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ABSTRACT

Data is a critical asset in today’s world. When multiple actors are
involved, ensuring that data is accessible only to authorized parties
and protecting it against theft present significant challenges. A
potential solution to these issues is creating data spaces that inter-
connect clusters managed by different actors. The latter can securely
exchange data under specific constraints and terminate connections
when needed. This paper aims to show how infrastructure-level
data spaces, which support both access to data, and processing of
it, can facilitate secure data exchange and limit data theft. Fur-
thermore, we investigate how data sovereignty can be maintained
through cluster data exchange, which is crucial in an era where
data is increasingly regulated and controlled. Additionally, we ex-
plore how offloading applications from the data consumer into the
data producer cluster can match data gravity patterns, improving
overall system efficiency. Finally, this paper presents the potential
integration of the proposed solution within the framework of IDSA
and Gaia-X, serving as promising option for implementing their
proposed functionalities.

CCS CONCEPTS

« Computer systems organization — Cloud computing; « Net-
works — Cloud computing.
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1 INTRODUCTION

Data is a key asset of our modern digital society. However, the
actors in charge of data production and consumption are often
different, posing non-trivial challenges to control who can access
what, and (even more important) to guarantee that data is not
stolen and/or copied illegally, particularly when sensitive data is
concerned. These problems can be analyzed with two concepts:
data sovereignty and data gravity.

Data sovereignty involves, or can be identified with, the con-
trol of data flows and the related infrastructure via national ju-
risdiction [10]. For example, governments are worried about data
sovereignty when their information is stored in the cloud and are
questioning how to ensure confidentiality and prevent government
data from being subject to another jurisdiction if hosted abroad [14].
These concepts can be clearly extended to universities and compa-
nies, where data can be hosted outside their facilities. In this con-
text, a mention of the European General Data Protection Regulation
(GDPR) has to be made. It imposes obligations onto organizations
anywhere, so long as they target or collect data related to people in
the European Union [17]. Regarding Europe, it is worth mentioning
two additional pieces of legislation, known as the Data Governance
Act [7] and the Data Act [6]. The former seeks to increase trust in
data sharing, strengthen mechanisms to increase data availability,
and overcome technical obstacles to the reuse of data . The latter
complements the Data Governance Act by clarifying who can create
value from data and under which conditions.

Data gravity is the ability of data to attract applications, services,
and other data. Each data chunk has a mass and density, and when
these two characteristics become large, it becomes difficult in terms
of time, logistics, and cost-effectiveness to move the data from one
location to another over the network. It is similar to the scenario of a
large physical mass exhibiting gravitational pull to its surrounding
objects: the larger the mass, the stronger the attraction [19].

Data spaces allow us to solve those problems by setting up a
restricted area in which third parties can consume data and ac-
cess only what the producer wants to share with them. This paper
aims to demonstrate a cloud-based technology that can dynami-
cally create flexible data spaces upon request, potentially spanning
multiple administrative domains, leveraging Liqo [15]. This enables
a data producer to offer its data to potential consumers, without
giving up on security and data ownership/sovereignty rules, and
without affecting the possibility of consumers to read and process
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arbitrary data. Differently from current data spaces, in which only
communication (i.e., data transfer) is involved among (data) pro-
ducer and consumer actors, the proposed solution allows the data
consumer cluster to borrow also processing resources in the data
producer cluster, associating them to its cluster and creating a vir-
tual continuum that spans both. While being more flexible (e.g., data
can be processed on the data producer cluster, without requiring
long-distance and expensive data movements), it introduces several
advantages in terms of data protection. Any service running on the
virtual continuum is controlled by the owner of the virtual cluster
(hence, data consumer), which therefore has complete control over
the lifecycle of its own services, and no control over others that are
not owned. On the other side, the data producer does not give up
full control of its resources and it may impose additional policies
that enable controlled access to all the guest services running on
its domain. If the data producer finds that the data usage deviates
from the agreed-upon terms, it retains the right to terminate the
partnership. It is noteworthy that the control at this level should be
executed in tandem with oversight of the guest services. This dual
oversight is critical because the data provider needs to ensure that
the algorithm being executed within its domain adheres strictly to
the terms agreed upon and that no variations from the approved
algorithm are being implemented.

Our solution can automatically wrap the application and enforce
the defined privacy, security, and access policies, facilitating data
producers to offer their data to arbitrary actors, counting on a more
solid technical background than simple trust (and legal agreements),
hence facilitating the sharing of relevant data among multiple par-
ties. It can dramatically simplify the operations of data producers
and consumers (which are often different actors), as well as pro-
cessing multiple data sources, thanks to a data-gravity approach in
which processing is (securely) moved close to data sources.

The remainder of this paper unfolds as detailed below. Section 2
introduces the concept of data space and its associated requirements.
Section 3 showcases the Liqo open-source project, which represents
the ground for our solution. Section 4 presents the architecture of
the proposed solution, followed by its implementation specifics in
Section 5. Section 6 details the testing protocols and their respective
outcomes. Potential integration of our solution within the Gaia-
X architecture is delineated in Section 7. The paper draws to a
close with Section 8, summarizing key takeaways and highlighting
avenues for future research directions.

2 DATA SPACES

The International Data Spaces Association (IDSA) [11] aims to
create a global standard for International Data Spaces (IDS), as well
as to foster technologies and business models that will drive the
data economy of the future in Europe and around the globe. The
EU-funded Open DEI project [16], which is part of this ecosystem,
published a position paper defining a data space as a decentralized
infrastructure for trustworthy data sharing and exchange in data
ecosystems based on commonly agreed principles. Users of such
data spaces are enabled to access data in a secure, transparent,
trusted, easy, and unified fashion. These access and usage rights
can only be granted by those persons or organizations who are
entitled to dispose of the data.
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Figure 1: IDSA architecture for data spaces.

The IDS standard is adopted by projects like Gaia-X [9], which
aims to create an ecosystem whereby data is shared and made
available in a trustworthy environment, and employed by Catena-X
[1], which can be seen as a data space inside that data ecosystem.
Gaia-X defines a data space as a type of data relationship between
trusted partners who adhere to the same high-level standards and
guidelines in relation to data storage and sharing within one or
many vertical ecosystems (i.e. Health, Infrastructure, Tourism, etc.).

2.1 Architecture requirements

The IDS Reference Architecture Model (IDS-RAM) [12] is the beat-
ing heart of the IDS: it comprises the standards for secure and sover-
eign data exchange, certification, and governance across Europe and
around the world. Open DEI identified seven architecture require-
ments that data spaces must fulfill to be considered as such. These
requirements include data-sharing empowerment, trustworthiness,
publication, economy, interoperability, and data space engineering
flexibility, and community. The aim of these measures is to ensure
appropriate stakeholder control, security, privacy, data exchange,
customization, and community support in data spaces. In Section 4,
more detailed and lower lever requirements will be explained.

The IDS Connector is the key technical component to achieve
secure and trusted exchange of arbitrary data, dealing with the au-
thentication of the entities involved in the data exchange, and the
attachment and enforcement of usage policies to data. Moreover,
it acts as an application-level gateway (e.g., protocol translator),
hence providing a uniform access to any data and by hiding spe-
cific protocols used internally towards the actual data source. This
enables the exchange of data between clusters while ensuring the
enforcement of all necessary security measures and policies.

The connector sends the data directly to the recipient from the
device or the database in a trusted, certified data space, so the orig-
inal data provider always maintains control over the data and sets
the conditions for its use, as shown in Figure 1 [11]. The connector
uses technology that puts data inside a sort of virtual container,
which ensures that it is used only as agreed upon per the terms set
by the parties involved. IDSA specifies the connector architecture,
but then there are several implementations, which are interoperable
(i.e. they can communicate with each other seamlessly) thanks to
the common standard they adhere to, such as the Eclipse Dataspace
Connector [3], TRUE (TRUsted Engineering) Connector [4], and
the Dataspace Connector (DSC) [8].
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3 LIQO

Liqo [13, 15] is an open-source project that enables dynamic and
seamless Kubernetes multi-cluster topologies, supporting hetero-
geneous on-premise, cloud, and edge infrastructures. It allows to
share resources and services coming from different clusters, which
are aggregated into a seamless computing continuum called virtual
cluster, as depicted in Figure 2, where Cx are clusters, Px are pods,
and Sx are services. The contributing clusters are completely au-
tonomous and can decide the size of the resources to share each
other; furthermore, some resources can be kept outside the vir-
tual cluster (such as pod P6 and service S1 in Figure 2, which are
accessible only from non-offloaded pods of C2).

Within the virtual cluster, each remote cluster is abstracted by a
new virtual node: each pod scheduled on that node will be offloaded
and executed in the remote cluster, and it is reachable from any
pod, either local or remote, belonging to the virtual cluster (full
pod-to-pod connectivity). Furthermore, Liqo supports also service
offloading: if a service (e.g., a Kubernetes ClusterIP) is created in
the virtual cluster, it is reachable from any pod belonging to the
computing continuum.

Liqo’s capability to support arbitrary clusters, with varying pa-
rameters and components such as CNI plugins, poses a challenge
to ensure non-overlapping pod IP address ranges or PodCIDR in the
different clusters. This may necessitate address translation mecha-
nisms, given that NAT-less communication is preferable whenever
address ranges are disjointed. During the peering phase, Liqo ex-
changes relevant network configurations between peers (i.e., Pod-
CIDR, ServiceCIDR, etc.) and possibly enables NATting rules in the
Liqo gateway (the component in charge of the inter-cluster tunnel)
in case overlapping IP addresses are detected, before setting a se-
cure tunnel between the two clusters. This enables full pod-to-pod
connectivity across the newly created virtual cluster.

More recent Liqo versions (> 0.10) include also an initial support
for security policies, which allow to segment traffic between the
clusters, hence avoiding that a pod in one cluster could be able to
communicate with a random pod in the other cluster, restricting
the communication only to allowed pods.

The main advantage of Liqo is that each organization keeps
control over its own resources, being able to revoke access to them
at any time, effectively securing the shared infrastructure built on
top of real clusters. In fact, each cluster can terminate the peering
connection at any time, thereby revoking access its shared resources
and tearing down all offloaded pods (and services).

4 ARCHITECTURE

In a traditional interaction between two administratively distinct
actors, one acting as data producer and the other as data consumer,
each actor controls its own cluster, while (raw) data is transferred
between the parties. Each actor has a vested interest in maintaining
control over the interactions among data and processing services
in its cluster, with a specific emphasis on the owner of sensitive
data, which may give access to sensitive data while, at the same
time, preventing unauthorized data exfiltration.!

'With data exfiltration we refer to the capability to provide sensitive data to external
partners, which has to be consumed by processing services that must produce (and
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Figure 2: Liqo architecture overview.

To illustrate this concept in a straightforward manner, we con-
sider a scenario depicted in Figure 3, with two clusters. A first
cluster is owned by a pharmaceutical company (Pharma) that needs
to execute its newest algorithms on the patient data, while a sec-
ond is owned by a hospital (Hospital) that possesses the data to
be processed (e.g., medical records). Hospital would like to run the
Pharma algorithm on the patient data, but it must prevent that this
sensitive data is returned and read by Pharma. Currently, the only
solution consists in transferring the data to the Pharma application,
and making sure (e.g., through a legal agreement) that data is not
stolen. However, no technical methods are available to control that
this agreement is actually respected by Pharma.

In our architecture, Pharma seeks to outsource the execution
of its workloads to Hospital, while retaining the ability to govern
the offloading process using the capabilities provided by Liqo. In
other words, Pharma algorithms are running in the Hospital cluster,
but those are still in control of the Pharma actor, which handles
the lifecycle of this application as it was running locally. On the
other hand, Hospital wishes to review offloading requests before ac-
cepting or rejecting them. Upon receiving a valid request, Hospital
subjects it to a series of additional security measures (e.g., how the
offloaded service can communicate with the Pharma cluster; more
details in the next Sections), thereby ensuring the secure execution
and monitoring of third-party workloads.

The management of these clusters, including their associated
complexities, is seamlessly handled by Liqo through standard declar-
ative configurations, thus providing a vanilla Kubernetes experi-
ence. Thanks to its capabilities, Liqo simplifies the deployment and
management of a robust and secure multi-cluster environment, al-
lowing users to focus solely on the Kubernetes resources required
to create the data space playground. However, the proposed solu-
tion must adhere to several constraints that establish trust among
the involved parties regarding their handling of data and computa-
tional resources. These constraints concern network connectivity
and privileges restrictions, to prevent pods from bypassing im-
posed ones. To provide a clear understanding of their fulfillment,
we present a concise description of these constraints in Table 1,
based on the current capabilities of Liqo at the time of writing.

return) only aggregated data, without disclosing all the original details present in the
original data.
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Building upon the aforementioned scenario, we can further ex-
tend it to manage more intricate situations involving multiple data
producers and consumers, potentially overlapping in a way where
a producer can also act as a consumer when considering other data.

4.1 Workflow

This subsection outlines the process of creating a secure
infrastructure-level data space between Pharma and Hospital clus-
ters, enabling data consumption through pod offloading while en-
suring the implementation of security measures.

This workflow assumes that the two clusters, Pharma and Hos-
pital, have already been configured and are operational, with Liqo
already installed. At this stage, the clusters remain disconnected,
and a peering connection must be established between them. Since
the Pharma cluster intends to access data in the other cluster, it
initiates a Liqo peering towards the Hospital cluster. If the Hospi-
tal cluster accepts the connection, it pushes security rules to its
Liqo Gateway, granting Pharma access to the Hospital services
running in the “data-space” Kubernetes namespace (named data-ns
in Figure 3), which hosts the sensitive data and it is external to
the Pharma virtual cluster. Within its virtual cluster, Pharma can
then read data or offload one or more pods in the Hospital cluster,
allowing for data gathering.

When Pharma initiates the offloading process, Hospital detects it
and automatically applies a set of security measures to securely host
those pods within its cluster. These measures include implementing
Kubernetes Network Policies, performing a mutating operation on
the offloaded pods, and enforcing firewall rules on the connecting
inter-cluster gateway. Offloaded pods are granted access to the
protected data, allowing them to manipulate and aggregate the
data, thereby adding a new layer to the data producer cluster.

The above security rules ensure that all Pharma pods running
on the Pharma cluster can only connect to Pharma pods on the
Hospital cluster. Specifically, the set of Network Policies ensures
that the offloaded pods can only communicate with selected ser-
vices while blocking all other requests within the cluster. This is
achieved using the standard Kubernetes APIs. The processed data
can then be transmitted to Pharma through the Liqo inter-cluster
tunnel. The Hospital Liqo Gateway ensures that incoming traffic
from the other cluster can only reach its offloaded pods. The pro-
cess of pod offloading is managed by a Mutating Webhook, which
adds an init container and a sidecar to the main application con-
tainer, which create the necessary iptables rules to forward all the
traffic of offloaded pods to the Sidecar container, which acts as a
proxy and monitors all the pod’s communications, allowing only
the desired ones. This mechanism introduces a strong barrier that
safeguards the Hospital cluster against data exfiltration. In fact,
this Sidecar intercepts all traffic from offloaded pods and directed
outside the Hospital cluster, inspecting the data at the application
level through a transparent Application-Level Security Gateway
(ALSG) functionality. It enables all Pharma pods running on the
Hospital cluster to establish uncensored communications with a
list of selected destinations within the Hospital cluster, without
ALSG. Finally, it allows service communications from all offloaded
Pharma pods to local Kubernetes services in the Hospital cluster,
such as DNS queries.
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5 IMPLEMENTATION

As depicted in Figure 3, the Liqo Gateway acts as the final destina-
tion of the inter-cluster tunnel that has successfully completed the
peering phase. Given that the data exfiltration property has to be
guaranteed for Hospital, this component (in the Hospital cluster)
will deserve a special attention in our architecture. In fact, a new Ku-
bernetes controller (the gateway controller) running in the Hospital
cluster watches all pods that have been offloaded from the Pharma
cluster, leveraging a proper label that is automatically attached by
Liqo to all offloaded pods.? Following identification, the controller
collects their IP addresses and includes them in a whitelist, thereby
allowing them to be accessed exclusively by pods belonging to the
Pharma cluster (either local or remote), the original offloader, while
denying connections from all other clusters. These whitelisted IP
addresses are translated into iptables rules and pushed on the
Liqo gateway of the Hospital. Upon cessation of offloaded pods,
their respective IP addresses are removed from the whitelist, and
the corresponding iptables rules are deleted. Since the Liqo gate-
way may also act as a NAT between clusters, iptables rules are
appended outside the secure tunnel, hence are applied after traffic
has been decapsulated from the tunnel. Consequently, the rules
also lie outside the NAT, thereby making the NAT transparent in
our implementation. The IP addresses utilized in the rules are local
to the Hospital cluster.

Within the Hospital cluster, another controller, referred to as
the namespace controller, oversees the reconciliation of offloaded
namespaces. Similar to the gateway controller, it identifies offloaded
namespaces through labels added by Liqo and appends a Network
Policy (NetPol) and a ConfigMap to each identified namespace.
Should a namespace be deleted, the associated NetPol and Con-
figMap are likewise removed. Given that the NetPol is a resource,
its deletion ensures the removal of the namespace and all encom-
passed resources. The NetPol governs the inbound and outbound
traffic of the namespace in which it is deployed. It differentiates
traffic flow, either from or to namespaces or specific resources, via a
specific label. This label, ascribed by the Hospital cluster, allows the
Hospital to discern which traffic should be permitted or blocked.
If the label corresponds, traffic is allowed; otherwise, it is blocked.
Both the sender and receiver must match the label for traffic to flow.
Although the label is contained within the NetPol, matching oc-
curs with respect to external resources to the offloaded namespace
that intend to exchange traffic with it. The ConfigMap hosts the
configuration parameters necessary for directing traffic from each
offloaded pod through the Sidecar container.

The final Mutating Webhook component performs several opera-
tions in the event of pod offloading. An Init container is introduced
into the pod prior to the main container when the offloaded pod is
scheduled. This container accesses the configuration stored in the
namespace ConfigMap and establishes rules that mandate all main
container traffic to go through the Sidecar container. Upon the ter-
mination of the Init container, the main and Sidecar containers are
created. The enforcement by the Init container ensures that traffic
from the main container is routed via the Sidecar. As of the current

21t is worth mentioning that the number of offloaded pods can change over time (e.g.,
new replicas are created), which has to be detected by the above custom controller.
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Table 1: Properties of secure data spaces.

Property

‘ Description

Implementation

Restricted privileges

The offloaded pod must adhere to
restrictions set by the hosting clus-
ter and peering can be ceased at any
time.

The pods need to be started as non-privileged and isolate the host as
much as possible in terms of networking and process-level information
and data. It is essential to prevent the pods from disabling or bypassing
the imposed restrictions, meaning they should not have permission to
remove the Sidecar or disable/modify the iptables rules.

Restricted  Pod-to-
pod connectivity

The full pod-to-pod connectivity
within the virtual cluster should be
limited to avoid offloaded pods to
communicate with arbitrary other
pods.

To restrict pod-to-pod connectivity within a cluster, two components
are utilized: Network Policy and iptables. The Network Policy governs
the communication between local and offloaded pods of different enti-
ties within the cluster. On the other hand, iptables rules are added to
the Liqo Gateway to limit pod interactions by allowing only a select
few. While pods of the same entity can interact freely, local and of-
floaded pods can only communicate with authorized service endpoints,
including all endpoints of the reflected service in Liqo’s implementa-
tion, to ensure the proper functioning of the service.

No network data ex-
filtration

The offloaded pods must commu-
nicate with the external world
and within the host cluster in
a controlled fashion, adhering to
pre-determined data representation
models and encryption require-
ments.

A Sidecar, acting as a proxy, is added to each offloaded pod and it is
set by a ConfigMap, ensuring that all the traffic of the pod is forced to
go through it. Right now, the only implemented feature is forcing the
traffic through the Sidecar, but there is no automatic action enforced
to avoid data exfiltration. Exclusive communication access is granted
only to the offloaded pods, while any communications originating from
pods within the data consumer cluster are blocked. Offloaded pods are
restricted from communicating with the Internet to prevent bypassing
inter-cluster policies.

Traffic inspection

Inspect traffic from offloaded pods
to “home” pods to prevent data ex-
filtration.

The Sidecar currently lacks traffic inspection capabilities. However, it
does monitor all requests to and from the application container.

Service protocols and
communications

To prevent the creation of resources
that could potentially bypass im-
posed restrictions, offloaded pods
must be restricted from accessing
the API server of their original clus-
ter.

Currently, it is possible to disable communication to the API server of
the original cluster for all offloaded pods, but there is no fine-grained
control.

Restricted Volume
mounting

The offloaded pod must not mount
external volumes, to prevent data
exfiltration by bypassing controlled
communication.

Liqo does not currently offer any built-in volume mounting restriction
mechanisms.

No code exfiltration

To ensure the security of of-
floaded pods, they must be pro-
tected against image theft and
unauthorized image pulling, while
also maintaining isolation from the
host cluster to prevent inspection,
changes, or execution.

To mitigate this risk, offloaded pods should be deployed with the pull
always flag enabled. Additionally, in scenarios where safeguarding
against code exfiltration is necessary, it might be advisable to restrict
the presence of only the aggregation layer of the algorithm in the
remote cluster, while keeping the main algorithm protected. However,
Liqo does not currently offer any built-in code protection mechanisms,
but it can be solved with orthogonal solutions.

Restricted resource
consumption

The cluster that accepts offloaded
pods should be able to limit their
resource consumption to avoid a
negative impact on cluster opera-
tions.

A cache system, a custom data structure, stores the information of
each Liqo peering connection and the defined limits imposed by the
data producer. The Validating Webhook is the only component that
has access to it, and it is the only one that can make the proper calcu-
lations. This system provides constraints that limit aggregate resource
consumption at the peering level. It can limit the number of objects
that can be created in a remote cluster, as well as the total amount of
compute resources that may be consumed by workloads in that cluster.
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Figure 3: Infrastructure-level data space: deployment example and main communication flows.

implementation, the Sidecar functions as a traffic monitoring tool,
devoid of any metrics, and is built upon the Envoy proxy [5].

6 EXPERIMENTAL EVALUATION

Experimental results have been collected with our custom software
running on Liqo v0.8. This version did not include (yet) a proper
implementation of the cross-cluster network policies, which had to
be carried out by our proof-of-concept implementation.

The gathered results pertain to the following scenario. Within
the Pharma cluster, a pod seeks to access the data supplied by
the Hospital cluster. Given the aforementioned workflow has been
accomplished, the Pharma cluster has a single pod containing the
processing logic, which is offloaded to the Hospital cluster. When
the Pharma cluster’s pod intends to access data, it must reach out
to the offloaded pod to request the desired data. The offloaded pod
then communicates with the service exposed by the Hospital within
the data space, to which it has been granted access. It collates data,
performs an aggregation or analysis, and subsequently sends the
processed information back to the requesting pod. All the data sent
back to the Pharma pods is inspected and checked by the sidecar,
which makes sure no sensitive data is transmitted (e.g., checking
the data against a well-defined data structure). In a nutshell, the
offloaded pod serves as intermediary, bridging the gap between the
Pharma pod and the data provided by the Hospital cluster.

6.1 Data space creation time

The standard, or vanilla, execution of Liqo requires the establish-
ment of a point-to-point connection between the clusters. Subse-
quently, a namespace is offloaded, and we will hereinafter refer
to it as offloaded namespace. Within this offloaded namespace, all
deployed resources can benefit from the offloading feature of Liqo.
Contrarily, the resources deployed within other namespaces, which
are not subject to offloading, are unable to benefit from it.

Our solution adheres to the same two-phase process: peering and
namespace offloading. Accordingly, the reported measurements are
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Table 2: Pod deployment time.

#0Offloaded Pods Vanilla (s) Data Space (s)
1 0.095 + 0,021 0,09 + 0,023

5 0,240 £ 0,069 0,214 £ 0,077

10 1,214 + 0,038 1,218 + 0,038

100 32,794 + 6,346 31,945 + 3,368

applicable to both implementations, obviating the need for compar-
ative analysis. The peer-to-peer connection requires a time duration
of (3.8098 + 0.7780) s, and the namespace offloading necessitates
(0.3097 + 0.0738) s. A cursory glance at these values reveals that
the peering phase is the predominant consumer of time.

The third phase pertains to the deployment phase where we
assessed the deployment of several pods in both the standard Liqo
setup and our proposed solution. These findings are encapsulated
in Table 2. Upon scrutiny, it becomes evident that the results for
the two scenarios bear a remarkable similarity. This observation
allows us to infer that the inclusion of Init and Sidecar containers
in our proposed solution does not significantly influence the time
required for deployment.

6.2 Resource consumption

Resource consumption serves as a key metric for evaluating the
computational demands placed upon a system during data transfer
events. In the context of our study, this evaluation aims to identify
any potential overhead on the Liqo Gateway resulting from our
additional security rules. To this end, we conducted an analysis
based on four distinct scenarios, as depicted in Figure 4a, which
were drawn from both the vanilla implementation of Liqo and our
proposal. Initially, data was collected during an idle period before a
stress test was initiated. This test design was intended to facilitate
a comparative examination of the four scenarios. To simulate data
transfer between the two clusters, we used the tool iPerf [2].
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Figure 4: Experimental evaluation.

Upon examining the graph, we observed that our implementa-
tion, denoted as Data Space in Figure 4a, imposes only a negligible
amount of overhead, whether in idle or stress conditions, when
compared to the vanilla Liqo implementation. This minor increase
in CPU consumption is a small price to pay for the advantages of
our proposed solution, which allows data to be provisioned via
data spaces. This solution avoids introducing any substantial over-
head that might be deemed unacceptable if it significantly exceeded
that of the vanilla Liqo implementation. We also recorded RAM
consumption throughout our experiments. However, our findings
indicated that our solution had no discernible impact on RAM usage
when compared to the vanilla Liqo. Consequently, in the interest
of brevity, we have omitted the corresponding graph.

6.3 Latency

Latency, within this context, is defined as the duration between
the moment data is requested by a pod and the point at which the
requested data becomes available. The premise of our experiment
was that the desired data resides within a pod, leading us to ex-
plore pod-to-pod communication scenarios. Under this premise, we
evaluated three distinct scenarios to ascertain the time needed for
a pod to access data. (i) In the first scenario, the communicating
pods were located within the same cluster (either Pharma or Hospi-
tal). Thus, these pods utilized local connectivity for data exchange.
This scenario simulates communication between a data-seeking
pod and a data-provider pod within the same cluster. We term this
scenario as Local. (ii) In the second scenario, the communicating
pods were situated across two different clusters (one in Pharma and
the other in Hospital), necessitating the use of Liqo for connection.
Consequently, data transfer had to pass through the inter-cluster
tunnel. This scenario depicts communication between pods in sep-
arate clusters, offering a comparison point to a situation where
Pharma needs to access a remote service located in the Hospital
cluster and download all relevant data for computation within the
Pharma cluster. We refer to this scenario as Remote. (iii) The third
scenario mirrors the second but it introduces one or more offloaded
Pharma pods within a data space in the Hospital cluster. In this
setup, Pharma pods need to liaise with these offloaded pods, which
in turn, communicate with the data-bearing pod in the Hospital.
The offloaded pod(s) play a proxy role, providing the Hospital with
control over data output. This scenario is referred to as Data Space.
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We gathered latency benchmarks utilizing Apache Benchmark
[18], entailing 10K requests with a varying number of parallel con-
nections. For ease of understanding, we report two instances, one
involving 10 parallel connections and the other 100, depicted in
Figure 4b and Figure 4c, respectively. As illustrated in these figures,
pod-to-pod latency increases when the pods belong to different clus-
ters compared to those within the same cluster. However, the Data
Space scenario warrants further examination. During the testing
process, the offloaded Pharma pods functioned merely as proxies,
managing all requests to Hospital data, thus inducing a noticeable
latency impact. This proxy role gives Hospital control over data
flow since the offloaded pods are situated within the data space.
When deploying our solution in this manner, latency increases by
up to 37% (median value) in comparison to the Remote scenario.

This finding directs us back to the initial premise of our work. If
we leverage the data gravity capability inherent in our proposed
solution, we can manage local and remote latencies more effectively.
By assigning data aggregation or analysis tasks to the Pharma
offloaded pod, the resultant data has a smaller size compared to the
original. In this setup, communication between the offloaded pod
and the data-owning Hospital pod remains local to the Hospital
cluster, mimicking the Local scenario latency behavior depicted in
Figure 4b and Figure 4c. Conversely, when the Pharma pod retrieves
the aggregated data from the offloaded pod, the latency mirrors
the Remote scenario. Although Data Space latency is higher than
Local and Remote latencies, data aggregation mitigates this issue by
reducing latency within the data aggregator pod and lowering the
total volume of data transferred from Hospital to Pharma, hence
the total cost of the deployment in case of clusters running in public
cloud providers. While we cannot lessen the latency directly, we
can effect a significant reduction in total data transfer time.

7 LIQO AND THE GAIA-X ARCHITECTURE

The data spaces architecture presented in Section 2 and gener-
ally adopted by Gaia-X defines application-level primitives, but it
does not mention any infrastructure-level solution. In our opinion,
application-oriented data spaces open up the following problems:
(i) it enables secure data exchange, but it does not support any
computing component (i.e., pods); hence, in case of a very large
quantity of data, all data needs to be transferred from the producer
to the consumer (no support for data gravity); (i) IDSA connector
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allows access to data from the data consumer, but the latter might
prefer having its own API gateway with its aggregation rules; (iii)
mutually reachable endpoints are required (e.g., publicly exposed
on the Internet) to allow connectors to exchange data.

The architecture presented in this paper can be easily integrated
with application-level data spaces to address the aforementioned
problems. For instance, in infrastructure-level data spaces, connec-
tors are just pods that can be executed on either the local or remote
cluster, depending on the desired scenario. Hence, considering the
architecture in Figure 1, Liqo can be used to enhance the pure data
exchange capabilities of current data space solutions with a data-
gravity approach, enabling the remote deployment of processing
instances instead of transferring data. We begin with an overview
of the existing workflow involving IDS Connector, followed by an
exploration of integration with Liqo. We assume that each involved
entity has both the IDS Connector and Liqo already installed.

IDS connectors can publish the description of their data end-
points at an IDS meta-data broker. This allows potential data con-
sumers to look up available data sources and data in terms of con-
tent, structure quality, actuality, and other attributes. Consequently,
data consumers can make informed decisions on selecting a data
producer based on their specific requirements and needs.

The initial step entails the data consumer contacting the chosen
data producer via the data connector to initiate a request for data
exchange. To establish a secure communication channel, the data
producer’s connector and the data consumer’s connector engage in
authentication and authorization mechanisms. These mechanisms
verify the identity and access rights of both parties, which may
involve the exchange of authentication tokens, certificates, or other
credentials. Once the data producer’s connector has validated the
data usage conditions and obtained any necessary consent, it grants
the data consumer’s connector access to the requested data. The
data consumer’s connector enforces any access control rules de-
fined by the data producer’s policies, such as filtering or reduction.
Over the established communication channel, the data producer’s
connector securely transmits the requested data to the data con-
sumer’s connector, allowing the latter to receive and process the
data according to its specific requirements. Within this workflow,
Liqo introduces the potential for two new scenarios.

The first scenario leverages the nature of Liqo itself. Utilizing
its direct connection between clusters, Liqo can facilitate peer-
ing between the involved entities after the authentication phase.
In essence, instead of exchanging data between the connectors
through public endpoints, Liqo enables the use of a private tunnel
and service reflection. By doing so, the need for public endpoints
to transmit data is eliminated, ensuring enhanced security without
disrupting the current implementation of the IDS connector.

The second scenario leverages Liqo’s ability to deploy pods in
remote clusters for exchanging computations rather than data. This
approach relieves the requirement to transfer large amounts of
data by instead transmitting the processing units responsible for
handling that data. Leveraging Liqo’s data-gravity approach, band-
width consumption is reduced, and computations are attracted to
the data, thereby optimizing resource utilization and efficiency.
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8 CONCLUSIONS

This paper delineates a novel approach to create infrastructure-
level data spaces, harnessing the capabilities of the Liqo project.
The proposed solution enables data consumers to establish effective
connections with data producers, thereby facilitating controlled
data retrieval. Additionally, it promotes the deployment of process-
ing algorithms closer to the data, thereby fostering data gravity.

Our findings substantiate the advantages of this solution, show-
casing a negligible overhead against the vanilla Liqo. The proposed
solution can be employed to safeguard data exchange via data
spaces, empowering data providers with the ability to regulate the
exchange of data. This capability gives data providers the flexibility
to terminate the connection as and when they see fit. Simultane-
ously, our solution offers the advantage of utilizing offloaded pods
for data aggregation, enabling data consumers to tap into the poten-
tial of data spaces. This signifies a shift of computational operations
closer to the data source, thereby diminishing latency between
computation and data. Moreover, it facilitates a reduction in data
transfer if the data is aggregated or analyzed in situ by offloaded
pods before being transmitted to the data consumer. The contrac-
tion in data transfer consequently reduces the time required for
data retrieval once the aggregation or analysis phase concludes.
When contextualized within the framework of initiatives like IDSA
and the Gaia-X project, our proposed solution can serve as an in-
strumental component of these broader ecosystems, acting as a key
element to enable data gravity.

In conclusion, our solution provides a versatile, efficient, and
secure approach for infrastructure-level data exchange. By enabling
data gravity, it aligns with future-oriented trends of data localization
and analytics, empowering the architecture proposed by Gaia-X.
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