

1 + ∑
i+kj>3k

aijxi+jk(b + y1)
j

and since each power of x has an exponent ≥ 3k, we find

f1 =
x3ky3

1 + ∑i+kj>3k aijxi+jk(b + y1)
j

x3k = y3
1 + . . .

If f1 is a case 4.2.3, again we have:

f1 = (y− b1xh)3 + ∑
i+hj>3h

bijxiyj

and we find q1 = b1xk1 with k1 ∈ N; hence, if the sequence of cases 4.2.3 goes on to step
n, we have a sequence of roots, setting b0 := b, k0 := k (notice that k0 ≥ 2, otherwise, the
tangent cone of C at O would be different from y3 = 0)

q0 = b0xk0 , q1 = b1xk1 , . . . qn = bnxkn , k0, k1, . . . , kn positive integers.

Let us assume that the algorithm does not stop and continutes with an infinite sequence of
cases 4.2.3; then, the Puiseux series

p(x) = ∑
n≥0

bnxk0+···+kn

is in fact a power series giving a unique 1-branch counted 3 times, but our curve C is
reduced and this is not possible.

Hence, the only possible way in which 4.2.3 can appear is as follows: we have a finite
sequence of n steps 4.2.3 and then one of the other cases.

If the step n + 1 is a case 4.1, C has one 3-branch at O, we have found:

q0 = b0xk0 , q1 = b1xk1 , . . . qn = bnxkn , qn+1 = c1x
i1
3 , k0, k1, . . . , kn ≥ 0 integers, i1 6≡ 0 (mod 3)
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which gives us

p(x) =
n

∑
`=0

b`xk0+...k` + c1xk0+···+kn+
i1
3

and since the common lowest denominator of p(x) is 3, a parameterization for the 3-branch is(
T3, b0T3k0 + · · ·+ bnT3(k0+···+kn) + c1T3(k0+···+kn)+i1 + . . .

)
with k0, k1, . . . , kn ≥ 0 integers, and i1 6≡ 0 (mod 3). Thus, we obtain (i).

If the step n+ 1 is not a case 4.1, then it has to be one of the cases from 4.2.1 to 7 (except
4.2.3), since the height of the Newton Polygon is still 3. It is easily seen that cases 4.2.1,
5.2.1, 6.2.1, 5.1, 6.1 give (ii) and (iii) just following the discussion in Remark 6.

If the step n + 1 is one of the cases 4.2.2, 5.2.2, 6.2.2, in order to decide if C has one
1-branch and one 2-branch or three 1-branches at O, the sub-algorithm relative to the double
root must go on; now, the height of the Newton Polygon is decreased to 2, so that we have
to use cases from 2.1 to 3, and again, it is immediate to see that (iv) holds following the
discussion in the previous Remark 6.

We give two examples studied with the Algorithm as in the Theorem above.

Example 4. Let us consider the curve:

C : y3 − 2x2y2 + 4x3y2 + x4y− x4y2 − 4x5y + 3x5y2 + 6x6y− 11x7y− x8 + 12x8y + 7x9 − 16x10 + 13x11 − 3x12 − x13 + y14 = 0.

We have that mC(O) = 3 and the unique tangent of C at O is r : y = 0. By applying
Algorithm 1, one finds that C has at O one 2-branch given by (T2, T4 − 2T6 + T7 + . . . ) and
one 1-branch given by (T, T4 + . . . ).

Example 5. Let us consider the curve:

C : y3 − x2y2 + 2x3y2 − 2x5y + x5y2 − x7y + 2x8y− 2x10 + x11 = 0.

We have that mC(O) = 3 and the unique tangent of C at O is r : y = 0. By applying the
Algorithm 1 one finds that C has three 1-branches at O given by (T, T2 + . . . ), (T,−T3 + . . . ),
and (T,−T5 + . . . ).

Our last observation is oncuspidal triple points, i.e., case (i) of the theorem above.

Definition 8. In case (i), we say that the triple point O is of type s. Notice that this definition
is well-posed: if (T3, p(T)), (T3, p̃(T)) are two equivalent parameterization of the 3-branch,
by Remark 1, we have the same value of s for the two parameterizations.

Remark 8. We point out this definition because in case (i), the type s is an invariant which
determines the topological structure of the singularity; in fact, if a plane algebraic curve C
has a triple point with one 3-branch at O, of type s, then it is locally topologically equivalent,
see [19], to one of type

(
T3, Ts), i.e., with equation y3 − xs.

Notice that, in fact, a complete description of the analytical equivalence classes for this
kind of triple points can be given, see ([page 4], [20]).

Example 6. Let us consider the following curve:

C : y3 − 3x2y2 + 3x3y2 + 3x4y− 6x5y− x6 + 3x6y + 3x7 − 3x8 + x9 + x10 − y11 = 0.

We have that mC(O) = 3 and the unique tangent of C at O is r : y = 0. By applying
Algorithm 1, one finds that C has one 3-branch at O given by (T3, T6 − T9 − T10 + . . . );
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thus, we are in case (i) of the theorem, and the triple point of C at O is of type 10, hence, it
is topologically equivalent to y3 − x10.
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