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TRACKABLE SPECIES DYNAMICS IN REACTION NETWORK
MODELS*

DANIELE CAPPELLETTI! AND GRZEGORZ REMPALA?

Abstract. In a stochastic reaction network setting we define a subset of species as 'trackable’ if
we can consistently follow the fate of its individual molecules. We show that using the classical large
volume limit results, we may approximate the dynamics of a single molecule of trackable species in
a simple and computationally efficient way. We give examples on how this approach may be used
to obtain various characteristics of single-molecule dynamics (for instance, the distribution of the
number of infections in a single individual in the course of an epidemic or the activity time of a
single enzyme molecule). Moreover, we show how to approximate the overall dynamics of trackable
species in the full system with a collection of independent single-molecule trajectories, and give
explicit bounds for the approximation error in terms of the reaction rates. This approximation,
which is well defined for all times, leads to an efficient and fully parallelizable simulation technique
for which we provide some numerical examples.

Key words. Single-molecule dynamics, mathematical epidemiology, law of large numbers, Pois-
son process representation, stochastic approximation, dynamic survival analysis, Skorohod topology

AMS subject classifications. 60J28, 92C40, 92C42, 60F05

1. Introduction. Recent advances in modeling molecular systems, especially
our improved ability to track individual proteins, and the deluge of data from the
observations of both molecular and macro system (think, for instance, of the ongoing
COVID-19 pandemic), have created new scientific challenges of considering models
of very high resolution where the dynamics of a specific bio-molecule or a particu-
lar individual are of interest. In general, such ’agent-based’ models are known to be
computationally very costly, due to complex stochastic dynamics and highly noisy
behavior of individual agents. However, it appears that, at least in some cases, sim-
ple yet satisfactory approximation of individual molecular trajectory may be directly
inferred with the help of a classical approach of stochastic chemical kinetics that as-
sumes that all molecules or individuals are indistinguishable and consequently focuses
only on their aggregated counts. As an example of one such idea, originally proposed
in [7] and latter expanded in [15], consider the stochastic ’susceptible-infected’ (ST)
chemical reaction network where a collection of m + n molecules (or individuals) is
partitioned into two types: susceptible (S) and infected (I) with initially n being of
type S and remaining m of type I. The stochastic network evolves in time according
to a Markov jump process that counts the ’infection events’, that is, the interactions
of one molecule of I-type with one molecule of S-type. Each such interaction creates
a new molecule of I-type and removes one of S-type (equivalently, a molecule changes
its type from S to I). Accordingly, in the reaction network notation described below
in Section 2.2 this model may be represented as

(1.1) S+1—2I

If the rate constant of the above reaction is §/n and we assume the usual mass action
kinetics [6], it is well know that the above stochastic reaction network satisfies the
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2 D. CAPPELLETTI AND G. REMPALA

law of large numbers (admits the fluid limit approximation), in the sense that as
m,n — oo and m/n — p > 0 the surviving proportion s; of the S-type molecules
follows the logistic equation that may be written in the form

Consequently, for ¢ > 0 we have

_ 1+p
~ L+ pexp(B(1+p)t)’

(1.3) 5t

Thus, from the viewpoint of a single, randomly selected S-type molecule, the quantity
s¢ defines a survival function describing the limiting probability of surviving beyond
time ¢ > 0. The formula (1.3) led to the method of approximating the distribution
of surviving molecules of S dubbed ’dynamic survival analysis’ (DSA) described in
[15] and applied recently to epidemic modeling [8,9, 14,21, 23]. The idea is further
illustrated in Figure 1 where the average of the Markov process (1.1) is compared to
the average of independent realizations of single molecule dynamics (which may be
efficiently calculated using modern parallel computing capabilities). Note (1.2) may
be also interpreted as the equation for the hazard function associated with s;. This
fact has some relevance for statistical inference, and is further exploited, for instance,
in [9,15].

Beyond the simple ST example, the DSA approach has been applied (mostly in
the context of epidemics) only to a handful of reaction networks representing the so-
called one-directional transfer models [7]. In all such networks individual molecules
can only change their state in an ordered way, hence previously visited states are no
longer attainable (for instance in the ST model a molecule of S-type can only change
into I-type, but not vice-versa).

In the current paper we formally expand the survival function approach for track-
ing the fate of individual molecules to a much broader class of networks, including
those where molecules can return to their previous stages. A simple example is ob-
tained by augmenting the ST network with the additional reaction I — S, leading
to the so-called STS model (which is of interest in epidemiology) discussed in more
detail in Example 4.3 below. To establish our results for such networks, we explore a
different representation of the DSA approximation, which does not explicitly involve
the survival function. Continuing with the ST model example, denote by Y*(t) the
binary variable that takes value 1 or 0 according to whether i-th molecule is of type
S or I. The limit dynamics of an i-th individual molecule (initially of type S) is then
given by

Yi(t)=1- N* (ﬁ /Ot Yi(u)(1+p— su)du>

where N? is the unit Poisson process tracking the transition of the i-th molecule
from S-type to I-type. Note that the argument of N’ is the cumulative hazard
corresponding to integral of the right-hand side of (1.2) (see [15]). Such Poisson
process representation is of course completely equivalent to simply having the time
of switching of the i-th molecule from S to I follow the survival function (1.3), but
it allows for a description of more complex scenarios than one-directional transfer
models. For example, we will prove below that the limit dynamics of a single molecule
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Fic. 1. Survival approximation in the SI model. The empirical trajectory of the proportion
of the remaining S molecules in the SI model described in (1.1) as compared to the deterministic
Sfunction s¢ defined in (1.2) and the average of 1,000 independent single trajectories of individuals
who become infected according to st. For the simulation we considered n = 1,000, m = 10, 8 =1,
and p = 0.01.

in the SIS model can be written as
Y'(t)=1— Ny <6/ Y'(u)(1+p— su)du) + N </<c/ (1- Y’(u))du)
0 0

for independent and identically distributed unit-rate Poisson processes Ni and N3.
Here, k is the rate constant of the reaction I — S.

In this work we study the Poisson process representation of the DSA approxima-
tion and give conditions under which it describes a single-molecule trajectory of the
original network. In particular, we explicitly derive error bounds of the DSA approxi-
mation, in terms of the underlying reaction network rates. We illustrate via numerical
examples how this novel technique could be useful to infer quantities pertaining to
single-molecule dynamics (such as the distribution of the number of infections a single
individual undergoes in a SIS model, or the time a single enzyme spends in the bound
state) in a computationally efficient way.

Further, we consider the problem of comparing the dynamics of an original full
reaction network with that of a collection of independent approximations of single-
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4 D. CAPPELLETTI AND G. REMPALA

molecule trajectories and provide explicit bounds on the error. Having the dynamics
of the whole system approximated by a number of independent trajectories allows for
computationally efficient simulation techniques, that are fully parallelizable. More-
over, since the DSA approximation is defined for all times, it does not suffer from the
problem of exiting the state space as it is known to happen in other methods such
as diffusion approximations or tau leaping [4,5,12,18]. Finally, the independence of
the single-molecule trajectories also allows for much simplified statistical inferential
procedures. Such applications were already considered in the context of SIR networks
in recent papers on the Covid pandemic [14,23]. A thorough investigation of these
techniques in general reaction networks is currently being conducted and will appear
in a future work.

The paper is organized as follows: in Section 2 we provide the necessary concepts
pertaining to reaction network theory followed by the result on the approximation in
classical scaling in Section 3. In Section 4 we give a formal definition of single-molecule
trajectories of what we refer to as species that are 'trackable’. In Section 5 we state
our main results. In particular, in Section 5.1 we give the theorem on the Poisson
process representation of the DSA approximation for a single-molecule trajectory,
and give examples of its applications in Section 5.2. Finally, in Section 5.3 we state
the result on the approximation of the original full network via independent single-
molecule trajectories, and give numerical examples. Proofs and explicit error bounds
are given in the Appendix A.

2. Background definitions.

2.1. Notation. We denote by R, R+, and R>q the real, positive real, and non-
negative real numbers, respectively. Similarly, we denote by Z, Z>1, and Z>( the real,
positive real, and non-negative real numbers, respectively. Given a number r € R, we
denote by |r| its absolute value, and by |r]| the largest m € Z such that m < r.

Given a vectors v € R™, we denote its ith component by v;, for all 1 < ¢ < n. We
further denote

ol = max ol and (o] = (loa).-. [en).

Given two vectors u,v € RY,, we write

with the convention that 0° = 1. We also write v > v if the inequality holds
component-wise. Furthermore, for any vector v € Z%,, we write

m
vl = Hvi! .
i=1

Given a set A, we denote its cardinality by #A or, if it leads to no ambiguity, by |A].
We assume the reader is familiar with basic notions from stochastic process theory,
such as the definition of continuous-time Markov chains and Poisson processes [19].
Consider a sequence of random variables {X,,},ez., and a random variable X,
all defined on the same probability space and with values in a normed space (E, | - ||).

This manuscript is for review purposes only.



TRACKABLE SPECIES DYNAMICS 5

137 We say that X, converges in probability to X if for all n € Ryq

138 lim P (| X, —X]||>n) =0.
n—oo
139 Given a topological space E we will denote by Dg[0, T the set of right-continuous

140 left-bounded functions defined from [0, T] to E, endowed with the Skorohod J; topol-
141 ogy. In particular, we say that the sequence of processes {X,} with sample paths
142 in Dg[0,T] converges in probability to the process X (or simply that X, converges
143 in probability to X) if the Skorohod distance between X,, and X converges to 0 in
144 probability (for more details, see for example [11, Chapter 3]).

145 2.2. Stochastic reaction networks. A reaction network is a triple G = {X,C, R} J}
146 where (a) X is an ordered finite sequence of d symbols, called species; (b) C is a finite
147 set of linear combinations of species over Zxg, called complezes; (c) R is a finite set
148 of elements of C x C, called reactions. We assume that no element of the form (y, y) is
149 in R, for any complex y, even though our results do not depend on this assumption.
150 Following the usual notation of reaction network Theory, we further denote a reaction
151 (y,y') € R by y — y'. We finally assume that each complex appears in at least
152 one reaction, and that each species has a positive coefficient in at least one complex.
153  Under this assumption and up to ordering of the set of species, a reaction network is
154 uniquely determined by the set R, or equivalently by the directed graph (C, R), called
155 reaction graph. As an example, consider the reaction graph

156 (2.1) A+B+<=2B, B—C.

157 In this case, the associated species are A, B, and C, C = {A + B,2B, B,C}, and
158 R={A+B —2B,2B— A+ B,B — C}.

159 In this paper we will implicitly identify RI?*! with R, and therefore each S € X
160 with a canonical basis vector of R%. With this in mind, the complexes are linear
161 combination of species and can be therefore considered as vectors in Z¢,. As an
162 example, if we order the species of (2.1) alphabetically, then the complex A+ B can be
163 associated with the vector (1,1, 0), the complex 2B can be associated with (0,2, 0), the
164 complex C' with (0,0,1), and so on. We will tacitly use the identification of complexes
165 with integer vectors throughout the paper. Moreover, for each vector v € R% and for
166 each species S € X we denote by vg the entry of v related to the canonical vector
167 associated with S. We further define the support of v as supp(v) = {S € X : vg > 0}.
168 As an example, with the species of (2.1) alphabetically ordered, the support of (1, 1,0)
169 is {A, B}, the support of (0,2,0) is {B}, and so on.

170 Deterministic and stochastic dynamical systems can be associated with a reaction
171 network. The stochastic model is usually utilized when few individuals are present,
172 so the stochastic component of the dynamic behaviour should not be ignored. In
173 this case, the time evolution of the number of individuals of the different species is
174 considered, for certain given propensities of the reactions to occur, and modeled via
175 a continuous time Markov chain. More precisely, a stochastic kinetics for a reac-
176 tion network G is a correspondence between a reaction y — y’ and a rate function
177 Ayosyrt Z4y — Rso, such that Ay, (x) > 0 only if # > y. A stochastic reaction
178 system is a continuous time Markov chain {X(¢) : t > 0} with state space Z<, and
179 transition rates from a state x to a state z’ defined by B

180 q(z,x') = Z Ay—sy (2).

y—y ER
y' —y=a'—=x
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6 D. CAPPELLETTI AND G. REMPALA

The associated generator is defined by

Af@) = Y Aoy(@)(fla+y —y) - @)

y—y' €ER

for any function f: Z%O — R and any x € Z%O. Equivalently, the process X can be
described by

XO=XO0+ 3 0/ =Ny ([ A (x(e5).

y—y €ER

where the processes { Ny, }y—y7er are independent unit-rate Poisson processes. For
more details on this representation, we refer to [6] or [11, Chapter 6].

In the deterministic setting, the concentration of the different species are assumed
to evolve according to an ordinary differential equation (ODE). Specifically, a deter-
ministic kinetics for a reaction network G is a correspondence between the reactions
y — v and the rate function Ay, : RL, — Rsg, such that A,/ (z) > 0 only
if £; > 0 whenever y; > 0. A deterministic reaction system is the solution to the
ordinary differential equation

(22) L20= Y -y ()

y—y €ER

While our results hold in a more general scenario, all the simulations we show as-
sume mass-action kinetics, a popular choice of kinetics derived by the assumption that
all the reactants are well-mixed in the available volume [6]. Specifically, a stochastic
reaction system is a stochastic mass-action system if for every reaction y — ¢y’ € R
we have

x!
z—y)
for some positive constant x,_,,s called rate constant. Similarly, a deterministic re-

action system is a deterministic mass-action system if for every reaction y — ¢y’ € R
we have

Ay—sy (T) = Fysyr ( !]I{IZy}’

_ Yy
Aoy (T) = Ky a?,
for some positive constant k., also called rate constant.

3. Classical scaling. Consider a reaction network G = {X,C, R}, and a family
of stochastic kinetics {A;/%y, :y =y € R} indexed by V. Let XV denote the
associated continuous time Markov chain. V should be thought to as a parameter
expressing the volume, or the magnitude of the number of the present individuals.
Under the following technical but reasonable assumption the classical scaling of [11,16]

holds:

Assumption 3.1. We assume that for any reaction y — 3’ € R there exists a
locally Lipschitz function Ay_: R%O — R%o such that for any compact set K C R%o
we have

AV (v
lim sup M

V=00 ek 1% B )\yﬁyl (Z) =0

This manuscript is for review purposes only.
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TRACKABLE SPECIES DYNAMICS 7

THEOREM 3.2. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables XV (0)/V converge in probability to a constant z* as V goes to
infinity. Finally, let {Z(t) : t > 0} be the unique solution to (2.2) with Z(0) = z*.
Then, for any e >0 and any T >0

X;(t) _ Z(t)Hoo > e> — 0.

Note that the distribution of the fate of a single molecule is not given, since the
classical scaling concerns average dynamics. The goal of this paper is to address this
issue, by providing a technique to simulate an approximation of the time evolution of
a single observable species, as described in the next section.

lim P | sup
V—o0 te[0,T

4. Trackable species. We consider a special set of reactants, and assume that
we can consistently follow the fate of a single molecule of these reactants through its
different transformations, as for a single individual in the SI model. In general, the
reactants whose dynamics we want to follow may be less than the chemical species
listed in &X', or may be portions of them as in Example 4.5 below. To deal with this
general setting, we introduce the set of trackable species as a set X" of symbols endowed
with a function 7: X — X U {0}. The different trackable species will identify the
possible states of the molecules whose fate we want to follow. Every such state is taken
by the reactant molecule when the molecule is (part of) one of the chemical species
of X. The function 7 will link every trackable species with the corresponding species
in X. The number of trackable species defined in this way can be less than, equal to,
or larger than the number of species. The set X' needs to include the special state
A to denote the potential degradation of the tracked molecule, and we set TA = 0.
To simplify the notation, for all z,y € Z%, and S € X' \ {A} we denote by 6,(S,z)

the probability that a certain molecule of species 7(S) is chosen if Yr(3) molecules are

uniformly drawn out of TG molecules of 7(5) available. Specifically,

rT(g) -1
e () M L) N
S —re— =2 ifr s>y 5 >1
Gy(S,x) = (”:g;) T, (5) 7(S5) 7(S) .
0 otherwise

For completeness, we define ,(A,z) = 0. Finally, note that in reactions such as
2A — B+C we can imagine a molecule of A is transformed into a molecule of B, while
the other molecule of A turns into a molecule of C. If we are tracking the fate of A
molecules and the reaction 24 — B+ C occurs, it is reasonable to assume the molecule
we are tracking has a 50% change of turning into a molecule of B, and a 50% change
of becoming a molecule of C. We denote these probabilities with psa—p+c(A4, B)
and poa—prc(A,C), respectively, and in general allow for different value choices, as
along as paa—+c(A, B) + peassprc(A,C) = 1. The definition of stochastic reaction
system with trackable species in the most general setting is below.

DEFINITION 4.1 (Stochastic reaction system with trackable species). Let G =
{X,C,R} be a reaction network. Consider a family of stochastic kinetics {)\X_)y/
y— 1y € R} indexed by V, and let XV denote the associated continuous time Markov
chains. Let X be a set of trackable species. We define the stochastic reaction system

with trackable species as the continuous-time Markov chain (Y, XV') with state space

This manuscript is for review purposes only.
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8 D. CAPPELLETTI AND G. REMPALA

X x 7%, and transition rates

q((Aa'r)a (5/795/)) = ]1{5/ Z)‘y—w z)

y—y ER
Y —y=a'—x

and for all S # A

a((8,2).(5,a")) = D2 (1= 0,(8,2) g0y + 0y (5 2)py e (5, 8) )AL (),
yﬂy’ejix

where for all reactions y — y' € R the following holds:
) foranySEX S e XU{A} we have 0 < py_,y (S S < 1;

* Dysy (S S’) = 0 whenever 7(S ) ¢ supp(y) or T(S’) ¢ supp(y’) U A;
e if 7(S) € supp(y) then

Z py—>y’(§v §,) =

S'eX :7(S")esupp(y’)UA

In the above definition, the usual stochastic reaction system is coupled with the
fate of a single trackable molecule: a trackable molecule in state S can transform
whenever a reaction y — y’ occurs, with a probability given by 6,(S,S’). By defini-
tion, the quantity Gy(§ , S ) denotes precisely the probability that the tracked molecule
takes part in the reaction y — ¥, assuming that the reacting molecules are uniformly
chosen among those present. If that happens, the new state of the tracked molecule is
drawn according to the probability distribution {p,_,/(S,5")}s csupp(y/)UA (see Ex-
ample 4.4 for a case where this distribution is non-trivial). If the tracked molecule is
irreversibly degraded, its state becomes A and cannot be changed. In what follows,
we will sometimes identify the state space of YV, given by X, with the canonical basis
of RI¥l, similarly to how complexes are implicitly identified with vectors in R<.

The only technical requirement to have trackable species is that in every reaction,
every piece of the reactants on the left-hand side of the reaction either transforms
into a piece of the reactants on the right-hand side, or is discarded. Mathematically,
mapping the chemical species of the left-hand side of the reaction with those on the
right-hand side is always possible by mapping to A potential species in excess on
the left-hand side, so in principle the requirements of Definition 4.1 can always be
satisfied with the choice X = X and 7 being the identity. Moreover, if we consider
the physical system modelled by the reaction network, it is always true that reactions
either transform molecules or degrade them. Hence, even when considering the phys-
ical meaning of the model, trackable species can always be defined to track the fate of
every molecule of particular interest. In this case however some care should be taken
to reflect the real physical changes caused by the reactions, and the set X may need
to be different from &', as in Example 4.5.

Remark 4.2. The generator of a stochastic reaction system with trackable species,
as defined in Definition 4.1, is given by

= Y N, @(F@ ey —y) - f(A)

y—y' €ER

This manuscript is for review purposes only.
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and for S # A

AfS.a)= Y (1=0,8,0DNL, (@) (F(S.a+y —y) - F(5.2))

y—=y' €R

+ Y Y 4Gy G @ (A +y —y) - (S.),

y—=y' €R g’e:supp(y’)u

for all functions f: (X) x Zio - R

Ezample 4.3. Consider the SI reaction network described in (1.1), which we re-
peat here for convenience:

(4.1) S+ T —2I

In this case, we are interested in describing the history of susceptible individuals

who become infected. The set of trackable species is therefore X = {S’ I } with
7(5) = S and T(I) = I. Furthermore, we choose the probabilities pgir—2r (S,1)=1
and ps+IH21(I7 I) = 1. Alternatively, one can simply consider X = {S}, with the
understanding that whenever a susceptible individual gets infected we consider it as
irreversibly degraded, and its state becomes A. In this case, psyr—2r(S,A) = 1.

The state of single individuals can be tracked also in the more complex model
(4.2) S+1—2I, I—S.

Here, the set of trackable species is {5, I} with 7(S) = S and L 7(1 I) = I, and the trans-
formation probabilities are p5+1_>21(S I) =1, p5+1_>21(I I) =1, p1_>3(I S) = 1.
Here, relevant questions on the fate of a s1ngle individual could concern, for exam-
ple, the number of infections it undergoes in a given time, or after how long the nth
infection occurs. We can even extend the model to include migrations, and obtain

(4.3) S+I1—2I, I—S 0=5 0=—1

In this case, it is natural to assume ps_m(g, A) =1 and p1_>0(17, A) = 1. Relevant
questions could involve, for example, the average number of infection a susceptible
individual undergoes before migrating.

Example 4.4. Consider the following reaction network, where a protein P pro-
motes its own phosphorylation:

(4.4) 2P — P+P*, P*— P,P—0.

Here, we may assume we are interested in observing the dynamics of a molecule
of protein P. Hence, the set of trackable species is {P, P*} with 7(P) = P and
T(ﬁ*) = P*. It is natural to assume that the two molecules of P involved in the
reaction 2P — P+ P* have the same probability of being phosphorylated or serving as
the reaction catalyst. Hence, pap_, p4 p= (ﬁ P) = P2P—P+P* (P, P*) = 1/2 The other
transformation probabilities are given by pp-_p(P*, P) =1 and pp_,o(P,A) = 1.
Ezxample 4.5. Consider the following reaction network, depicting a Michaelis-

Menten mechanism where the product protein and the enzyme can spontaneously
transform into each other:

(4.5) E+S==C—E+P, P==E.

This manuscript is for review purposes only.
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10 D. CAPPELLETTI AND G. REMPALA

In particular, the complex C represents a molecule of substrate .S and enzyme bound
together. When the bound is broken, it is natural to assume that the molecule of
enzyme is released while the molecule of substrate is either released or transformed
into the product P. Suppose we want to keep track of the history of a molecule of
substrate S. If we were dealing with a classic Michaelis-Menten kinetics, i.e. without
the reactions P = FE, then we could simply consider as trackable species S, C, and P
(or, more formally, S, C, and P with 7(S) = S, 7(C) = C, and 7(P) = P). Indeed, a
molecule of substrate can be either in free state (S), bound with the enzyme (C), or
transformed into a product (P). Since the reactions P = E are present, if we want
to keep track of the fate of a molecule of substrate S we need to take into account
the fact that it can transform into an enzyme, so £ becomes a possible state of the
molecule (more formally, E with 7(E) = E). The problem now is that we need to
differentiate between the portion of C' that E and S get transformed into by the
reaction £+ .S — C: the portion of C that E gets transformed into will become e free
enzyme again via the reaction C' — F + P, while the portion S gets transformed into
will become a product. In order to formally express these dynamics, we consider as set
of trackable species {E S P CE, Cs} where Cp denotes we are tracking a molecule
of E bound in the complex C, while Cs denotes we are tracking a molecule of S
bound in C. The function 7 assocmtes every trackable species with its physical type:
(E)=E, 7(5) = 8, 7(P) = P, 7(Cg) = C, and 7(Cs) = C. The transformation
probabilities are given by o o

pe+s—c(E,Cp) =1 pcsp+s(Ce, E) =1 pcspyr(Cp, E) =

PE+s—c(8,Cs) =1 pcop+s(Cs,S) =1 pcop+p(Cs, P) =1

ppoe(P,E)=1 pE—p(E,P)=1

Remark 4.6. The interpretation of a stochastic reaction system with trackable

species is that of a regular stochastic reaction system with the subsequent tranfor-
mations of a given particle being tracked. If the initial state YV (0) of the tracked
molecule is not present in the initial X" (0), that is if XX(YV(O))(O) = 0, then the

initial condition of (Y'Y, X)) is not consistent with the interpretation of the process.
The process (YV, X") is still well-defined and its evolution can be studied, but its
interpretation is no longer valid. In order to obtain meaningful results, we therefore
tacitly assume that X—z‘—/(YV(O))(O) > 0, even if we do not require it formally.

4.1. Representation as a regular stochastic reaction network. In this
section we show how a reaction network with trackable species (YV, XV) can be

realized as a regular stochastic reaction network with species set given by X L X,

where LI denotes a disjoint union. In particular, the state space is A ol

X Z>0, where
for convenience we consider the first coordinates to refer to X , and the rest to the
species of the original process X'. We denote by (Z,x) a generic state in A 0‘ X Z

Consider the set of reactions R U R where

R={S+y—5+y :y—y eR,S5 5 ecX andpyﬁy/(g,gl) > 0}
and endow them with the following reaction rates:
by (F ) = D Tl = 0,(S, )\, ()
Sex

)\g+y_>§/+y, (z,2) = 2350, (S Z)Py—sy’ (S SHAY sy (T)-

A
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Note that the second component of the process has the same transitions as XV, with
6 exactly the same rates. Hence, we can safely denote the process associated with the
above stochastic reaction network by (Y'Y, XV). Note that the quantity de); Tg
is_conserved by all possible transitions. Hence, if we consider an initial condition
9 (Y(0),X(0)) with > 5.5 Y5(0) =1, then at any time point ¢ exactly one entry of the
380  vector Y'(¢) is 1, and the other entries are zero. It follows that there is a bijection
381 between the possible values of Y and X, given by the function supp(Y(¢)). In this

ot

0 =

w W W w w
N N 3 3

382 case, by identifying trackable species with vectors of the canonical basis of RI¥! as
383 already done in the paper for the species in X, the transition rates can be equivalently
384  written as

385 Hence, if > gz 5 175(0) = 1 then the transitions and the rates of (YV,XV) and

350 (YV,XV) coincide, and (Y'Y, XV) can be therefore realized as a stochastic reaction
390 network with an appropriate initial condition. In particular, we can write

(4.6)
301 XV(t) = XV(0) + Z (¥ = Y)Nysyr (/ /\zﬁu ))ds)
y—y €ER
(4.7) t
300 YV(t) =YV(0) + Z (8" — §)Ny+§_>y,+§, (/ )\gﬂ_,g,ﬂ/(yv(s),XV(S))d5>
393 y+S—y'+5’eR 0 I

394 where N, for r € RU R are independent unit-rate Poisson processes. Note that with
395 the above writing, all the processes in the set {(YV, XV)}VGZ21 can be defined on
396  the same probability space.

397 5. Results. In this section we state the main results of the current paper and
398 their applications.

399 5.1. Classical scaling for the fate of a single molecule. In this section we
100 state alaw of large number for the process Y. In order to do this, we consider a family
101 of stochastic reaction systems with trackable species (Y'Y, XV), with V varying in the
402 integer numbers greater than one. We then assume that Assumption 3.1 is satisfied
403 for some locally Lipschitz functions A,_,,/, and denote by Z the solution to (2.2).
104 Hence, we know by Theorem 3.2 that V~'X" will converge to Z path-wise with the
105 uniform convergence topology over compact intervals of time, for V' going to infinity.
106 In this section we express (Y, XV) by means of independent unit-rate Poisson
407 processes, as in (4.6) and (4.7). With the notation introduced in the previous section
408 in mind, we have the following first technical result:

109 LEMMA 5.1. Assume that Assumption 3.1 holds. Then, for any S+y—S+y €
110 R, any w € X and any compact set K C R we have

411 (5.1) lim sup [A\Y

Voo skt S+y—S+y GR( ) I_VZJ) - )‘y%y (U} Z) =0,
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where the function Ag c X x R%o is defined as

+y—>§/+y’
5 gan  Aev()
/\§+y—>§’+y’ (w,2) = ]l{w}(S)py_,y/(S,S/)yT(g)%

if both 2.3 and Yr(5) are positive, and zero otherwise. Moreover, the function

A +y 18 locally Lipschitz if restricted to X x R‘io.

§+y—)§’
Proof. If yr(sy = 0, then both )\g+y_>§/+y,€ﬁ and A,_,,s are constantly zero,
hence (5.1) holds. If y,(g) is positive, then for all z € K we have

v —
)‘§+yﬂ§’+y’€ﬁ(w’ LVz]) = Ayoy (w, Z)‘ -

]]-{w} (S)py—w/ (S7 Sl)

911(57 LVZJ ))\Z‘]/_)y/(LVZJ) — y‘r(S) M

#1(S)

Let m = min,ck 2_g, which is positive because K is a compact set contained in R‘io.

If V' is large enough such that Vm > y_z then

1% _
NS gy er (@ V2] = Ay (w,2)] =

/\Zﬂy’(LVZJ) Ay—y (2)

V- (Vz,51/V) #1(S)

]]-{w} (S)pyﬁy’ (Sv SI)yT(S)

Hence, (5.1) follows from Assumption 3.1 and

LVZT(g)J L
Vv 7(5)

max
zeK

To conclude the proof, we only need to show that Ag, . &, restricted to X xR2, is
y—S'+y >0

locally Lipschitz. However, this follows from it being the product (up to multiplication

by a constant) of the two locally Lipschitz functions z — l/zT(g) and Ay_,/. ]

The main goal of this section is to prove a classical scaling limit for a single-
molecule trajectory. To this aim, define the process Y by
(5.2)

t
Y({)=Y(0)+ Z (5" - S)N§+ya§’+y’ (/ /\§+yH§’+y’(Y(5)v Z(S))ds) '
S+y—S8'+y'eR 0

Then, the following result holds, where we implicitly identify the states of YV and Y
with the canonical basis of RI¥l. Note that the assumption that all the components
of the solution Z are strictly positive in the time interval [0, 7] is made, but this is
only a mild restriction to avoid unnecessary technicality, and is always verified under
mass-action kinetics as long as Z(0) € R¢, (see Remark 5.3). The proof of the result
is postponed to Appendix A, where more precise bounds are given.

THEOREM 5.2. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables XV (0)/V converge in probability to some z* € R%; as V goes
to infinity, and let Z(0) = z*. Assume that the solution Z to (2.2) with Z(0) = z*
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TRACKABLE SPECIES DYNAMICS 13
exists over the interval [0,T) and that

m= min Z;(u)>0.
i=1,2,...,d
u€[0,T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then

(5.3) th sup P(YV(t) £Y (1)) = th sup E [||YV( ) =Y ()] =0.
—¢el0,T) —¢el0,T)

Remark 5.3. If we consider mass-action kinetics, then the deterministic solutions
never touch the boundaries, provided that the initial condition is strictly positive [22].
In this case, the existence of m as assumed in Theorem 5.2 is then guaranteed by
z* € RY,

Remark 5.4. Theorem 5.2 implies finite dimensional distribution convergence of
YV to Y in the following sense: for all 0 < t; < to < -+ < t, <T we have

P (s 17V (0 = (6 > 0) < ZP (VY (1) = Y(t3)loe > 0)

1<i<

and the latter tends to 0 as V tends to oo, under the conditions of Theorem 5.2.

Some simulations of the process Y are proposed in Figure 2 for the case of the
SIS model (4.2). We conclude this section with the following result, concerning the
convergence of YV to Y as processes with sample paths in D +10,7]. We note how
this result is necessary for the convergence of continuous functionals of D [0, 7], as
highlighted in Section 5.2.

THEOREM 5.5. Assume that Assumption 3.1 holds. Furthermore, assume that the
random variables XV (0)/V converge weakly to a constant z* as V goes to infinity,
and let Z(0) = z*. Assume that the solution Z to (2.2) with Z(0) = z* ewists over
the interval [0,T) and that

m= min Zg(u) > 0.
u€[0,T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then YV converges
in probability to Y as processes with sample paths in D [0,T] (where we identify X

with the elements of the canonical basis of RIX! and embed it with the metric || - ||so,
or any equivalent one).

The proof is given in Appendix A.

5.2. Applications of Theorem 5.5. The convergence of Theorem 5.5 allows
us to state convergence in probability of f(Y") to f(Y), where f: D5[0,T] — R is
a functional that is continuous with respect to the Skorohod J1 topology. Classical
examples are f(z) = supyepo 1) [|2(t)|loo, f(x fo ))ds for some continuous
function ¢, or f(z) = sup,e(o r(®(t) — z(t— )) where x(t ) = limpqe z(h) (see for
example [11, Chapter 3]). More concretely, a functional we may want to consider is
the number of times an individual gets infected in the interval [0,7], assuming the
model of equation (4.2) is in place. We denote this functional by . Note that the
convergence of XV /V to its deterministic fluid limit, as stated in Theorem 3.2, does
not give any mean of inferring the distribution of ¥(Y"V). However, knowing that
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Fic. 2. The process Y in SIS model. Consider the model (4.2), and let Y be as in (5.2).
The first panel shows the concentration of infected individuals Z; according to the deterministic
solution to (2.2) with Zg(0) = 0.99 and Z;(0) = 0.01. Mass-action kinetics is assumed, with the
rate constants of S+ 1 — 2I and I — S being 1 and 0.5, respectively. According to (5.2), Zr
determines the rate at which the single-individual process Y turns from ’susceptible’ to ’infected’.
The last three panels show independent realizations of Y. The times in the xz-axes of the four panels
are aligned.

(YY) converges in probability to ¢(Y), if V is large enough we can approximate the
distribution of the former by the distribution of the latter. Obtaining an estimate of
the distribution of ¢ (Y") only requires the simulation of enough independent copies of
Y, whose jump rates are deterministic and therefore do not require a simulation of
XV to be computed, as opposed to the much more expensive strategy of simulating
multiple independent trajectories of (YV, XV) via the Gillespie algorithm (which is
especially cumbersome for large values of V). The empirical distributions obtained
with he two strategies are compared in Figure 3. Similarly, we can apply our results
to a Michaelis-Menten mechanism. Consider the model

(5.4) E+S—C—FE+P, P—5,

where the enzyme activities counterbalances a spontaneous transformation of mole-
cules of type P into molecules of type S. To measure the activity level of the enzymes,
we may want to study for how long a randomly chosen enzyme molecule is in bound
state C' up to a given time T. Let us call this quantity v(Y'V). The classical scal-
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Fi1c. 3. Empirical distribution of number of infections in SIS model. Consider the model
(4.2), and let ¥ be the number of infections a randomly selected individual undergoes up to time T.
The empirical distributions of (YY) and 1 (Y) are compared, the former obtained by the simulation
of 1,000 independent copies of (YV,XV) via the Gillespie algorithm (applied to the formulation in
terms of usual stochastic reaction networks discussed in Section 4.1), and the latter obtained via the
sitmulation of 1,000 copies of Y. Here, V = 1,000 and the initial portion of infected individuals is
1% (so we are initially close to the boundary and we may expect some minor discrepancy between
XV )V and its deterministic limit Z, see also Figure 5). Mass-action kinetics is assumed, with the
rate constants of S+ I — 21 and I — S being 1 and 0.5, respectively.

ing of Theorem 3.2 does not allow for inference of the distribution of v(Y'), but
Theorem 5.5 ensures that it converges to the distribution of v(Y') as V' tends to oco.
Figure 4 compares the empirical distributions of v(Y'") and v(Y) obtained by the
simulation of 1,000 independent copies of (Y'Y, XV) and 1,000 independent copies of
Y, respectively. For this comparison we chose V' = 1,000.

5.3. Approximating the system dynamics with single-molecule trajec-
tories. Let X C X be the set of species that can be tracked in some form:

X ={SeXx:S=r(5) for some S € X\ {A}}.

Moreover, let m: R — RI¥l be the projection of the state space onto the coordinates
relative to the species in X. The aim of this section is to approximate the dynamics
of m(X") by means of a sum of independent processes distributed as in (5.2) (po-
tentially with rescaled dynamics, as shown in the statement of Theorem 5.8). Note
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Fic. 4. Empirical density of time in bound state in Michaelis-Menten model. Consider
the model (5.4), and let v be the time a randomly selected molecule of enzyme is in bound state C
up to time T. The empirical distributions of v(Y'V) and v(Y) are compared, the former obtained
by the simulation of 1,000 independent copies of (YV, XV) via the Gillespie algorithm (applied to
the formulation in terms of usual stochastic reaction networks discussed in Section /.1), and the
latter obtained via the simulation of 1,000 copies of Y. Here, V.= 1,000 and Z(0) = X(0)/V =
(0.5,10,0.5,1), where the species are ordered as in E, S, C, P. Mass-action kinetics is assumed, with
the rate constants of E+S — C, C - E+ S, C —- E+ P, and P — S being 1, 5, 1, and 0.5,
respectively.

that the goal of such an approximation is not to provide a faster simulation method
than those present in the literature: our goal is to break down the dynamics of sev-
eral correlated particles into a set of independent single-molecule trajectories which
could be simulated simultaneously by a highly parallelizable algorithm. We begin by
identifying each trackable species S € X'\ {A} with a different physical portions of
the chemical species T(g): m molecules of species S € X are available at time ¢ if and
only if the quantity of each trackable species S satisfying 7'(5) = S is m at time t.
Under this assumption, clearly the process XV can be expressed in terms of the dy-
namics of its individual trackable species, which are typically not independent of each
other. We further restrict ourselves to models that are sub-conservative with respect
to the trackable species. This means that while trackable species can potentially be
degraded (by entering the fictitious state A), their total mass never increases. Equiv-
alently, we assume that each time a trackable species is created it is by transformation
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TRACKABLE SPECIES DYNAMICS 17

of another trackable species. We assume sub-conservativeness because we want the
single-molecule fates we track to be independent, while their agglomeration is still
able to approximately describe the dynamics of the whole system. If we allowed for
mass creation, we would need to introduce new molecules over time and track them.
Defining the molecule creation times over a finite interval of time independently on
each other is technically possible if the creation rate is deterministic: it is sufficient to
first simulate a Poisson random variable counting the total number of new molecules
in the finite time interval, then consider each creation time as independent on the
others with probability density proportional to the deterministic creation rate. How-
ever, this procedure requires the introduction of further notation and for the sake of
clarity we decided to only present the simpler case of sub-conservative models (with
respect to the trackable species).

Assumption 5.6. Let (Y'Y, X") be a family of stochastic reaction systems with
trackable species. We assume that for each reaction y — 3’ € R and for each S’ €

X\ {a}

2 w8 =y,
S,ex\{A}

For all S € X,S € X \ {A} define
TS = {8 € X : 7(8) =5} and a(8)=#r(9)

The sub-conservation of the model with respect to the trackable species is formally
stated as follows.

LEMMA 5.7. Let (YV, XV) be a family of stochastic reaction systems with track-
able species satisfying Assumption 5.6. Then, for all V € Z>1 and for all t € Ry

(5:5) Im(XY ()l < Y alS)XL (1) < Y alS)XE(0).

Sex Sex

Proof. The first inequality of (5.5) simply follows from the fact that the quantities
a(S) are greater than or equal to 1. For the second inequality, simply note that if a
reactions y — ' € R occurs at time ¢, then

D alE)XE) =Y XS (=) =D alS)ys— Y alSys

Sex Sex Sex Sex

_ / .

= Z Yoy~ Z Y75
S'eX\{A} Sex\{A}

= Z Z yr(§)Py%y’(5» S') — Z Yr(5)
S'eX\{A} §,eX\{A} SeX\{A}

< 2 e 2 Ve =0
SeX\{A} Sex\{A}

Note that in the third equality we used Assumption 5.6, and in the last equality we
used Z§/€;§\{A} Py—y (S,5") < 1. Since the quantity > g% a(S) XY is not increasing
with the occurrence of a reaction, (5.5) is proven. d
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The main result of this section is the following one, a more detailed version of
which is proven in the Appendix. In particular, in Theorem A.5 a convergence rate
of the order of e CVV for a positive constant C' is proven, provided that the initial
conditions of XV and XV are close enough.

ot

(S BG, NG, BG 1
(S5 or Ot
~

oo

559 THEOREM 5.8. Assume that Assumptions 3.1 and 5.6 are satisfied, and consider
560 a family of stochastic reaction systems with trackable species (Y, XV). Assume that
561 VTLXV(0) converges in distribution to some z* € RL, as V goes to infinity and

562 E[n(XV(0))] < oo for all V € Zsy. Let XV(0) = |Vz*| and define the process XV
563 by

5 (Y1 (1)
564 (5.6 xXV(t) = —
61 (5.6) (t) ge%A} ; a(r(Y5:i(1)))

565 where the processes (Ys’i)ge);\{A} icz., are independent and satisfy

~ t ~

6 i g o1 _ S NS i

e YR =S+ Y0 (S"=SONGL e ( /0 Agipysgnay (Y5 (u),Z(u))du> I
S'4y—S"+y'€R

567 for a family of independent, identically distributed unit-rate Poisson processes {Nrg’i}gej&\{A} i€y reﬁ'l
568  Then, B

T(XV(1)  XV()

569 lim F % %

V=00

sup
0<s<t

0 Note that in the definition of XV above we consider as many independent single-
I molecule trajectories as many trackable molecules are in the system at time 0. A
2 natural question is whether a good approximation of the original model X" can be
3 obtained by considering the agglomeration of less independent single-molecule trajec-
4 tories. However, a detailed study of the error in this case is out of the scope of the
5 present paper.

v Ot Ot Ot Ut Ut

576 Ezample 5.9. Consider the SIS model of equation (4.2). We assume XY (0) =
577 0.99V and X} (0) = 0.01V, and let V = 1,000. We wish to approximate the number
578  of susceptible individuals by

x¥w XL
\%4 v o

580 In order to test the performance of the above approximation, we simulate 100 in-
581  dependent copies of XV and X, and plot them against each other in Figure 5. It
582 is perhaps not surprising to note a higher variance for the trajectories of X V' with
583 respect of those of XV : the former is the result of several single-molecule trajec-
584 tories that are naturally correlated with each other, specifically the rate at which a
585 single molecule changes state is stochastic and given by the current state of all the
586 other molecules. In the approximation, the dynamics of the single tracked molecules
587 are independent and their rate of change from one state to another state are purely
588  deterministic, which leads to fewer stochastic fluctuations. However, we do observe a
589 discrepancy between the two models only at the beginning of the trajectories, when
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TRACKABLE SPECIES DYNAMICS 19

the number of infected individuals is rather low (only 10 individuals in the initial con-
dition) and the deterministic approximation given by Theorem 3.2 is perhaps not yet
accurate enough. As a matter of fact, Figure 6 shows that the difference in variance
is considerably reduced if the initial counts of infected individuals is increased to 100.

We are interested in bounding

XY@ XY@
5.7 P AV AA R
(5.7) ozltlgT 14 Vv :

for a fixed ¢ € Ryp. Assume mass-action kinetics and let x; and ko be the rate
constants of S+ I — 2I and I — S, respectively. Moreover, assume for simplicity
that XV (0) = XV (0) = VZ(0) and XY (0) + X} (0) = V. Since the total number
of individual is conserved, for all 0 < ¢t < T we have X¥ (t) + X} (t) = V. By

superposition there exist two independent unit-rate Poisson processes N, S+1—2r and
Ni_, s such that for all 0 < ¢ < T and for a fixed V' we have (with a simplified notation
that does not take into account the initial values of the independent single individual

Simulation technique
\ == Deterministic limit

=== Gillespie algorithm

=== |ndependent individuals

0.8-

0.6-

Proportion of susceptible individuals

0.4-

Time

Fic. 5. Comparison in SIS model. Comparison of 100 independent trajectories of Xg/V
and )?g/V, considering the SIS model described in (4.2). Here, XX (0) = 0.99V, XV (0) = 0.01V,
and V = 1,000. Mass-action kinetics is assumed, with the rate constants of S+ 1 — 21 and I — S
being 1 and 0.5, respectively.
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Fic. 6. Comparison in SIS model. Comparison of 100 independent trajectories of Xg/V
and )?g/V, considering the SIS model described in (4.2). Here, X¥ (0) = 0.9V, XY (0) = 0.1V,
and V =1,000. Mass-action kinetics is assumed, with the rate constants of S+ 1 — 21 and I — S
being 1 and 0.5, respectively.

trajectories)
~ t ~ V . t .
Fsroar ([ R @Z0a0) =Ny (1150700210000
i=1
~ t ~ V . t .
Niss </0 HQX}/(u)du> =Y Nt s (/O 1{7}(Y’(u))du> .
i=1
Then,
XY XY@ Lt v | X ()
_ < il _
Vv L At) + /0 k1X¢g (u) v Zr(u)| du
PoXY () X ' F(w) X[ (u)
_|_/O Y e ZI(U)du+/() Ko\ —y— — % du,
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t'k@l

o V

tlil

X§ (w) X[ (u)du
oV

XX@@XY@»MQ——

t t
+ 1 Ni_g </ HQXY(U)dU) 7/ HQX}/(U)dU
Vv 0 0
1 . t ~ t .
+ v Ngi1or </ ng(u)ZI(u)du) f/ Hng(u)ZI(u)du
0 0
1 ™ t ™ t ™
+ — |Niss </ K}QX}/(U,)CZU) —/ ke XY (u)dul .
Vv 0 0
Using X} (t) =V — X} (t) and Z;(t) < 1 for all 0 < ¢t < T we obtain
XY@ XYt XY (u
| b;/()— ?/()SA(t)—F/Om’ IV()—ZI(u)du

¢ X
+/ (K1 + ko)
0

By taking the supremum on 0 < ¢t < T on both sides and by applying the Gronwall
inequality, we have

sup
0<t<T

xXYw XY

\%4

X7 (u)

V 7Z[(u)

< < sup A(t) + k1T sup >e('~”~1+f~”~2)T'

0<t<T 0<t<T

Vv

For notational convenience, let v = ee~(*1+#2)T  Hence, (5.7) is smaller than

(5.8)

P< sup A(t)>;>+P( sup

0<t<T

w - ZI(U)‘ = 2:1T> '

0<t<T

By noting that P(supg<;<7 A(t) > 1//2) is smaller than

1 t t
p( sup — ’N5+H21 ( ’“XSV(u)X,V(u)du) — [ BXY )XY (u)du| > ”)
o<t<T V o V o V 8
1 t t
+P< sup — [Nrs (/ @X}/(u)du> —/ Ko XY (u)du| > V)
o<t<r V 0 0 8
1|~ t t v
+P< sup Noi101 (/ mXX(u)Zﬂu)du) —/ k1 XY () Z (u)du| > 8)
0<t<T 0 0
1]~ t t v
+ P( sup — |Ni5s (/ K/QX}/(U)CZU> —/ ke XY (u)du| > ) ,
o<t<r V 0 0 8

we obtain that (5.8) is smaller than

T T
12exp<me —2V4\/V>—|—12exp<@e —21/4\/V)

+ 6 exp (Hl

2

2

2

eT v \? Kkoel 1% v
1 7 1 I —T(k1—K2)—V %
( * mT) + 2 ( * mT) 12f<u'1T6 Vv
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by Lemma A.1 and Theorem A.2 (for the special case of the SIS model, see Exam-
ple A.3). We note that exp(h) is defined as e for all real numbers h. It follows
that (5.7) tends to 0 as V' tends to oo with the same rate as e~ CVV for some positive

constant C. This is always the case, and bounds for more general models are provided
by Theorem A.5.

Appendix A. Proofs and explicit bounds.

In this section we give proofs for the results stated above, together with more
precise bounds on the quantities of interest. To this aim, we first define the following
quantities: for all V € Z>; and € € Ry let

XV (u)
%

— Z(u)” < 8} and p"&! = P( Ved) = 1= P(Ave),

where the superscript “c” denotes the complement. Note that, for any fixed for fixed
V and ¢, the sequence of events Ay ; is monotone in ¢, and p¥5?t is a non-decreasing
function of ¢ attaining its maximum for the value t = T.

Define the Z< -valued process X" on [0, T] in the following way: for any S € X

and any t € [0,T], let
(A1) X ¢ (t) = min{max{ XY (t),VZs(t) — Ve},VZs(t) + Ve}.
Hence, by definition for all t € Ry

e

-2 <

(oo}

Moreover, define the process X Ve by

X =X 0+ Y 0 N ([ N ()]

y—y €ER

for all t € [0,T], where the processes N,_,,s are the same as in (4.6). Note that for
any t € [0,T] we have 14, , XV(t) =14, , XV (t) =14, ,X"(t). In particular,
it follows that

XV’E(U/) Xv,a(u)
sup ||—————= —Z(u <1a,., sup ||————= —Z(u +14e €
OguI;t 14 (w) o e oguzt 14 (w) - Ave
X Ve
(A.2) < sup X)) Z(u)
0<u<t v -

For any ¢ € [0, 7] and any € € Rs let
Q7' ={Z(u)+h : ue0,t],heR |h]l < e} NRE,

be the (one-dimensional) neighbourhood of the solution Z on the interval [0, ¢] with
amplitude e, intersected with the non-negative orthant. Note that for all ¢ € [0,T] we
have XV(t)/V € QY. Similarly, let

Q' ={(Z(u)+ h, Z(u) + 1) : we[0,t],h,h' € R |[h]|oo <&, |W ||l <} NREY
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be the two-dimensional neighbourhood of the Z restricted to [0, ¢] with amplitude ¢,
intersected with the non-negative orthant.

To conclude, it is convenient to introduce in this section a notation for centered
Poisson processes: given a Poisson process N, we denote by N the process defined
by N(t) = N(t) —t for all t € R>g. In order to bound p"*! from above and prove
Theorem 5.8 we need the following results concerning centered Poisson processes. For
completeness, we provide a proof as we were not able to find it in the literature, even
if small variations of Lemma A.l are well-known and obtained as an application of
Doob’s inequality or Kolmogorov’s maximal inequality.

LEMMA A.1. Let N be a Poisson process and let T e € Rsq. Then, for all n €

L1
N(t)’ > a) < 6exp (;T— Eﬁ) .

n 3

P sup
te[0,nT]

Proof. For all j € Z>, and all h € Ry define

(A.3) E?:U{;]}

=0

Since N is almost surely right continuous, we have that for all n € Z>; and all
T 6 R>0

N(t
()‘ = lim max

sup
n Jj—oo teE;T

t€[0,nT) n

v

almost surely. Since for all j € Z>; we have znT E?fl, by continuity of the

J
probability measure we have
N(t
()’ > 5) .
n

N
Pl sup (t)‘ >¢e | = lim P max
tefo,nT] | T Jj—oo tez=rT
N(t
( )‘ - 8) .

By Etemadi’s inequality we have
n 3

N
P | max (t)‘>6 SBmaxP(
teErT | N tesErT

Moreover, for any real 8 € (0,1) and any real ¢t € (0,nT") we have

p(IYO ey o p(NO e p( N e
n 3 n 3 n 3
nPN(t) nBe nBN(t) nBe
:P(e n >€3>—|—P(6_ n >e3)

B _

< 2exp (_n35> exp (t(e"B . nﬁfl))
8 26-2 .

< 2exp (—n3€> exp (nTn 5 e’ > ,
B 282

< 2exp (_7135) exp (nTn 5 e) ,
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where the inequality in the third line follows from the Markov’s inequality and the
known form of the moment generating function of a Poisson random variable, which
leads to E[enﬂilﬁ(t)] = e_"ﬂfltet(enﬁil_l) and E[e_"Bilﬁ(t)} = e”ﬂfltet(fnﬁil_l).

Hence, for all n € Zs1 we have that both E[e® N®] and E[e="" "N(®] are less than

nB=1 " -
or equal to e'(¢ ~1=n""")  The inequality in the forth line derives from the Taylor

expansion of the exponential function. By choosing 8 = 1/2 we have

P[0 ) <o (-7 e (519,

which completes the proof. ]

A.1. Estimates for p"***. Many papers have focused on quantifying the dis-

tance between the process X" and its fluid limit Z. Among these, we list [1-3,13,
17,20] with no claim of completeness. Here we use Lemma A.1 to show the following
upper bound on p">**. While similar estimates are known in the reaction network
community, we give a formal proof of the bound we propose as we could not find it
in the literature. Before stating the result, we define the following quantities:

R= -
yg;%gnl\y Ylloo>

t
A = sup Z Ay (2), Ai’t:/ Aytdu
0

st
Z€Q7" Yy eR

A — Ay (/ '
Lg,t =  sup [Ay—y (2) /y%y’(z )|7 Li’t _ / Le™du
(Z,Z/)Eﬂz’t’ y—=y ER ||Z -z ||OO 0
242"
AV Vz t
5(\)/,5,t = sup yay/‘g_ J) B )\y*}y/(z) 7 5¥,5,t _ / 5(\)/,6,udu
€97 yyer 0

Vet L%t V,2e,t
ot (y) =eT T ye =607,

where in the last definition + is any real number in (0, 1]. Note that Ag’t and 5(‘)/’5’t are
finite for any ¢ € [0, T'], since the solution Z exists up to time 7" and the functions A,
are locally Lipschitz by Assumption 3.1. The local Lipschitzianity of the functions
Aysy also implies that L5 is finite for all ¢ € Rsq and ¢t € [0,7]. It also follows
from Assumption 3.1 that d)°" tends to zero as V tends to infinity. Furthermore,
note that for fixed V € Zs; and ¢ € Rg, the quantities A5*, Lg*, and 5(‘)/’6’t are
all non-decreasing functions of t. As a consequence, for all ¢ € [0,T],e € Rsy, and
V € Z>1 we have

it it it it Viest Vie,t
ATT<HAGT, LY <tLgt, and  6,°" < toy

It follows that for all t € [0,T],e € R+, and 7 € (0, 1] the quantity n"*5!(v) tends to
Ly

the positive quantity e~ ’t'ys as V tends to infinity. We can now state the following

theorem.

THEOREM A.2. For any e,t € Ryo , any v € (0,1], and any V € Z>1 large
enough such that 125t (v) > 0, we have

i 2e.t 1

This manuscript is for review purposes only.
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Proof. First, note that

pVet=p ( sup

u€|0,t]

=P sup

u€|0,t]

Moreover, by superposition, for all V' € Z>; and all € € R5( we can define a unit-rate
Poisson process U"»?¢ coupled with XV in such a way that for all t € R

UV,QE

/

y—y €ER

)\?‘J/ﬁy (XVQE Z Ny—y </ )‘Xﬂy

y—y' €ER

Hence, by using (2.2) we have

\%4

H XV,25(U)

— Z(u)

— Z(0)

v V,2¢
B ” X V2 (0)
- Vv

oo y—=y ' €R

y—y’ €ER

R _
+V Z Ny_sy

+/0u 5 ()\}j_w ()‘(/V’Qe(w)) Ay (

9

25

v w V,2¢e U
sl )= ([ -] )
XV’QE(’U,>
T _ Z(u) ) > 8) .

(XV725(u))du) .

A (V2 ()

X%;&@))) dw

# 1S (o (552) = rve 2

y—y’

SHX:/(O) Z(O)HOO+§ vrEl oy / by (X2 (w))dw

y—=y' €R
XV,2e(w)

u
+§V,25,u+/ L2€,w
1 o 0 Vv

o

dw

o0

By using (A.2), by taking the supremum over [0, ¢] on both sides we obtain

sup

0<u<t

Vv

XV,QE (u)

By Gronwall’s inequality we get

sup
0<u<t

XV,25 (t)

|4
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XV
-z <[5 H
+ R sup 7" Z / A (XY (w))dw
y=y'
V o<u<t ymerJo
t XV,2€
+ 6772t —|—/ Lo7" sup X% w) Z(w)||  du.
0 0<w<u v .
g,t XV
7)) <t |9 g <0>H
V o0
Reli™ —V,2¢ v V,2e
+ 7 sup U Z )‘u%u (XY (w))dw
O<ust y—y €ER
4 eliT b2t |
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By noting that for all t € R>g

)\V /(LVZJ) c V.2e
sup Z 7y_>yv < Ag ot 50’2 ’t,

z€Qi™" y—y' €R

we get
v
pV,s,t SP (eLfs,t XV(O)

~20) > =)

UV,ZE (u)

Vv

o0

2e,t
+ P | Reln sup
0<us V(A 46y77)

2e,t
+elig et > 75)

for any « in (0,1]. the proof is concluded by Lemma A.1. |

Ezample A.3. Consider the SIS reaction network described in (4.2). In this case,
in accordance with the classical mass-action choice of kinetics we have

Noproan(@) = prwsar and A g(w) = raar

for some positive constants k1 and ky. Hence, Assumption 3.1 is satisfied with

Ast1521(2) = k1zszr  and  Ars(2) = kazr.

The corresponding solution Z exists for all non-negative times ¢, for all initial condi-
tions Z(0) = z*. Moreover, note that the sum of infected and susceptible individuals
is kept constant, hence for all t € Ry we have Zg(t) + Z;(t) = 25 + 27 = ||2*|l1. In
this case we can obtain the following rough estimates

R=2, AY' < (Iz"lh +e)lri(lz"ll +e) +k2l,  Lg" < ma(ll2"]l1 +e) + iz,
6(‘)/76,25 =0, 77V,s,t > Ee—t.‘il(”Z*Hl-‘rQ&)—‘rtHQ.

If we assume XV (0) = Vz*, then p¥"%9 = 0. It follows from Theorem A.2 with the
choice v = 1 that in this case

t V *
pVot < Gexp (2(||z*||1 + 2e)[k1(||2"])1 + 2¢) + k2] — %e‘t[’“(uz |1+25)_K2]> ,

where exp(h) is defined as e” for all real numbers h.

A.2. Proof of Theorem 5.2. First of all, we define some quantities that are
useful to give specific bounds on our approximation error. Define

A6 = Ig{?;}?{ Z )‘§+y_)§/+y' (57 Z(t))7
§+y—>§’+y'€7§

Za,t _
o = sup Igna))?(
’ e, c - — -
(2,27) €62, S+y—S'+y'eR
z#z

5ot = sup max Z )\¥+y_>§,+y,(S, V2]) = Agiys5i4y (S, 2)]

et SeXx - — ~
z€8, S+y—S'+y’€R

t t t
Al / Addu, L5 = / Litdu, 60F = / 53" du.
0 0 0

[A S,z) — )\§+y_)§,+y,(572’)|

12 = 2'lloc

§+y—>§’+y’(
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Note that A} is finite for any ¢ € [0,7], due to the fact that Z is defined over the

whole interval [0, T]. Moreover the functions Az Gy Gy ATC locally Lipschitz on Rio
by Lemma 5.1, hence Eg’t is finite for all ¢ € [0,T]. Finally, SX’E’t is finite for all
t € [0,T] by Lemma 5.1. Note that, for fixed V and ¢, the quantities Lg* and 65"
are non-decreasing functions of t. As a consequence, for all ¢ € [0,7],e € R, and

V € Z>1 we have
(A-4) A <Ry, L9 <Dy, and 570 <433

Before proving Theorem 5.2 we show the following stronger result.

THEOREM A.4. Assume that Assumption 3.1 holds. Furthermore, assume that
the random variables XV (0)/V converge in probability to a constant z* as V goes to
infinity. Assume that the solution Z to (2.2) with Z(0) = z* exists over the interval
[0,T] and that

m = min Zg(u) > 0.
w€e[0,T]

Finally, assume that YV (0) = Y (0) for all positive integers V. Then,
(A.5) PYYM)#Y (1) =E[IYV(#) - Y®)e] -

Moreover, for any 0 < e <m

s[up ] E[IYV () = Y(#)|lso] <pV7 + (8757 +eL5)e?M
te[0,T

Proof. First, note that

1 ifYV(t)£AY(t
(4.6) |wa—wmm={oﬁy%gzég,
hence (A.5) holds. Consider the process
(A7) )
o -vor Y <§—®A@w%@ﬂ/</Agw%@ﬂAYmeX“%wyW)I
S+y—S'+y'€R 0

By equations (5.2) and (A.7), using the triangular inequality, we obtain

BlIVY (1) = Y (1))

t
=F / Z ‘)\¥+y—>§’+y’ (Yv(u), XV’E(U)) - )‘§+y—>§’+y’(y(u)’ Z(u))‘ du
§+y—>§’+y’€ﬁ
<Y+ o+ T |
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where

\Y V(). XV \ PV (), X (W)
§+y—>§’+y’( (u)’ (u)) - §+y—>§’+y’ (U), v

!
Il
ey
S~
]

§+y—>§’+y’€7§
t N Xv1s(u) N
|4 |4
A§+y_>§/+y/ (Y (U’)a Vv ) - A§+y_>§/+y/ (Y (u)v Z(u))

o3

I

&=
S~
INg

S+y—S'+y'€R

A (YV(w), Z(u) = X

Syt Sy sy (V (), Z(w))| du

5

I

&=
IO\{.‘~|

§+y%§/+y’€7§
Since for every S+y — S’ + 1y’ € R we have
~ 4 -
A% Gy (W) =15 (w)Agﬂﬁg, L) forallz €28, weX

AGyysGry (W, 2) = ]l{g}(w))\¥+y_)§,+y,(5,z) for all z € R’éo,w e X,

we can write T1 < 8, %", Similarly, Ty < eL5". Finally,

Ts=F / > ‘1{5} YV (u) — 1{5}(Y(u))j AgiysGray (S, Z(u))du
S+y—S'+y'€R

<E /0 Z ‘l{fé}(?v(“)) - 1{5}(Y(U))‘ K};du
1"~ SeX

_ /Ot 2P (VY (u) £ Y (u) Aidu = 2/0t B[V (u) ~ ¥ (1) | R,
where in the last equality we used (A.5). In conclusion,
BlIVY () = Y ()| < G + L") +2 / B[I9Y () - Y (o] Ridu
By the Gronwall inequality we then have
B[IFV() = Y (O] < GF5" +L5)e?.

The result follows by taking the sup over ¢ € [0,7] on both sides (the quantity
on the right-hand side of the inequality is non-decreasing in t) and by noting that
Tay. 2 YV(t) =14, ,YV(t) for all t € [0,T]. Hence,

YY) = Y ()lloo = 1YV (1) = Y(8)llooLag, . + VY () = Y(#)lloc Lay...x
< ILA%,,E,T + |D>V(t) - Y(t)”OO]]--Av,s,T
< Lag,, IV = Y(#)lloo- o

We are now ready to prove Theorem 5.2
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Proof of Theorem 5.2. It follows from Theorem A.4 that P (YV( ) ;é Y(t)) =
E[IYV(t) =Y (t)|le]. Moreover, for any ¢ > 0 we have limy_p"*7 = 0 by

Theorem 3.2, and limy _, o SYE T =0 by Lemma 5.1 and (A.4). Hence,

lim sup F [HYV( ) — (t)HOO] < efi’TeﬁlT,
V=00 tel0,T]
which concludes the proof by the arbitrariness of ¢ > 0 and by the fact that ES’T
(hence L") is non-decreasing in e. 0
A.3. Proof of Theorem 5.8. Similarly to what was done in the previous sec-

tion, we define the following quantities to give an upper bound for our approximation
error. Define

. S S
R= max_ |[7(y —y)llec, 7= _ max _ o)) ;
y—y R Sty=5+yer ||a(T(S)  a(r(9))]
Aé =7 Z ’\§+y—>§'+y (S Z(t)), At / A“du
S4+y—S'+y'eR
t
AL = max Z / AGpys§riy (5 Z(u))du,
SEX\{ }S+ya5’+y "eR
R t A Vz
A;)/,e,t :/ sup wdu7
0 zeQf y—y' ER
wz—:,t =7 sup Z ‘/\§+y_>§,+y/ (S, Z) - >\§+y_>§/+y/(57z’) s

.t
(2,2")€Q]
HZ_Z/HOCSE

¢t = / (1Z(u))]o + €)du.

Note that Af, AL, and (= are finite for any ¢t € [0,7], because Z is defined
over the whole mterval [0,T] and the functions Az , are continuous on R< by

S+y—S'+y'eR

S4y—S'+y
Lemma 5.1. Lemma 5.1 also implies that w®? is finite for all ¢ € [0,7] and € € R>o
Finally, A:‘;E * is finite by Assumption 3.1. Note that, for fixed V' and ¢, the quantities

AVt . .
A" wSt and (5! are non-decreasing functions of ¢.

We now state and prove the following result, which immediately implies Theo-
rem 5.8. Note that 5‘/6 " is as defined in Section A 1.

THEOREM A.5. Consider a family of stochastic reaction systems with trackable
species (YV XV, and assume that Assumptions 3.1 and 5.6 are satisfied. Let z* €
R¢, and XV(0) = |V2*|. Define the process XV by

XY 50 v
Y rrSi)
XO= > 2 s
Sex\{a} =1 (r(¥®
where the processes (Yg’i)gef\{A} iez, are independent and satisfy

- - -, t _

§’+y~>§”+y’€7?,

This manuscript is for review purposes only.



876

877

878

879

880
881

885

886

887

888

889

890

891
892

893

894
895

30 D. CAPPELLETTI AND G. REMPALA

for a family of independent, identically distributed unit-rate Poisson processes {Nf’i}§ef\{A},iezzl,reﬁ'l
For arbitrary vi,ve,v3 € Ry define

AT

v =™ (RVl + v 4+ vy + ROST 4 wE’TCE’T)
Then,

T(XV(1) XV

AV,s,t
>1/> < 6exp (6 3 —V1ﬁ>

P | sup
0<t<T

Vv 1% 2 3
Al xV XV
Gexp <6622 B W;)FV> P ( x( V(o)) B V(o) N y3> 4 et

where ¢ = gy (5)25.

Proof. By the superposition property of Poisson processes, for all V' € Z>, there
exist two unit-rate Poisson processes U} and Uy such that for all ¢ € R>g

vyl >, / tAZﬁy/(XV’E(u))du = > Nyy < /O t/\@‘l/ﬁy,(XV’g(u))du>

y—=y ' €ER 0 y—y' €ER

and

t a -
Uy Z Z / Gy iy (Y54 (u), Z(u))du
Sex\{A} =1 S4y8574yerR

N ¢ N

_ 5,1 _ _ S,i

SID DD SR DENE - FR (PSR SN ORI
Sex\{a} =1 Sy 5riyer

Note that

X5

. _ (8" 7(S)
XV(t)=X"(0 gy S
(t) O+ > > 2 <a(7(5")) a(T(S’))> :

§e)?\{A} S'4y—S4yeR =1

- t R
S, B _ S,i
% N§’+y—>§"+y’ (/0 )\S”ryHS”H/ (Y (w) ,Z(u))du> ‘

Hence, by triangular inequality,

r(XVew) XV (w)

|4 |4

T(XV(0))  XV(0)

v V

sup
0<u<t

o0
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896  where
. Ll Yy v,
o = Y I =il \NM/ ([ E(w))dw)\
y—y €ER
, R 77V v Vie
898 < — sup |U; Z Ay (X5 (w))dw
V o<ust yer Jo
XY - (0) ~ ~
& ) @)
899 Yo = sup Z Z Z 5 — 5 X
0<u<t SER\[A} F4yoStyeR =1 a(T( )) OZ(T( )) 0o
1 |—S, “ 5.
900 X v Ngi iy sgniy (/o )\g,+y_>§n+y/(ys’z(w),Z(w))dw)‘
. )N(Y(g)(o) w
r —=V S
901 < Voiug U, Z Z Z / )\g,+yH§,,+y,(YS: (w), Z(w))dw
sust SeX\(a} §+y—5rpyer =1 0
u )\V , XV,E w XV,E
902 Y3 = sup Z H7r(y’—y)\|oo/ v ) — Ayosy ((w)) dw
0<u<t - \%4 \%
y—y' €R
903 < R§)S!
u XV,E
904 Y4 = sup Z W(y’—y)/ Ay—sy/ ((M)> dw
o0<ust ||, foen 0 4
~ ~ Ve
7(S") 7(S) > /u X (5w -
905 - Z = — = Agrin G, (S Z(w))dw
Gy Gy R (a(T(S//)) a(r(8") ) Jo 1% +y—=S5"+y N
“§) &) ) ) 5
906 Yr = = — = a Az Sy S/aZ d
o o= | (T T ) [T s (8 2
=S Sy 5y erR
1 )?"'/(~>(O) (§//) (gl) u
907 T _ T . _ g,i
. > 2 <a(T(§~>> a<7(§f>>>/o A5t pymrny (V1 (0, )
908 ’S’ve‘)f(‘v\{A} §/+y%§//+y/€ﬁ =1 OOI

909  We first focus on rewriting Y4 and Ys5. To this aim, first note that by identifying
910 species with canonical vectors of R? as previously done in the paper, we have that for
911 allyeC
Y5 7(S)
912 m(y) = Z ysS = Z (5) 5
Sex Sex\{A} a(7(S))

This manuscript is for review purposes only.



913

914

919

925

929

32

Hence, for ally — ¢y € R
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, y7(§/)7(§/) 3/7—(§)T(§)
7(5") 3 o 5 G
B Z oo Z yT~py_,yr(S,S)— Z S ( )a
SrexX\{Aa} o7(5")) Sex\{A} ) Sex\{A} a(7(5))

where we used Assumptlon

Y5z Py /(8,8 for all y =/ € R and S € X, we further obtain

7_

W -y =Y —=— > Y 5Pyy(5S)
Srex a(r ( )) SeX\{A}
B Z Yr(8) Z Py S S'
SeXx\{A} a(T(S)) Sex
T T § o o
- T 3 (G sy w5

Sex\{A}SeX

It follows that

u XV,E
Z w(y'—y)/ Ay—sy’ (V(w)> dw
y—y' €ER 0
(8" (S ) / 5 g XV (w)
- ) N z Yr(@yPy—y (858 Ayoy | —7—
§/+y_>§//+y/eﬁ (O{(T(S”)) a(T(SI)) 0
~ ~ Ve
_ ¥ ( ACH I ) ) [ Yo, (S, XV (w)
- = ~ S’ S ’
S by Gty R a(r(5")  a(r(5) ) Jo |4 Ty 4
which in turn implies
Qn o7
P S NN
ozuzey, a3 aG@))]|
uX ( ) X Ve
(8) = (w) ~
8 /0 1% S'+y—S 4y’ < g V) - )‘§’+yﬁ§”+y’ (S, Z(w))| dw

<oJ€’tC€’t.

By summing over the values of the single-molecule trajectories, we also have

(0)
X&) ~
S,i 1 _ _ g
Z Z Mgy gy (Y (0), Z(w)) = XT(S)( NG 4yms 5y (55 Z(w)),
=1

SeX\{A}
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.6 in the last equahty By recalling that 7(A) = 0 and

)av

) dw,
i



937

938

939

940

941
942

944

947

949
950

951
952

958

which implies

~ ~ Ve vV
5 S N// - ~/ V - V §’+yﬁ.§”+y’ I
vsust g, S alla 3 ar@E)| Jo
t Ve 14
XVew XV
< - Agd
= /0 % % 0%t
XVew) XV 1. NXY=w) XY@ .
:]]-A(\:/,s,t 1% - Vv AOdu + ]]-Av,g,t /0 Vv - Vv Aodu
HIXVe(w) XV
Vet u
SLag M7 +/O v TV Aydu,
(oo}
where
Vet / <||Z Moo +e+ > af ) A¢du
Sex
is an almost surely finite random variable, non-decreasing in ¢. Hence, putting every-
thing together and applying the Gronwall inequality we have that almost surely
XVe) XVt ir R _
sup m( V())_ V() SeAlTV sup U¥ / /\u—w (XV8 (u))du
0<t<T - 0<t<T JSTER
R X5
AT T —V S.i
P Y Y Y [ s 05w 20
=t SeR\(A} §4yo5ipyer =1 70
xV(0) XV(0 .
A ( X)X ey ercer HACVYEETMV,E,T)
Now note that if Ay, As,..., A; are random variables and a1, as,...,a; are positive
real numbers, then
J J J
P(ZAi>Zai>§P<UA>aZ> Z (A; > a;).
i=1 i=1 i=1 i=1
Hence, if v is as in the statement of the theorem and v < ¢,
n(XV(t)  XV(t) T(XVe)  XV()
Pl su — >v|=P| su — > v
<0§t£T V |4 . ogth |4 |4 .
1 =V Va
<P 7 Sup U, Z )\yﬁy (XY (u)du || > 14
0<t=T y—=y' €ER
XY 50
1 —v E k 34
RAEE- RS U5 VRNED SEND DR STSAR A U ) T |
o=t= Ser\(A) §tys§rbyer =1 7O
+ pV,E,T.
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Z(w))dw
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Since for all ¢t € [0, 7]

t
/ A (XY () du < VAL
0

y=y’
and
X750 . B
Z Z Z / )\§/+y_)§//+y/ (YS7Z(U), Z(U,))du S VCA%,
SexX\{A} §'4y—S"+y'eR =1 0
the proof is concluded by Lemma A.1. 0

Proof of Theorem 5.8. Note that by Lemma 5.7 and by the fact that a(S) > 1
for all S € X in (5.6),

r(XV(h) XV =XV, H)?Wh)
4 Voo v, Vo
<o SZa(S) (XY (0) +X¥(0)

Under the assumption that both XV (0) and XV (0) have finite expectation and con-
verge in probability to z*, and by the equivalence of norms in finite dimension, we
conclude there exists M € Ry such that

n(XV(h)  XV(h)

v v

sup E
VGZzl

]SM.

Hence, if v is as in Theorem A.5, we have that

iV,e,t
A3’ VvV
3

(XY (h) XY (k) ]SV—&-6M€ 2

V v

FE | sup

0<t<T

o0

Cf‘é _v2

VA4
+ 6Me ™2 3 —|—MP<

m(XV(0) XV(0)
vV Vv

> I/3> + Mp¥eT,
(o ]

The proof is concluded if we can show that for all T € R+ and any arbitrary n > 0,
we can fix vq,v9,v3 € Ry and € € (0,m) such that v < 7 for large enough values
of V. Indeed, for any fixed ¢ € (0,m), T € Rs¢ the other terms on the right-hand
side of the above inequality tend to zero as V' goes to infinity. To show that v can
be made smaller than 7, simply note that v, 5, v3 can be chosen as small as desired
among the positive real numbers, 6¥’€’T tends to zero as V goes to infinity for all fixed
e € (0,m) by Assumption 3.1, and w7 tends to zero as € tends to zero because the

functions A\ g Gy Gy AT€ locally Lipschitz on X x Rio by Lemma 5.1. ]

A.4. Proof of Theorem 5.5. Note that under the assumptions of Theorem 5.5,
for all t € [0,7] YV (t) converges in probability to Y (t) by Theorem 5.2. Hence, in
order to prove Theorem 5.5, we need to show relative compactness of {YV} as a
sequence of processes with sample paths in D [0,7], and conclude by [10, Lemma

A2.1]. To prove relative compactness of {YV}, first note that the state space X is
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992  compact. Hence, we only need to show that the jump times do not accumulate as
993V tends to infinity, nor tend to 0. Let ¢! with i € Z>1 denote the time of the ith
994 jump of YV let t§' =0, and let TV be the time of the last jump of YV in [0, T]. Fix
995 § € Rsg and for all j € Z with —1 < j < T/ let NJV"S be the number of jumps of YV
996 in the interval [j/0, min{j/d + 26,T}]. The N]V"s are introduced to control the time
997  between jumps: whenever two jumps occur at times closer than 4, there necessarily
998 exists an interval [j/d, min{j/d + 26,T}] with j > 0 containing both of them. Also,
999  whenever the time of a jump is smaller than 0, then N Y’fs > 1. Hence, for all e € Ry
1000 with € > m,

1001 P min (Y -tV Y<§) <P NY"leor max NV"SZZ
J Jj—1 1 j

j=1,... TV §=1,...,[T/5]

LT/4]
1002 <P (NY’{S > 1) + ) PN >2)

j=1

XV € T €

1003 <P sup ||—(t)—Z(t)]| >¢e)+P(N°()>1)+ -P(N°(20) > 2),
1004 o<t<t| V 00 g |
1005 where N€ is a Poisson process with rate
1006 B. = sup sup max Z )\g+y%§,+y,(§, [Vz]),

NEZ T SeX - - _
>12€Q] Sty—S 4y eR

1007 which is finite by Lemma 5.1. Hence, by Theorem 3.2

T
1008 limsup P ( {ninTV(t}/ — ) < 5) <(1—e 08 4 5(1 _ e~2B: _ 95 ¢~20B:),
V—o0 J=4

1009 which tends to 0 as § tends to 0. Therefore, {YV'} is relatively compact as a sequence
1010 of processes with sample paths in D $[0,T] by [11, Corollary 7.4, Chapter 3], which
1011 completes the proof.
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