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TRACKABLE SPECIES DYNAMICS IN REACTION NETWORK1

MODELS∗2

DANIELE CAPPELLETTI† AND GRZEGORZ REMPALA‡3

Abstract. In a stochastic reaction network setting we define a subset of species as ’trackable’ if4
we can consistently follow the fate of its individual molecules. We show that using the classical large5
volume limit results, we may approximate the dynamics of a single molecule of trackable species in6
a simple and computationally efficient way. We give examples on how this approach may be used7
to obtain various characteristics of single-molecule dynamics (for instance, the distribution of the8
number of infections in a single individual in the course of an epidemic or the activity time of a9
single enzyme molecule). Moreover, we show how to approximate the overall dynamics of trackable10
species in the full system with a collection of independent single-molecule trajectories, and give11
explicit bounds for the approximation error in terms of the reaction rates. This approximation,12
which is well defined for all times, leads to an efficient and fully parallelizable simulation technique13
for which we provide some numerical examples.14

Key words. Single-molecule dynamics, mathematical epidemiology, law of large numbers, Pois-15
son process representation, stochastic approximation, dynamic survival analysis, Skorohod topology16

AMS subject classifications. 60J28, 92C40, 92C42, 60F0517

1. Introduction. Recent advances in modeling molecular systems, especially18

our improved ability to track individual proteins, and the deluge of data from the19

observations of both molecular and macro system (think, for instance, of the ongoing20

COVID-19 pandemic), have created new scientific challenges of considering models21

of very high resolution where the dynamics of a specific bio-molecule or a particu-22

lar individual are of interest. In general, such ’agent-based’ models are known to be23

computationally very costly, due to complex stochastic dynamics and highly noisy24

behavior of individual agents. However, it appears that, at least in some cases, sim-25

ple yet satisfactory approximation of individual molecular trajectory may be directly26

inferred with the help of a classical approach of stochastic chemical kinetics that as-27

sumes that all molecules or individuals are indistinguishable and consequently focuses28

only on their aggregated counts. As an example of one such idea, originally proposed29

in [7] and latter expanded in [15], consider the stochastic ’susceptible-infected’ (SI)30

chemical reaction network where a collection of m + n molecules (or individuals) is31

partitioned into two types: susceptible (S) and infected (I) with initially n being of32

type S and remaining m of type I. The stochastic network evolves in time according33

to a Markov jump process that counts the ’infection events’, that is, the interactions34

of one molecule of I-type with one molecule of S-type. Each such interaction creates35

a new molecule of I-type and removes one of S-type (equivalently, a molecule changes36

its type from S to I). Accordingly, in the reaction network notation described below37

in Section 2.2 this model may be represented as38

(1.1) S + I −−→ 2I.39

If the rate constant of the above reaction is β/n and we assume the usual mass action40

kinetics [6], it is well know that the above stochastic reaction network satisfies the41
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2 D. CAPPELLETTI AND G. REMPALA

law of large numbers (admits the fluid limit approximation), in the sense that as42

m,n → ∞ and m/n → ρ > 0 the surviving proportion st of the S-type molecules43

follows the logistic equation that may be written in the form44

(1.2) − ṡt/st = β(1 + ρ− st) st(0) = 1.45

Consequently, for t ≥ 0 we have46

(1.3) st =
1 + ρ

1 + ρ exp(β(1 + ρ)t)
.47

Thus, from the viewpoint of a single, randomly selected S-type molecule, the quantity48

st defines a survival function describing the limiting probability of surviving beyond49

time t > 0. The formula (1.3) led to the method of approximating the distribution50

of surviving molecules of S dubbed ’dynamic survival analysis’ (DSA) described in51

[15] and applied recently to epidemic modeling [8, 9, 14, 21, 23]. The idea is further52

illustrated in Figure 1 where the average of the Markov process (1.1) is compared to53

the average of independent realizations of single molecule dynamics (which may be54

efficiently calculated using modern parallel computing capabilities). Note (1.2) may55

be also interpreted as the equation for the hazard function associated with st. This56

fact has some relevance for statistical inference, and is further exploited, for instance,57

in [9, 15].58

Beyond the simple SI example, the DSA approach has been applied (mostly in59

the context of epidemics) only to a handful of reaction networks representing the so-60

called one-directional transfer models [7]. In all such networks individual molecules61

can only change their state in an ordered way, hence previously visited states are no62

longer attainable (for instance in the SI model a molecule of S-type can only change63

into I-type, but not vice-versa).64

In the current paper we formally expand the survival function approach for track-65

ing the fate of individual molecules to a much broader class of networks, including66

those where molecules can return to their previous stages. A simple example is ob-67

tained by augmenting the SI network with the additional reaction I → S, leading68

to the so-called SIS model (which is of interest in epidemiology) discussed in more69

detail in Example 4.3 below. To establish our results for such networks, we explore a70

different representation of the DSA approximation, which does not explicitly involve71

the survival function. Continuing with the SI model example, denote by Y i(t) the72

binary variable that takes value 1 or 0 according to whether i-th molecule is of type73

S or I. The limit dynamics of an i-th individual molecule (initially of type S) is then74

given by75

Y i(t) = 1−N i

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
76

where N i is the unit Poisson process tracking the transition of the i-th molecule77

from S-type to I-type. Note that the argument of N i is the cumulative hazard78

corresponding to integral of the right-hand side of (1.2) (see [15]). Such Poisson79

process representation is of course completely equivalent to simply having the time80

of switching of the i-th molecule from S to I follow the survival function (1.3), but81

it allows for a description of more complex scenarios than one-directional transfer82

models. For example, we will prove below that the limit dynamics of a single molecule83

This manuscript is for review purposes only.



TRACKABLE SPECIES DYNAMICS 3

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
Time

P
ro

po
rti

on
 o

f r
em

ai
ni

ng
 s

us
ce

pt
ib

le
s

Deterministic function st

Independent individuals

SI model

Fig. 1. Survival approximation in the SI model. The empirical trajectory of the proportion
of the remaining S molecules in the SI model described in (1.1) as compared to the deterministic
function st defined in (1.2) and the average of 1, 000 independent single trajectories of individuals
who become infected according to st. For the simulation we considered n = 1, 000, m = 10, β = 1,
and ρ = 0.01.

in the SIS model can be written as84

Y i(t) = 1−N i
1

(
β

∫ t

0

Y i(u)(1 + ρ− su)du

)
+N i

2

(
κ

∫ t

0

(1− Y i(u))du

)
85

for independent and identically distributed unit-rate Poisson processes N i
1 and N i

2.86

Here, κ is the rate constant of the reaction I → S.87

In this work we study the Poisson process representation of the DSA approxima-88

tion and give conditions under which it describes a single-molecule trajectory of the89

original network. In particular, we explicitly derive error bounds of the DSA approxi-90

mation, in terms of the underlying reaction network rates. We illustrate via numerical91

examples how this novel technique could be useful to infer quantities pertaining to92

single-molecule dynamics (such as the distribution of the number of infections a single93

individual undergoes in a SIS model, or the time a single enzyme spends in the bound94

state) in a computationally efficient way.95

Further, we consider the problem of comparing the dynamics of an original full96

reaction network with that of a collection of independent approximations of single-97
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4 D. CAPPELLETTI AND G. REMPALA

molecule trajectories and provide explicit bounds on the error. Having the dynamics98

of the whole system approximated by a number of independent trajectories allows for99

computationally efficient simulation techniques, that are fully parallelizable. More-100

over, since the DSA approximation is defined for all times, it does not suffer from the101

problem of exiting the state space as it is known to happen in other methods such102

as diffusion approximations or tau leaping [4, 5, 12, 18]. Finally, the independence of103

the single-molecule trajectories also allows for much simplified statistical inferential104

procedures. Such applications were already considered in the context of SIR networks105

in recent papers on the Covid pandemic [14, 23]. A thorough investigation of these106

techniques in general reaction networks is currently being conducted and will appear107

in a future work.108

The paper is organized as follows: in Section 2 we provide the necessary concepts109

pertaining to reaction network theory followed by the result on the approximation in110

classical scaling in Section 3. In Section 4 we give a formal definition of single-molecule111

trajectories of what we refer to as species that are ’trackable’. In Section 5 we state112

our main results. In particular, in Section 5.1 we give the theorem on the Poisson113

process representation of the DSA approximation for a single-molecule trajectory,114

and give examples of its applications in Section 5.2. Finally, in Section 5.3 we state115

the result on the approximation of the original full network via independent single-116

molecule trajectories, and give numerical examples. Proofs and explicit error bounds117

are given in the Appendix A.118

2. Background definitions.119

2.1. Notation. We denote by R, R>0, and R≥0 the real, positive real, and non-120

negative real numbers, respectively. Similarly, we denote by Z, Z≥1, and Z≥0 the real,121

positive real, and non-negative real numbers, respectively. Given a number r ∈ R, we122

denote by |r| its absolute value, and by brc the largest m ∈ Z such that m ≤ r.123

Given a vectors v ∈ Rn, we denote its ith component by vi, for all 1 ≤ i ≤ n. We124

further denote125

‖v‖∞ = max
1≤i≤n

|vi| and bvc = (bv1c, . . . , bvnc).126

Given two vectors u, v ∈ Rn≥0, we write127

uv =

m∏
i=1

uvii ,128

with the convention that 00 = 1. We also write u ≥ v if the inequality holds129

component-wise. Furthermore, for any vector v ∈ Zn≥0, we write130

v! =

m∏
i=1

vi! .131

Given a set A, we denote its cardinality by #A or, if it leads to no ambiguity, by |A|.132

We assume the reader is familiar with basic notions from stochastic process theory,133

such as the definition of continuous-time Markov chains and Poisson processes [19].134

Consider a sequence of random variables {Xn}n∈Z≥0
and a random variable X,135

all defined on the same probability space and with values in a normed space (E, ‖ · ‖).136
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TRACKABLE SPECIES DYNAMICS 5

We say that Xn converges in probability to X if for all η ∈ R>0137

lim
n→∞

P (‖Xn −X‖ > η) = 0.138

Given a topological space E we will denote by DE [0, T ] the set of right-continuous139

left-bounded functions defined from [0, T ] to E, endowed with the Skorohod J1 topol-140

ogy. In particular, we say that the sequence of processes {Xn} with sample paths141

in DE [0, T ] converges in probability to the process X (or simply that Xn converges142

in probability to X) if the Skorohod distance between Xn and X converges to 0 in143

probability (for more details, see for example [11, Chapter 3]).144

2.2. Stochastic reaction networks. A reaction network is a triple G = {X , C,R},145

where (a) X is an ordered finite sequence of d symbols, called species; (b) C is a finite146

set of linear combinations of species over Z≥0, called complexes; (c) R is a finite set147

of elements of C ×C, called reactions. We assume that no element of the form (y, y) is148

in R, for any complex y, even though our results do not depend on this assumption.149

Following the usual notation of reaction network Theory, we further denote a reaction150

(y, y′) ∈ R by y → y′. We finally assume that each complex appears in at least151

one reaction, and that each species has a positive coefficient in at least one complex.152

Under this assumption and up to ordering of the set of species, a reaction network is153

uniquely determined by the set R, or equivalently by the directed graph (C,R), called154

reaction graph. As an example, consider the reaction graph155

(2.1) A+B −−⇀↽−− 2B, B −−→ C.156

In this case, the associated species are A, B, and C, C = {A + B, 2B,B,C}, and157

R = {A+B → 2B, 2B → A+B,B → C}.158

In this paper we will implicitly identify R|X | with Rd, and therefore each S ∈ X159

with a canonical basis vector of Rd. With this in mind, the complexes are linear160

combination of species and can be therefore considered as vectors in Zd≥0. As an161

example, if we order the species of (2.1) alphabetically, then the complex A+B can be162

associated with the vector (1, 1, 0), the complex 2B can be associated with (0, 2, 0), the163

complex C with (0, 0, 1), and so on. We will tacitly use the identification of complexes164

with integer vectors throughout the paper. Moreover, for each vector v ∈ Rd and for165

each species S ∈ X we denote by vS the entry of v related to the canonical vector166

associated with S. We further define the support of v as supp(v) = {S ∈ X : vS > 0}.167

As an example, with the species of (2.1) alphabetically ordered, the support of (1, 1, 0)168

is {A,B}, the support of (0, 2, 0) is {B}, and so on.169

Deterministic and stochastic dynamical systems can be associated with a reaction170

network. The stochastic model is usually utilized when few individuals are present,171

so the stochastic component of the dynamic behaviour should not be ignored. In172

this case, the time evolution of the number of individuals of the different species is173

considered, for certain given propensities of the reactions to occur, and modeled via174

a continuous time Markov chain. More precisely, a stochastic kinetics for a reac-175

tion network G is a correspondence between a reaction y → y′ and a rate function176

λy→y′ : Zd≥0 → R≥0, such that λy→y′(x) > 0 only if x ≥ y. A stochastic reaction177

system is a continuous time Markov chain {X(t) : t ≥ 0} with state space Zd≥0 and178

transition rates from a state x to a state x′ defined by179

q(x, x′) =
∑

y→y′∈R
y′−y=x′−x

λy→y′(x).180
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6 D. CAPPELLETTI AND G. REMPALA

The associated generator is defined by181

Af(x) =
∑

y→y′∈R
λy→y′(x)

(
f(x+ y′ − y)− f(x)

)
182

for any function f : Zd≥0 → R and any x ∈ Zd≥0. Equivalently, the process X can be183

described by184

X(t) = X(0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ ∞
0

λy→y′(X(s))ds

)
,185

where the processes {Ny→y′}y→y′∈R are independent unit-rate Poisson processes. For186

more details on this representation, we refer to [6] or [11, Chapter 6].187

In the deterministic setting, the concentration of the different species are assumed188

to evolve according to an ordinary differential equation (ODE). Specifically, a deter-189

ministic kinetics for a reaction network G is a correspondence between the reactions190

y → y′ and the rate function λy→y′ : Rd≥0 → R≥0, such that λy→y′(x) > 0 only191

if xi > 0 whenever yi > 0. A deterministic reaction system is the solution to the192

ordinary differential equation193

(2.2)
d

dt
Z(t) =

∑
y→y′∈R

(y′ − y)λy→y′(x).194

While our results hold in a more general scenario, all the simulations we show as-195

sume mass-action kinetics, a popular choice of kinetics derived by the assumption that196

all the reactants are well-mixed in the available volume [6]. Specifically, a stochastic197

reaction system is a stochastic mass-action system if for every reaction y → y′ ∈ R198

we have199

λy→y′(x) = κy→y′
x!

(x− y)!
1{x≥y},200

for some positive constant κy→y′ called rate constant. Similarly, a deterministic re-201

action system is a deterministic mass-action system if for every reaction y → y′ ∈ R202

we have203

λy→y′(x) = κy→y′x
y,204

for some positive constant κy→y′ also called rate constant.205

3. Classical scaling. Consider a reaction network G = {X , C,R}, and a family206

of stochastic kinetics {λVy→y′ : y → y′ ∈ R} indexed by V . Let XV denote the207

associated continuous time Markov chain. V should be thought to as a parameter208

expressing the volume, or the magnitude of the number of the present individuals.209

Under the following technical but reasonable assumption the classical scaling of [11,16]210

holds:211

Assumption 3.1. We assume that for any reaction y → y′ ∈ R there exists a212

locally Lipschitz function λy→y′ : Rd≥0 → Rd≥0 such that for any compact set K ⊂ Rd≥0213

we have214

lim
V→∞

sup
z∈K

∣∣∣∣∣λVy→y′(bV zc)V
− λy→y′(z)

∣∣∣∣∣ = 0.215
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TRACKABLE SPECIES DYNAMICS 7

Theorem 3.2. Assume that Assumption 3.1 holds. Furthermore, assume that216

the random variables XV (0)/V converge in probability to a constant z∗ as V goes to217

infinity. Finally, let {Z(t) : t ≥ 0} be the unique solution to (2.2) with Z(0) = z∗.218

Then, for any ε > 0 and any T > 0219

lim
V→∞

P

(
sup
t∈[0,T ]

∥∥∥∥XV (t)

V
− Z(t)

∥∥∥∥
∞
> ε

)
= 0.220

Note that the distribution of the fate of a single molecule is not given, since the221

classical scaling concerns average dynamics. The goal of this paper is to address this222

issue, by providing a technique to simulate an approximation of the time evolution of223

a single observable species, as described in the next section.224

4. Trackable species. We consider a special set of reactants, and assume that225

we can consistently follow the fate of a single molecule of these reactants through its226

different transformations, as for a single individual in the SI model. In general, the227

reactants whose dynamics we want to follow may be less than the chemical species228

listed in X , or may be portions of them as in Example 4.5 below. To deal with this229

general setting, we introduce the set of trackable species as a set X̃ of symbols endowed230

with a function τ : X̃ → X ∪ {0}. The different trackable species will identify the231

possible states of the molecules whose fate we want to follow. Every such state is taken232

by the reactant molecule when the molecule is (part of) one of the chemical species233

of X . The function τ will link every trackable species with the corresponding species234

in X . The number of trackable species defined in this way can be less than, equal to,235

or larger than the number of species. The set X̃ needs to include the special state236

∆ to denote the potential degradation of the tracked molecule, and we set τ∆ = 0.237

To simplify the notation, for all x, y ∈ Zd≥0 and S̃ ∈ X̃ \ {∆} we denote by θy(S̃, x)238

the probability that a certain molecule of species τ(S̃) is chosen if yτ(S̃) molecules are239

uniformly drawn out of xτ(S̃) molecules of τ(S̃) available. Specifically,240

θy(S̃, x) =


(
x
τ(S̃)

−1

y
τ(S̃)

−1
)

(xτ(S̃)
y
τ(S̃)

)
=

yτ(S̃)

xτ(S̃)
if xτ(S̃) ≥ yτ(S̃) ≥ 1

0 otherwise

.241

For completeness, we define θy(∆, x) = 0. Finally, note that in reactions such as242

2A→ B+C we can imagine a molecule of A is transformed into a molecule of B, while243

the other molecule of A turns into a molecule of C. If we are tracking the fate of A244

molecules and the reaction 2A→ B+C occurs, it is reasonable to assume the molecule245

we are tracking has a 50% change of turning into a molecule of B, and a 50% change246

of becoming a molecule of C. We denote these probabilities with p2A→B+C(A,B)247

and p2A→B+C(A,C), respectively, and in general allow for different value choices, as248

along as p2A→B+C(A,B) + p2A→B+C(A,C) = 1. The definition of stochastic reaction249

system with trackable species in the most general setting is below.250

Definition 4.1 (Stochastic reaction system with trackable species). Let G =251

{X , C,R} be a reaction network. Consider a family of stochastic kinetics {λVy→y′ :252

y → y′ ∈ R} indexed by V , and let XV denote the associated continuous time Markov253

chains. Let X̃ be a set of trackable species. We define the stochastic reaction system254

with trackable species as the continuous-time Markov chain (Y V , XV ) with state space255
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8 D. CAPPELLETTI AND G. REMPALA

X̃ × Zd≥0 and transition rates256

q
(

(∆, x), (S̃′, x′)
)

= 1{S̃′}(∆)
∑

y→y′∈R
y′−y=x′−x

λVy→y′(x)257

258

and for all S̃ 6= ∆259

q
(

(S̃, x), (S̃′, x′)
)

=
∑

y→y′∈R
y′−y=x′−x

(
(1− θy(S̃, x))1{S̃=S̃′} + θy(S̃, x)py→y′(S̃, S̃

′)
)
λVy→y′(x),260

261

where for all reactions y → y′ ∈ R the following holds:262

• for any S̃ ∈ X̃ , S̃′ ∈ X̃ ∪ {∆} we have 0 ≤ py→y′(S̃, S̃′) ≤ 1;263

• py→y′(S̃, S̃′) = 0 whenever τ(S̃) /∈ supp(y) or τ(S̃′) /∈ supp(y′) ∪∆;264

• if τ(S̃) ∈ supp(y) then265 ∑
S̃′∈X̃ : τ(S̃′)∈supp(y′)∪∆

py→y′(S̃, S̃
′) = 1.266

In the above definition, the usual stochastic reaction system is coupled with the267

fate of a single trackable molecule: a trackable molecule in state S̃ can transform268

whenever a reaction y → y′ occurs, with a probability given by θy(S̃, S̃′). By defini-269

tion, the quantity θy(S̃, S̃′) denotes precisely the probability that the tracked molecule270

takes part in the reaction y → y′, assuming that the reacting molecules are uniformly271

chosen among those present. If that happens, the new state of the tracked molecule is272

drawn according to the probability distribution {py→y′(S̃, S̃′)}S̃′∈supp(y′)∪∆ (see Ex-273

ample 4.4 for a case where this distribution is non-trivial). If the tracked molecule is274

irreversibly degraded, its state becomes ∆ and cannot be changed. In what follows,275

we will sometimes identify the state space of Y V , given by X̃ , with the canonical basis276

of R|X̃ |, similarly to how complexes are implicitly identified with vectors in Rd.277

The only technical requirement to have trackable species is that in every reaction,278

every piece of the reactants on the left-hand side of the reaction either transforms279

into a piece of the reactants on the right-hand side, or is discarded. Mathematically,280

mapping the chemical species of the left-hand side of the reaction with those on the281

right-hand side is always possible by mapping to ∆ potential species in excess on282

the left-hand side, so in principle the requirements of Definition 4.1 can always be283

satisfied with the choice X̃ = X and τ being the identity. Moreover, if we consider284

the physical system modelled by the reaction network, it is always true that reactions285

either transform molecules or degrade them. Hence, even when considering the phys-286

ical meaning of the model, trackable species can always be defined to track the fate of287

every molecule of particular interest. In this case however some care should be taken288

to reflect the real physical changes caused by the reactions, and the set X̃ may need289

to be different from X , as in Example 4.5.290

Remark 4.2. The generator of a stochastic reaction system with trackable species,291

as defined in Definition 4.1, is given by292

Af(∆, x) =
∑

y→y′∈R
λVy→y′(x)

(
f(∆, x+ y′ − y)− f(∆, x)

)
293
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and for S̃ 6= ∆294

295

Af(S̃, x) =
∑

y→y′∈R
(1− θy(S̃, x))λVy→y′(x)

(
f(S̃, x+ y′ − y)− f(S̃, x)

)
296

+
∑

y→y′∈R

∑
S̃′∈supp(y′)∪∆

θy(S̃, x)py→y′(S̃, S̃
′)λVy→y′(x)

(
f(S̃′, x+ y′ − y)− f(S̃, x)

)
,297

298

for all functions f : (X̃ )× Zd≥0 → R.299

Example 4.3. Consider the SI reaction network described in (1.1), which we re-300

peat here for convenience:301

(4.1) S + I −−→ 2I.302

In this case, we are interested in describing the history of susceptible individuals303

who become infected. The set of trackable species is therefore X̃ = {S̃, Ĩ} with304

τ(S̃) = S and τ(Ĩ) = I. Furthermore, we choose the probabilities pS+I→2I(S̃, Ĩ) = 1305

and pS+I→2I(Ĩ , Ĩ) = 1. Alternatively, one can simply consider X̃ = {S̃}, with the306

understanding that whenever a susceptible individual gets infected we consider it as307

irreversibly degraded, and its state becomes ∆. In this case, pS+I→2I(S̃,∆) = 1.308

The state of single individuals can be tracked also in the more complex model309

(4.2) S + I −−→ 2I, I −−→ S.310

Here, the set of trackable species is {S̃, Ĩ}, with τ(S̃) = S and τ(Ĩ) = I, and the trans-311

formation probabilities are pS+I→2I(S̃, Ĩ) = 1, pS+I→2I(Ĩ , Ĩ) = 1, pI→S(Ĩ , S̃) = 1.312

Here, relevant questions on the fate of a single individual could concern, for exam-313

ple, the number of infections it undergoes in a given time, or after how long the nth314

infection occurs. We can even extend the model to include migrations, and obtain315

(4.3) S + I −−→ 2I, I −−→ S, 0 −−⇀↽−− S, 0 −−⇀↽−− I.316

In this case, it is natural to assume pS→0(S̃,∆) = 1 and pI→0(Ĩ ,∆) = 1. Relevant317

questions could involve, for example, the average number of infection a susceptible318

individual undergoes before migrating.319

Example 4.4. Consider the following reaction network, where a protein P pro-320

motes its own phosphorylation:321

(4.4) 2P −−→ P + P ∗, P ∗ −−→ P, P −−→ 0.322

Here, we may assume we are interested in observing the dynamics of a molecule323

of protein P . Hence, the set of trackable species is {P̃ , P̃ ∗} with τ(P̃ ) = P and324

τ(P̃ ∗) = P ∗. It is natural to assume that the two molecules of P involved in the325

reaction 2P → P+P ∗ have the same probability of being phosphorylated or serving as326

the reaction catalyst. Hence, p2P→P+P∗(P̃ , P̃ ) = p2P→P+P∗(P̃ , P̃
∗) = 1/2. The other327

transformation probabilities are given by pP∗→P (P̃ ∗, P̃ ) = 1 and pP→0(P̃ ,∆) = 1.328

Example 4.5. Consider the following reaction network, depicting a Michaelis-329

Menten mechanism where the product protein and the enzyme can spontaneously330

transform into each other:331

(4.5) E + S −−⇀↽−− C −−→ E + P, P −−⇀↽−− E.332
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In particular, the complex C represents a molecule of substrate S and enzyme bound333

together. When the bound is broken, it is natural to assume that the molecule of334

enzyme is released while the molecule of substrate is either released or transformed335

into the product P . Suppose we want to keep track of the history of a molecule of336

substrate S. If we were dealing with a classic Michaelis-Menten kinetics, i.e. without337

the reactions P 
 E, then we could simply consider as trackable species S, C, and P338

(or, more formally, S, C, and P with τ(S̃) = S, τ(C̃) = C, and τ(P̃ ) = P ). Indeed, a339

molecule of substrate can be either in free state (S̃), bound with the enzyme (C̃), or340

transformed into a product (P̃ ). Since the reactions P 
 E are present, if we want341

to keep track of the fate of a molecule of substrate S we need to take into account342

the fact that it can transform into an enzyme, so E becomes a possible state of the343

molecule (more formally, Ẽ with τ(Ẽ) = E). The problem now is that we need to344

differentiate between the portion of C that E and S get transformed into by the345

reaction E+S → C: the portion of C that E gets transformed into will become e free346

enzyme again via the reaction C → E+P , while the portion S gets transformed into347

will become a product. In order to formally express these dynamics, we consider as set348

of trackable species {Ẽ, S̃, P̃ , C̃E , C̃S}, where C̃E denotes we are tracking a molecule349

of E bound in the complex C, while C̃S denotes we are tracking a molecule of S350

bound in C. The function τ associates every trackable species with its physical type:351

τ(Ẽ) = E, τ(S̃) = S, τ(P̃ ) = P , τ(C̃E) = C, and τ(C̃S) = C. The transformation352

probabilities are given by353

pE+S→C(Ẽ, C̃E) = 1 pC→E+S(C̃E , Ẽ) = 1 pC→E+P (C̃E , Ẽ) = 1

pE+S→C(S̃, C̃S) = 1 pC→E+S(C̃S , S̃) = 1 pC→E+P (C̃S , P̃ ) = 1

pP→E(P̃ , Ẽ) = 1 pE→P (Ẽ, P̃ ) = 1

354

Remark 4.6. The interpretation of a stochastic reaction system with trackable355

species is that of a regular stochastic reaction system with the subsequent tranfor-356

mations of a given particle being tracked. If the initial state Y V (0) of the tracked357

molecule is not present in the initial XV (0), that is if XV
τ(Y V (0))(0) = 0, then the358

initial condition of (Y V , XV ) is not consistent with the interpretation of the process.359

The process (Y V , XV ) is still well-defined and its evolution can be studied, but its360

interpretation is no longer valid. In order to obtain meaningful results, we therefore361

tacitly assume that XV
τ(Y V (0))(0) > 0, even if we do not require it formally.362

4.1. Representation as a regular stochastic reaction network. In this363

section we show how a reaction network with trackable species (Y V , XV ) can be364

realized as a regular stochastic reaction network with species set given by X̃ t X ,365

where t denotes a disjoint union. In particular, the state space is Z|X̃ |≥0 × Zd≥0, where366

for convenience we consider the first coordinates to refer to X̃ , and the rest to the367

species of the original process X . We denote by (x̃, x) a generic state in Z|X̃ |≥0 × Zd≥0.368

Consider the set of reactions R∪ R̃ where369

R̃ = {S̃ + y → S̃′ + y′ : y → y′ ∈ R, S̃, S̃′ ∈ X̃ and py→y′(S̃, S̃
′) > 0}370

and endow them with the following reaction rates:371

λVy→y′(x̃, x) =
∑
S̃∈X̃

x̃S̃(1− θy(S̃, x))λVy→y′(x)372

λV
S̃+y→S̃′+y′(x̃, x) = x̃S̃θy(S̃, x)py→y′(S̃, S̃

′)λVy→y′(x).373
374
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Note that the second component of the process has the same transitions as XV , with375

exactly the same rates. Hence, we can safely denote the process associated with the376

above stochastic reaction network by (Ỹ V , XV ). Note that the quantity
∑
S̃∈X̃ x̃S̃377

is conserved by all possible transitions. Hence, if we consider an initial condition378

(Ỹ (0), X(0)) with
∑
S̃∈X̃ ỸS̃(0) = 1, then at any time point t exactly one entry of the379

vector Ỹ (t) is 1, and the other entries are zero. It follows that there is a bijection380

between the possible values of Ỹ and X̃ , given by the function supp(Ỹ (t)). In this381

case, by identifying trackable species with vectors of the canonical basis of R|X̃ | as382

already done in the paper for the species in X , the transition rates can be equivalently383

written as384

λVy→y′(x̃, x) =
∑
S̃∈X̃

1{S̃}(x̃)(1− θy(S̃, x))λVy→y′(x)385

λV
S̃+y→S̃′+y′(x̃, x) = 1{S̃}(x̃)θy(S̃, x)py→y′(S̃, S̃

′)λVy→y′(x),386
387

Hence, if
∑
S̃∈X̃ ỸS̃(0) = 1 then the transitions and the rates of (Y V , XV ) and388

(Ỹ V , XV ) coincide, and (Y V , XV ) can be therefore realized as a stochastic reaction389

network with an appropriate initial condition. In particular, we can write390

XV (t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(X
V (s))ds

)(4.6)

391

Y V (t) = Y V (0) +
∑

y+S̃→y′+S̃′∈R̃

(S̃′ − S̃)Ny+S̃→y′+S̃′

(∫ t

0

λV
S̃+y→S̃′+y′(Y

V (s), XV (s))ds

)(4.7)

392

393

where Nr for r ∈ R∪ R̃ are independent unit-rate Poisson processes. Note that with394

the above writing, all the processes in the set {(Y V , XV )}V ∈Z≥1
can be defined on395

the same probability space.396

5. Results. In this section we state the main results of the current paper and397

their applications.398

5.1. Classical scaling for the fate of a single molecule. In this section we399

state a law of large number for the process Y V . In order to do this, we consider a family400

of stochastic reaction systems with trackable species (Y V , XV ), with V varying in the401

integer numbers greater than one. We then assume that Assumption 3.1 is satisfied402

for some locally Lipschitz functions λy→y′ , and denote by Z the solution to (2.2).403

Hence, we know by Theorem 3.2 that V −1XV will converge to Z path-wise with the404

uniform convergence topology over compact intervals of time, for V going to infinity.405

In this section we express (Y V , XV ) by means of independent unit-rate Poisson406

processes, as in (4.6) and (4.7). With the notation introduced in the previous section407

in mind, we have the following first technical result:408

Lemma 5.1. Assume that Assumption 3.1 holds. Then, for any S̃+y → S̃′+y′ ∈409

R̃, any w ∈ X̃ , and any compact set K ⊂ Rd>0 we have410

(5.1) lim
V→∞

sup
z∈K

∣∣∣λV
S̃+y→S̃′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ = 0,411
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where the function λS̃+y→S̃′+y′ : X̃ × Rd≥0 is defined as412

λS̃+y→S̃′+y′(w, z) = 1{w}(S̃)py→y′(S̃, S̃
′)yτ(S̃)

λy→y′(z)

zτ(S̃)

413

if both zτ(S̃) and yτ(S̃) are positive, and zero otherwise. Moreover, the function414

λS̃+y→S̃′+y′ is locally Lipschitz if restricted to X̃ × Rd>0.415

Proof. If yτ(S) = 0, then both λV
S̃+y→S̃′+y′∈R̃

and λy→y′ are constantly zero,416

hence (5.1) holds. If yτ(S) is positive, then for all z ∈ K we have417

418 ∣∣∣λV
S̃+y→S̃′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ =419

1{w}(S̃)py→y′(S̃, S̃
′)

∣∣∣∣θy(S̃, bV zc)λVy→y′(bV zc)− yτ(S)
λy→y′(z)

zτ(S)

∣∣∣∣420

421

Let m = minz∈K zτS̃ , which is positive because K is a compact set contained in Rd>0.422

If V is large enough such that V m > yτS̃ then423

424 ∣∣∣λV
S̃+y→S̃′+y′∈R̃(w, bV zc)− λy→y′(w, z)

∣∣∣ =425

1{w}(S̃)py→y′(S̃, S̃
′)yτ(S)

∣∣∣∣∣ λVy→y′(bV zc)
V · (bV zτ(S̃)c/V )

− λy→y′(z)

zτ(S)

∣∣∣∣∣426

427

Hence, (5.1) follows from Assumption 3.1 and428

max
z∈K

∣∣∣∣∣bV zτ(S̃)c
V

− zτ(S̃)

∣∣∣∣∣ ≤ 1

V
.429

To conclude the proof, we only need to show that λS̃+y→S̃′+y′ restricted to X̃ ×Rd>0 is430

locally Lipschitz. However, this follows from it being the product (up to multiplication431

by a constant) of the two locally Lipschitz functions z 7→ 1/zτ(S̃) and λy→y′ .432

The main goal of this section is to prove a classical scaling limit for a single-433

molecule trajectory. To this aim, define the process Y by434

(5.2)

Y (t) = Y (0) +
∑

S̃+y→S̃′+y′∈R̃

(S̃′ − S̃)NS̃+y→S̃′+y′

(∫ t

0

λS̃+y→S̃′+y′(Y (s), Z(s))ds

)
.435

Then, the following result holds, where we implicitly identify the states of Y V and Y436

with the canonical basis of R|X̃ |. Note that the assumption that all the components437

of the solution Z are strictly positive in the time interval [0, T ] is made, but this is438

only a mild restriction to avoid unnecessary technicality, and is always verified under439

mass-action kinetics as long as Z(0) ∈ Rd>0 (see Remark 5.3). The proof of the result440

is postponed to Appendix A, where more precise bounds are given.441

Theorem 5.2. Assume that Assumption 3.1 holds. Furthermore, assume that442

the random variables XV (0)/V converge in probability to some z∗ ∈ Rd>0 as V goes443

to infinity, and let Z(0) = z∗. Assume that the solution Z to (2.2) with Z(0) = z∗444
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exists over the interval [0, T ] and that445

m = min
i=1,2,...,d
u∈[0,T ]

Zi(u) > 0.446

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then447

(5.3) lim
V→∞

sup
t∈[0,T ]

P
(
Y V (t) 6= Y (t)

)
= lim
V→∞

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
= 0.448

Remark 5.3. If we consider mass-action kinetics, then the deterministic solutions449

never touch the boundaries, provided that the initial condition is strictly positive [22].450

In this case, the existence of m as assumed in Theorem 5.2 is then guaranteed by451

z∗ ∈ Rd>0.452

Remark 5.4. Theorem 5.2 implies finite dimensional distribution convergence of453

Y V to Y in the following sense: for all 0 ≤ t1 < t2 < · · · < tn ≤ T we have454

P

(
max

1≤i≤n
‖Y V (ti)− Y (ti)‖∞ > 0

)
≤

n∑
i=1

P
(
‖Y V (ti)− Y (ti)‖∞ > 0

)
,455

and the latter tends to 0 as V tends to ∞, under the conditions of Theorem 5.2.456

Some simulations of the process Y are proposed in Figure 2 for the case of the457

SIS model (4.2). We conclude this section with the following result, concerning the458

convergence of Y V to Y as processes with sample paths in DX̃ [0, T ]. We note how459

this result is necessary for the convergence of continuous functionals of DX̃ [0, T ], as460

highlighted in Section 5.2.461

Theorem 5.5. Assume that Assumption 3.1 holds. Furthermore, assume that the462

random variables XV (0)/V converge weakly to a constant z∗ as V goes to infinity,463

and let Z(0) = z∗. Assume that the solution Z to (2.2) with Z(0) = z∗ exists over464

the interval [0, T ] and that465

m = min
S∈X
u∈[0,T ]

ZS(u) > 0.466

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then Y V converges467

in probability to Y as processes with sample paths in DX̃ [0, T ] (where we identify X̃468

with the elements of the canonical basis of R|X̃ | and embed it with the metric ‖ · ‖∞,469

or any equivalent one).470

The proof is given in Appendix A.471

5.2. Applications of Theorem 5.5. The convergence of Theorem 5.5 allows472

us to state convergence in probability of f(Y V ) to f(Y ), where f : DX̃ [0, T ] → R is473

a functional that is continuous with respect to the Skorohod J1 topology. Classical474

examples are f(x) = supt∈[0,T ] ‖x(t)‖∞, f(x) =
∫ T

0
φ(x(s))ds for some continuous475

function φ, or f(x) = supt∈[0,T ](x(t) − x(t−)) where x(t−) = limh↑t x(h) (see for476

example [11, Chapter 3]). More concretely, a functional we may want to consider is477

the number of times an individual gets infected in the interval [0, T ], assuming the478

model of equation (4.2) is in place. We denote this functional by ψ. Note that the479

convergence of XV /V to its deterministic fluid limit, as stated in Theorem 3.2, does480

not give any mean of inferring the distribution of ψ(Y V ). However, knowing that481
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Fig. 2. The process Y in SIS model. Consider the model (4.2), and let Y be as in (5.2).
The first panel shows the concentration of infected individuals ZI according to the deterministic
solution to (2.2) with ZS(0) = 0.99 and ZI(0) = 0.01. Mass-action kinetics is assumed, with the
rate constants of S + I → 2I and I → S being 1 and 0.5, respectively. According to (5.2), ZI

determines the rate at which the single-individual process Y turns from ’susceptible’ to ’infected’.
The last three panels show independent realizations of Y . The times in the x-axes of the four panels
are aligned.

ψ(Y V ) converges in probability to ψ(Y ), if V is large enough we can approximate the482

distribution of the former by the distribution of the latter. Obtaining an estimate of483

the distribution of ψ(Y ) only requires the simulation of enough independent copies of484

Y , whose jump rates are deterministic and therefore do not require a simulation of485

XV to be computed, as opposed to the much more expensive strategy of simulating486

multiple independent trajectories of (Y V , XV ) via the Gillespie algorithm (which is487

especially cumbersome for large values of V ). The empirical distributions obtained488

with he two strategies are compared in Figure 3. Similarly, we can apply our results489

to a Michaelis-Menten mechanism. Consider the model490

(5.4) E + S −−⇀↽−− C −−→ E + P, P −−→ S,491

where the enzyme activities counterbalances a spontaneous transformation of mole-492

cules of type P into molecules of type S. To measure the activity level of the enzymes,493

we may want to study for how long a randomly chosen enzyme molecule is in bound494

state C up to a given time T . Let us call this quantity υ(Y V ). The classical scal-495

This manuscript is for review purposes only.



TRACKABLE SPECIES DYNAMICS 15

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12
Number of infections of a single individual

R
el

at
iv

e 
fr

eq
ue

nc
y

Simulation technique

Gillespie algorithm

Independent individuals

Fig. 3. Empirical distribution of number of infections in SIS model. Consider the model
(4.2), and let ψ be the number of infections a randomly selected individual undergoes up to time T .
The empirical distributions of ψ(Y V ) and ψ(Y ) are compared, the former obtained by the simulation
of 1,000 independent copies of (Y V , XV ) via the Gillespie algorithm (applied to the formulation in
terms of usual stochastic reaction networks discussed in Section 4.1), and the latter obtained via the
simulation of 1,000 copies of Y . Here, V = 1, 000 and the initial portion of infected individuals is
1% (so we are initially close to the boundary and we may expect some minor discrepancy between
XV /V and its deterministic limit Z, see also Figure 5). Mass-action kinetics is assumed, with the
rate constants of S + I → 2I and I → S being 1 and 0.5, respectively.

ing of Theorem 3.2 does not allow for inference of the distribution of υ(Y V ), but496

Theorem 5.5 ensures that it converges to the distribution of υ(Y ) as V tends to ∞.497

Figure 4 compares the empirical distributions of υ(Y V ) and υ(Y ) obtained by the498

simulation of 1, 000 independent copies of (Y V , XV ) and 1, 000 independent copies of499

Y , respectively. For this comparison we chose V = 1, 000.500

5.3. Approximating the system dynamics with single-molecule trajec-501

tories. Let X ⊆ X be the set of species that can be tracked in some form:502

X = {S ∈ X : S = τ(S̃) for some S̃ ∈ X̃ \ {∆}}.503

Moreover, let π : Rd → R|X | be the projection of the state space onto the coordinates504

relative to the species in X . The aim of this section is to approximate the dynamics505

of π(XV ) by means of a sum of independent processes distributed as in (5.2) (po-506

tentially with rescaled dynamics, as shown in the statement of Theorem 5.8). Note507
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Fig. 4. Empirical density of time in bound state in Michaelis-Menten model. Consider
the model (5.4), and let υ be the time a randomly selected molecule of enzyme is in bound state C
up to time T . The empirical distributions of υ(Y V ) and υ(Y ) are compared, the former obtained
by the simulation of 1,000 independent copies of (Y V , XV ) via the Gillespie algorithm (applied to
the formulation in terms of usual stochastic reaction networks discussed in Section 4.1), and the
latter obtained via the simulation of 1,000 copies of Y . Here, V = 1, 000 and Z(0) = X(0)/V =
(0.5, 10, 0.5, 1), where the species are ordered as in E,S,C, P . Mass-action kinetics is assumed, with
the rate constants of E + S → C, C → E + S, C → E + P , and P → S being 1, 5, 1, and 0.5,
respectively.

that the goal of such an approximation is not to provide a faster simulation method508

than those present in the literature: our goal is to break down the dynamics of sev-509

eral correlated particles into a set of independent single-molecule trajectories which510

could be simulated simultaneously by a highly parallelizable algorithm. We begin by511

identifying each trackable species S̃ ∈ X̃ \ {∆} with a different physical portions of512

the chemical species τ(S̃): m molecules of species S ∈ X are available at time t if and513

only if the quantity of each trackable species S̃ satisfying τ(S̃) = S is m at time t.514

Under this assumption, clearly the process XV can be expressed in terms of the dy-515

namics of its individual trackable species, which are typically not independent of each516

other. We further restrict ourselves to models that are sub-conservative with respect517

to the trackable species. This means that while trackable species can potentially be518

degraded (by entering the fictitious state ∆), their total mass never increases. Equiv-519

alently, we assume that each time a trackable species is created it is by transformation520
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of another trackable species. We assume sub-conservativeness because we want the521

single-molecule fates we track to be independent, while their agglomeration is still522

able to approximately describe the dynamics of the whole system. If we allowed for523

mass creation, we would need to introduce new molecules over time and track them.524

Defining the molecule creation times over a finite interval of time independently on525

each other is technically possible if the creation rate is deterministic: it is sufficient to526

first simulate a Poisson random variable counting the total number of new molecules527

in the finite time interval, then consider each creation time as independent on the528

others with probability density proportional to the deterministic creation rate. How-529

ever, this procedure requires the introduction of further notation and for the sake of530

clarity we decided to only present the simpler case of sub-conservative models (with531

respect to the trackable species).532

Assumption 5.6. Let (Y V , XV ) be a family of stochastic reaction systems with533

trackable species. We assume that for each reaction y → y′ ∈ R and for each S̃′ ∈534

X̃ \ {∆}535 ∑
S̃,∈X̃\{∆}

yτ(S̃)py→y′(S̃, S̃
′) = y′

τ(S̃′)
536

For all S ∈ X , S̃ ∈ X̃ \ {∆} define537

τ−1(S) = {S̃′ ∈ X̃ : τ(S̃′) = S} and α(S) = #τ−1(S)538

The sub-conservation of the model with respect to the trackable species is formally539

stated as follows.540

Lemma 5.7. Let (Y V , XV ) be a family of stochastic reaction systems with track-541

able species satisfying Assumption 5.6. Then, for all V ∈ Z≥1 and for all t ∈ R>0542

(5.5) ‖π(XV (t))‖1 ≤
∑
S∈X

α(S)XV
S (t) ≤

∑
S∈X

α(S)XV
S (0).543

Proof. The first inequality of (5.5) simply follows from the fact that the quantities544

α(S) are greater than or equal to 1. For the second inequality, simply note that if a545

reactions y → y′ ∈ R occurs at time t, then546 ∑
S∈X

α(S)XV
S (t)−

∑
S∈X

α(S)XV
S (t−) =

∑
S∈X

α(S)y′S −
∑
S∈X

α(S)yS547

=
∑

S̃′∈X̃\{∆}

y′
τ(S̃′)

−
∑

S̃∈X̃\{∆}

yτ(S̃)548

=
∑

S̃′∈X̃\{∆}

∑
S̃,∈X̃\{∆}

yτ(S̃)py→y′(S̃, S̃
′)−

∑
S̃∈X̃\{∆}

yτ(S̃)549

≤
∑

S̃∈X̃\{∆}

yτ(S̃) −
∑

S̃∈X̃\{∆}

yτ(S̃) = 0.550

551

Note that in the third equality we used Assumption 5.6, and in the last equality we552

used
∑
S̃′∈X̃\{∆} py→y′(S̃, S̃

′) ≤ 1. Since the quantity
∑
S∈X α(S)XV

S is not increasing553

with the occurrence of a reaction, (5.5) is proven.554
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The main result of this section is the following one, a more detailed version of555

which is proven in the Appendix. In particular, in Theorem A.5 a convergence rate556

of the order of e−C
√
V for a positive constant C is proven, provided that the initial557

conditions of XV and X̃V are close enough.558

Theorem 5.8. Assume that Assumptions 3.1 and 5.6 are satisfied, and consider559

a family of stochastic reaction systems with trackable species (Y V , XV ). Assume that560

V −1XV (0) converges in distribution to some z∗ ∈ Rd>0 as V goes to infinity and561

E[π(XV (0))] < ∞ for all V ∈ Z≥1. Let X̃V (0) = bV z∗c and define the process X̃V562

by563

(5.6) X̃V (t) =
∑

S̃∈X̃\{∆}

X̃V
τ(S̃)

(0)∑
i=1

τ(Y S̃,i(t))

α(τ(Y S̃,i(t)))
,564

where the processes (Y S̃,i)S̃∈X̃\{∆},i∈Z≥1
are independent and satisfy565

Y S̃,i(t) = S̃+
∑

S̃′+y→S̃′′+y′∈R̃

(S̃′′−S̃′)N S̃,i

S̃′+y→S̃′′+y′

(∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du

)
,566

for a family of independent, identically distributed unit-rate Poisson processes {N S̃,i
r }S̃∈X̃\{∆},i∈Z≥1,r∈R̃.567

Then,568

lim
V→∞

E

[
sup

0≤s≤t

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
]

= 0.569

Note that in the definition of X̃V above we consider as many independent single-570

molecule trajectories as many trackable molecules are in the system at time 0. A571

natural question is whether a good approximation of the original model XV can be572

obtained by considering the agglomeration of less independent single-molecule trajec-573

tories. However, a detailed study of the error in this case is out of the scope of the574

present paper.575

Example 5.9. Consider the SIS model of equation (4.2). We assume XV
S (0) =576

0.99V and XV
I (0) = 0.01V , and let V = 1, 000. We wish to approximate the number577

of susceptible individuals by578

XV
S (t)

V
≈ X̃V

S (t)

V
.579

In order to test the performance of the above approximation, we simulate 100 in-580

dependent copies of XV and X̃, and plot them against each other in Figure 5. It581

is perhaps not surprising to note a higher variance for the trajectories of XV with582

respect of those of X̃V : the former is the result of several single-molecule trajec-583

tories that are naturally correlated with each other, specifically the rate at which a584

single molecule changes state is stochastic and given by the current state of all the585

other molecules. In the approximation, the dynamics of the single tracked molecules586

are independent and their rate of change from one state to another state are purely587

deterministic, which leads to fewer stochastic fluctuations. However, we do observe a588

discrepancy between the two models only at the beginning of the trajectories, when589
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the number of infected individuals is rather low (only 10 individuals in the initial con-590

dition) and the deterministic approximation given by Theorem 3.2 is perhaps not yet591

accurate enough. As a matter of fact, Figure 6 shows that the difference in variance592

is considerably reduced if the initial counts of infected individuals is increased to 100.593

594

We are interested in bounding595

(5.7) P

(
sup

0≤t≤T

∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ > ε

)
,596

for a fixed ε ∈ R>0. Assume mass-action kinetics and let κ1 and κ2 be the rate597

constants of S + I → 2I and I → S, respectively. Moreover, assume for simplicity598

that XV (0) = X̃V (0) = V Z(0) and XV
S (0) + XV

I (0) = V . Since the total number599

of individual is conserved, for all 0 ≤ t ≤ T we have XV
S (t) + XV

I (t) = V . By600

superposition there exist two independent unit-rate Poisson processes ÑS+I→2I and601

ÑI→S such that for all 0 ≤ t ≤ T and for a fixed V we have (with a simplified notation602

that does not take into account the initial values of the independent single individual603
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Fig. 5. Comparison in SIS model. Comparison of 100 independent trajectories of XV
S /V

and X̃V
S /V , considering the SIS model described in (4.2). Here, XV

S (0) = 0.99V , XV
I (0) = 0.01V ,

and V = 1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S
being 1 and 0.5, respectively.
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Fig. 6. Comparison in SIS model. Comparison of 100 independent trajectories of XV
S /V

and X̃V
S /V , considering the SIS model described in (4.2). Here, XV

S (0) = 0.9V , XV
I (0) = 0.1V ,

and V = 1, 000. Mass-action kinetics is assumed, with the rate constants of S + I → 2I and I → S
being 1 and 0.5, respectively.

trajectories)604

ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
=

V∑
i=1

N i
S̃+S+I→Ĩ+2I

(∫ t

0

1{S̃}(Y
i(u))ZI(u)du

)
605

ÑI→S

(∫ t

0

κ2X̃
V
I (u)du

)
=

V∑
i=1

N i
Ĩ+I→S̃+S

(∫ t

0

1{Ĩ}(Y
i(u))du

)
.606

607

Then,608

609 ∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +
1

V

∫ t

0

κ1X
V
S (u)

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ du610

+

∫ t

0

κ1

∣∣∣∣∣XV
S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ZI(u)du+

∫ t

0

κ2

∣∣∣∣∣XV
I (u)

V
− X̃V

I (u)

V

∣∣∣∣∣ du,611

612

This manuscript is for review purposes only.



TRACKABLE SPECIES DYNAMICS 21

where613

∆(t) =
1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1

V
XV
S (u)XV

I (u)du

)
−
∫ t

0

κ1

V
XV
S (u)XV

I (u)du

∣∣∣∣614

+
1

V

∣∣∣∣NI→S (∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣615

+
1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣616

+
1

V

∣∣∣∣ÑI→S (∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ .617
618

Using XV
I (t) = V −XV

I (t) and ZI(t) ≤ 1 for all 0 ≤ t ≤ T we obtain619

620 ∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤ ∆(t) +

∫ t

0

κ1

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ du621

+

∫ t

0

(κ1 + κ2)

∣∣∣∣∣XV
S (u)

V
− X̃V

S (u)

V

∣∣∣∣∣ du.622

623

By taking the supremum on 0 ≤ t ≤ T on both sides and by applying the Gronwall624

inequality, we have625

sup
0≤t≤T

∣∣∣∣∣XV
S (t)

V
− X̃V

S (t)

V

∣∣∣∣∣ ≤
(

sup
0≤t≤T

∆(t) + κ1T sup
0≤t≤T

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣) e(κ1+κ2)T .626

For notational convenience, let ν = εe−(κ1+κ2)T . Hence, (5.7) is smaller than627

(5.8) P

(
sup

0≤t≤T
∆(t) >

ν

2

)
+ P

(
sup

0≤t≤T

∣∣∣∣XV
I (u)

V
− ZI(u)

∣∣∣∣ > ν

2κ1T

)
.628

By noting that P (sup0≤t≤T ∆(t) > ν/2) is smaller than629

P

(
sup

0≤t≤T

1

V

∣∣∣∣NS+I→2I

(∫ t

0

κ1

V
XV
S (u)XV

I (u)du

)
−
∫ t

0

κ1

V
XV
S (u)XV

I (u)du

∣∣∣∣ > ν

8

)
630

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣NI→S (∫ t

0

κ2X
V
I (u)du

)
−
∫ t

0

κ2X
V
I (u)du

∣∣∣∣ > ν

8

)
631

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑS+I→2I

(∫ t

0

κ1X̃
V
S (u)ZI(u)du

)
−
∫ t

0

κ1X̃
V
S (u)ZI(u)du

∣∣∣∣ > ν

8

)
632

+ P

(
sup

0≤t≤T

1

V

∣∣∣∣ÑI→S (∫ t

0

κ2X̃
V
I (u)du

)
−
∫ t

0

κ2X̃
V
I (u)du

∣∣∣∣ > ν

8

)
,633

634

we obtain that (5.8) is smaller than635

636

12 exp

(
κ1eT

2
− ν

24

√
V

)
+ 12 exp

(
κ2eT

2
− ν

24

√
V

)
637

+ 6 exp

(
κ1eT

2

(
1 +

ν

κ1T

)2

+
κ2eT

2

(
1 +

ν

κ1T

)
− ν

12κ1T
e−T (κ1−κ2)−ν

√
V

)
638

639

This manuscript is for review purposes only.



22 D. CAPPELLETTI AND G. REMPALA

by Lemma A.1 and Theorem A.2 (for the special case of the SIS model, see Exam-640

ple A.3). We note that exp(h) is defined as eh for all real numbers h. It follows641

that (5.7) tends to 0 as V tends to ∞ with the same rate as e−C
√
V for some positive642

constant C. This is always the case, and bounds for more general models are provided643

by Theorem A.5.644

Appendix A. Proofs and explicit bounds.645

In this section we give proofs for the results stated above, together with more646

precise bounds on the quantities of interest. To this aim, we first define the following647

quantities: for all V ∈ Z≥1 and ε ∈ R>0 let648

AV,ε,t =

{
sup
u∈[0,t]

∥∥∥∥XV (u)

V
− Z(u)

∥∥∥∥
∞
≤ ε

}
and pV,ε,t = P (AcV,ε,t) = 1−P (AV,ε,t),649

where the superscript “c” denotes the complement. Note that, for any fixed for fixed650

V and ε, the sequence of events AV,ε,t is monotone in t, and pV,ε,t is a non-decreasing651

function of t attaining its maximum for the value t = T .652

Define the Zd≥0-valued process XV,ε on [0, T ] in the following way: for any S ∈ X653

and any t ∈ [0, T ], let654

(A.1) XV,ε
S (t) = min{max{XV

S (t), V ZS(t)− V ε}, V ZS(t) + V ε}.655

Hence, by definition for all t ∈ R>0656 ∥∥∥∥XV,ε(t)

V
− Z(t)

∥∥∥∥
∞
≤ ε.657

Moreover, define the process X̂V,ε by658

X̂V,ε(t) = XV (0) +
∑

y→y′∈R
(y′ − y)Ny→y′

(∫ t

0

λVy→y′(X
V,ε(u))du

)
659

for all t ∈ [0, T ], where the processes Ny→y′ are the same as in (4.6). Note that for660

any t ∈ [0, T ] we have 1AV,ε,tX
V,ε(t) = 1AV,ε,tX

V (t) = 1AV,ε,tX̂
V,ε(t). In particular,661

it follows that662

sup
0≤u≤t

∥∥∥∥XV,ε(u)

V
− Z(u)

∥∥∥∥
∞
≤ 1AV,ε,t sup

0≤u≤t

∥∥∥∥∥X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

+ 1AcV,ε,tε663

≤ sup
0≤u≤t

∥∥∥∥∥X̂V,ε(u)

V
− Z(u)

∥∥∥∥∥
∞

.(A.2)664

665

For any t ∈ [0, T ] and any ε ∈ R>0 let666

Ωε,t1 = {Z(u) + h : u ∈ [0, t], h ∈ Rd, ‖h‖∞ ≤ ε} ∩ Rd≥0667

be the (one-dimensional) neighbourhood of the solution Z on the interval [0, t] with668

amplitude ε, intersected with the non-negative orthant. Note that for all t ∈ [0, T ] we669

have XV,ε(t)/V ∈ Ωε,V1 . Similarly, let670

Ωε,t2 = {(Z(u) + h, Z(u) + h′) : u ∈ [0, t], h, h′ ∈ Rd, ‖h‖∞ ≤ ε, ‖h′‖∞ ≤ ε} ∩ R2d
≥0671
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be the two-dimensional neighbourhood of the Z restricted to [0, t] with amplitude ε,672

intersected with the non-negative orthant.673

To conclude, it is convenient to introduce in this section a notation for centered674

Poisson processes: given a Poisson process N , we denote by N the process defined675

by N(t) = N(t) − t for all t ∈ R≥0. In order to bound pV,ε,t from above and prove676

Theorem 5.8 we need the following results concerning centered Poisson processes. For677

completeness, we provide a proof as we were not able to find it in the literature, even678

if small variations of Lemma A.1 are well-known and obtained as an application of679

Doob’s inequality or Kolmogorov’s maximal inequality.680

Lemma A.1. Let N be a Poisson process and let T, ε ∈ R>0. Then, for all n ∈681

Z≥1682

P

(
sup

t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
≤ 6 exp

(
e

2
T − ε

√
n

3

)
.683

Proof. For all j ∈ Z≥1 and all h ∈ R>0 define684

(A.3) Ξhj =

2jh⋃
i=0

{
i

2j

}
.685

Since N is almost surely right continuous, we have that for all n ∈ Z≥1 and all686

T ∈ R>0687

sup
t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ = lim
j→∞

max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣688

almost surely. Since for all j ∈ Z≥1 we have ΞnTj ⊂ ΞnTj+1, by continuity of the689

probability measure we have690

P

(
sup

t∈[0,nT ]

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
= lim
j→∞

P

(
max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
.691

By Etemadi’s inequality we have692

P

(
max
t∈ΞnTj

∣∣∣∣N(t)

n

∣∣∣∣ > ε

)
≤ 3 max

t∈ΞnTj

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
.693

Moreover, for any real β ∈ (0, 1) and any real t ∈ (0, nT ) we have694

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
≤ P

(
N(t)

n
>
ε

3

)
+ P

(
−N(t)

n
>
ε

3

)
695

= P

(
e
nβN(t)

n > e
nβε

3

)
+ P

(
e−

nβN(t)
n > e

nβε
3

)
696

≤ 2 exp

(
−n

βε

3

)
exp

(
t(en

β−1

− 1− nβ−1)
)

697

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
en

β−1

)
,698

≤ 2 exp

(
−n

βε

3

)
exp

(
nT

n2β−2

2
e

)
,699

700
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where the inequality in the third line follows from the Markov’s inequality and the701

known form of the moment generating function of a Poisson random variable, which702

leads to E[en
β−1N(t)] = e−n

β−1tet(e
nβ−1

−1) and E[e−n
β−1N(t)] = en

β−1tet(e
−nβ−1

−1).703

Hence, for all n ∈ Z≥1 we have that both E[en
β−1N(t)] and E[e−n

β−1N(t)] are less than704

or equal to et(e
nβ−1

−1−nβ−1). The inequality in the forth line derives from the Taylor705

expansion of the exponential function. By choosing β = 1/2 we have706

P

(∣∣∣∣N(t)

n

∣∣∣∣ > ε

3

)
≤ 2 exp

(
−ε
√
n

3

)
exp

(e
2
T
)
,707

which completes the proof.708

A.1. Estimates for pV,ε,t. Many papers have focused on quantifying the dis-709

tance between the process XV and its fluid limit Z. Among these, we list [1–3, 13,710

17,20] with no claim of completeness. Here we use Lemma A.1 to show the following711

upper bound on pV,ε,t. While similar estimates are known in the reaction network712

community, we give a formal proof of the bound we propose as we could not find it713

in the literature. Before stating the result, we define the following quantities:714

R = max
y→y′∈R

‖y′ − y‖∞,715

Λε,t0 = sup
z∈Ωε,t1

∑
y→y′∈R

λy→y′(z), Λε,t1 =

∫ t

0

Λε,u0 du716

Lε,t0 = sup
(z,z′)∈Ωε,t2

z 6=z′

∑
y→y′∈R

|λy→y′(z)− λy→y′(z′)|
‖z − z′‖∞

, Lε,t1 =

∫ t

0

Lε,u0 du717

δV,ε,t0 = sup
z∈Ωε,t1

∑
y→y′∈R

∣∣∣∣∣λVy→y′(bV zc)V
− λy→y′(z)

∣∣∣∣∣ , δV,ε,t1 =

∫ t

0

δV,ε,u0 du718

ηV,ε,t(γ) = e−L
2ε,t
1 γε− δV,2ε,t1 ,719720

where in the last definition γ is any real number in (0, 1]. Note that Λε,t0 and δV,ε,t0 are721

finite for any t ∈ [0, T ], since the solution Z exists up to time T and the functions λy→y′722

are locally Lipschitz by Assumption 3.1. The local Lipschitzianity of the functions723

λy→y′ also implies that Lε,t0 is finite for all ε ∈ R>0 and t ∈ [0, T ]. It also follows724

from Assumption 3.1 that δV,ε,t0 tends to zero as V tends to infinity. Furthermore,725

note that for fixed V ∈ Z≥1 and ε ∈ R>0, the quantities Λε,t0 , Lε,t0 , and δV,ε,t0 are726

all non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0, and727

V ∈ Z≥1 we have728

Λε,t1 ≤ tΛ
ε,t
0 , Lε,t1 ≤ tL

ε,t
0 , and δV,ε,t1 ≤ tδV,ε,t0 .729

It follows that for all t ∈ [0, T ], ε ∈ R>0, and γ ∈ (0, 1] the quantity ηV,ε,t(γ) tends to730

the positive quantity e−L
2ε,t
1 γε as V tends to infinity. We can now state the following731

theorem.732

Theorem A.2. For any ε, t ∈ R>0 , any γ ∈ (0, 1], and any V ∈ Z≥1 large733

enough such that ηV,2ε,t(γ) > 0, we have734

pV,ε,t ≤ pV,(1−γ)εe−L
2ε,t
1 ,0 + 6 exp

(
e

2
Λ2ε,t

1 +
e

2
δV,2ε,t1 − 1

3R
ηV,ε,t(γ)

√
V

)
735
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Proof. First, note that736

pV,ε,t = P

(
sup
u∈[0,t]

∥∥∥∥XV (u)

V
− Z(u)

∥∥∥∥
∞
> ε

)
= P

(
sup
u∈[0,t]

∥∥∥∥XV,2ε(u)

V
− Z(u)

∥∥∥∥
∞
> ε

)
737

= P

(
sup
u∈[0,t]

∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

> ε

)
.738

739

Moreover, by superposition, for all V ∈ Z≥1 and all ε ∈ R>0 we can define a unit-rate740

Poisson process UV,2ε coupled with XV in such a way that for all t ∈ R≥0741

UV,2ε

 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,2ε(u))du

 =
∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(X
V,2ε(u))du

)
.742

Hence, by using (2.2) we have743 ∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤

∥∥∥∥∥X̂V,2ε(0)

V
− Z(0)

∥∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣
∑

y→y′∈R
Ny→y′

(∫ u

0

λVy→y′(X
V,2ε(w))dw

)∣∣∣∣∣∣744

+

∫ u

0

∣∣∣∣∣∣
∑

y→y′∈R

(
λVy→y′(X

V,2ε(w))

V
− λy→y′

(
XV,2ε(w)

V

))
dw

∣∣∣∣∣∣745

+

∫ u

0

∣∣∣∣∣∣
∑
y→y′

(
λy→y′

(
XV,2ε(w)

V

)
− λy→y′(Z(w))

)
dw

∣∣∣∣∣∣746

≤
∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

+
R

V

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣747

+ δV,2ε,u1 +

∫ u

0

L2ε,w
0

∥∥∥∥XV,2ε(w)

V
− Z(w)

∥∥∥∥
∞
dw748

749

By using (A.2), by taking the supremum over [0, t] on both sides we obtain750

sup
0≤u≤t

∥∥∥∥∥X̂V,2ε(u)

V
− Z(u)

∥∥∥∥∥
∞

≤
∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

751

+
R

V
sup

0≤u≤t

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣752

+ δV,2ε,t1 +

∫ t

0

L2ε,u
0 sup

0≤w≤u

∥∥∥∥∥X̂V,2ε(w)

V
− Z(w)

∥∥∥∥∥
∞

du.753

754

By Gronwall’s inequality we get755

sup
0≤u≤t

∥∥∥∥∥X̂V,2ε(t)

V
− Z(t)

∥∥∥∥∥
∞

≤eL
2ε,t
1

∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞

756

+
ReL

2ε,t
1

V
sup

0≤u≤t

∣∣∣∣∣∣UV,2ε
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,2ε(w))dw

∣∣∣∣∣∣757

+ eL
2ε,t
1 δV,2ε,t1 .758759
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By noting that for all t ∈ R≥0760

sup
z∈Ω2ε,t

1

∑
y→y′∈R

λVy→y′(bV zc)
V

≤ Λ2ε,t
0 + δV,2ε,t0 ,761

we get762

pV,ε,t ≤P
(
eL

2ε,t
1

∥∥∥∥XV (0)

V
− Z(0)

∥∥∥∥
∞
> (1− γ)ε

)
763

+ P

(
ReL

2ε,t
1 sup

0≤u≤V (Λ2ε,t
1 +δV,2ε,t1 )

∣∣∣∣∣U
V,2ε

(u)

V

∣∣∣∣∣+ eL
2ε,t
1 δV,2ε,t1 > γε

)
764

765

for any γ in (0, 1]. the proof is concluded by Lemma A.1.766

Example A.3. Consider the SIS reaction network described in (4.2). In this case,767

in accordance with the classical mass-action choice of kinetics we have768

λVS+I→2I(x) =
1

V
κ1xSxI and λVI→S(x) = κ2xI769

for some positive constants κ1 and κ2. Hence, Assumption 3.1 is satisfied with770

λS+I→2I(z) = κ1zSzI and λI→S(z) = κ2zI .771

The corresponding solution Z exists for all non-negative times t, for all initial condi-772

tions Z(0) = z∗. Moreover, note that the sum of infected and susceptible individuals773

is kept constant, hence for all t ∈ R>0 we have ZS(t) + ZI(t) = z∗S + z∗I = ‖z∗‖1. In774

this case we can obtain the following rough estimates775

R = 2, Λε,t0 ≤ (‖z∗‖1 + ε)[κ1(‖z∗‖1 + ε) + κ2], Lε,t0 ≤ κ1(‖z∗‖1 + ε) + κ2,776

δV,ε,t0 = 0, ηV,ε,t ≥ εe−tκ1(‖z∗‖1+2ε)+tκ2 .777778

If we assume XV (0) = V z∗, then pV,0,0 = 0. It follows from Theorem A.2 with the779

choice γ = 1 that in this case780

pV,ε,t ≤ 6 exp

(
t

2
(‖z∗‖1 + 2ε)[κ1(‖z∗‖1 + 2ε) + κ2]− ε

√
V

6
e−t[κ1(‖z∗‖1+2ε)−κ2]

)
,781

where exp(h) is defined as eh for all real numbers h.782

A.2. Proof of Theorem 5.2. First of all, we define some quantities that are783

useful to give specific bounds on our approximation error. Define784

Λ̃t0 = max
S̃∈X̃

∑
S̃+y→S̃′+y′∈R̃

λS̃+y→S̃′+y′(S̃, Z(t)),785

L̃ε,t0 = sup
(z,z′)∈Ωε,t2

z 6=z′

max
S̃∈X̃

∑
S̃+y→S̃′+y′∈R̃

|λS̃+y→S̃′+y′(S̃, z)− λS̃+y→S̃′+y′(S̃, z
′)|

‖z − z′‖∞
786

δ̃ε,t0 = sup
z∈Ωε,t1

max
S̃∈X̃

∑
S̃+y→S̃′+y′∈R̃

|λV
S̃+y→S̃′+y′(S̃, bV zc)− λS̃+y→S̃′+y′(S̃, z)|787

Λ̃t1 =

∫ t

0

Λ̃u0du, L̃ε,t1 =

∫ t

0

Lε,u0 du, δ̃ε,t1 =

∫ t

0

δV,ε,u0 du.788
789
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Note that Λ̃t0 is finite for any t ∈ [0, T ], due to the fact that Z is defined over the790

whole interval [0, T ]. Moreover the functions λS̃+y→S̃′+y′ are locally Lipschitz on Rd>0791

by Lemma 5.1, hence L̃ε,t0 is finite for all t ∈ [0, T ]. Finally, δ̃V,ε,t0 is finite for all792

t ∈ [0, T ] by Lemma 5.1. Note that, for fixed V and ε, the quantities L̃ε,t0 and δ̃ε,t0793

are non-decreasing functions of t. As a consequence, for all t ∈ [0, T ], ε ∈ R>0, and794

V ∈ Z≥1 we have795

(A.4) Λ̃t1 ≤ tΛ̃t0, L̃ε,t1 ≤ tL̃
ε,t
0 , and δ̃ε,t1 ≤ tδ̃

ε,t
0 .796

Before proving Theorem 5.2 we show the following stronger result.797

Theorem A.4. Assume that Assumption 3.1 holds. Furthermore, assume that798

the random variables XV (0)/V converge in probability to a constant z∗ as V goes to799

infinity. Assume that the solution Z to (2.2) with Z(0) = z∗ exists over the interval800

[0, T ] and that801

m = min
S∈X
u∈[0,T ]

ZS(u) > 0.802

Finally, assume that Y V (0) = Y (0) for all positive integers V . Then,803

(A.5) P
(
Y V (t) 6= Y (t)

)
= E

[
‖Y V (t)− Y (t)‖∞

]
.804

Moreover, for any 0 < ε < m805

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ pV,ε,T + (δ̃V,ε,T1 + εL̃ε,1 )e2Λ̃T1 .806

Proof. First, note that807

(A.6) ‖Y V (t)− Y (t)‖∞ =

{
1 if Y V (t) 6= Y (t)

0 if Y V (t) = Y (t)
,808

hence (A.5) holds. Consider the process809

(A.7)

Ŷ V (t) = Y (0)+
∑

S̃+y→S̃′+y′∈R̃

(S̃′−S̃)NS̃+y→S̃′+y′

(∫ t

0

λV
S̃+y→S̃′+y′(Ŷ

V (u), XV,ε(u))du

)
.810

By equations (5.2) and (A.7), using the triangular inequality, we obtain811

E
[
‖Ŷ V (t)− Y (t)‖∞

]
812

≤ E

∫ t

0

∑
S̃+y→S̃′+y′∈R̃

∣∣∣λV
S̃+y→S̃′+y′(Ŷ

V (u), XV,ε(u))− λS̃+y→S̃′+y′(Y (u), Z(u))
∣∣∣ du

813

≤ Υ1 + Υ2 + Υ3814815
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where816

Υ1 = E

∫ t

0

∑
S̃+y→S̃′+y′∈R̃

∣∣∣∣λVS̃+y→S̃′+y′(Ŷ
V (u), XV,ε(u))− λS̃+y→S̃′+y′

(
Ŷ V (u),

XV,ε(u)

V

)∣∣∣∣ du
817

Υ2 = E

∫ t

0

∑
S̃+y→S̃′+y′∈R̃

∣∣∣∣λS̃+y→S̃′+y′

(
Ŷ V (u),

XV,ε(u)

V

)
− λS̃+y→S̃′+y′(Ŷ

V (u), Z(u))

∣∣∣∣ du
818

Υ3 = E

∫ t

0

∑
S̃+y→S̃′+y′∈R̃

∣∣∣λS̃+y→S̃′+y′(Ŷ
V (u), Z(u))− λS̃+y→S̃′+y′(Y (u), Z(u))

∣∣∣ du
819

820

Since for every S̃ + y → S̃′ + y′ ∈ R̃ we have821

λV
S̃+y→S̃′+y′(w, x) = 1{S̃}(w)λV

S̃+y→S̃′+y′(S̃, x) for all x ∈ Zd≥0, w ∈ X̃822

λS̃+y→S̃′+y′(w, z) = 1{S̃}(w)λV
S̃+y→S̃′+y′(S̃, z) for all z ∈ Rd≥0, w ∈ X̃ ,823

824

we can write Υ1 ≤ δ̃V,ε,t1 . Similarly, Υ2 ≤ εL̃ε,t1 . Finally,825

Υ3 = E

∫ t

0

∑
S̃+y→S̃′+y′∈R̃

∣∣∣1{S̃}(Ŷ V (u))− 1{S̃}(Y (u))
∣∣∣λS̃+y→S̃′+y′(S̃, Z(u))du

826

≤ E

∫ t

0

∑
S̃∈X̃

∣∣∣1{S̃}(Ŷ V (u))− 1{S̃}(Y (u))
∣∣∣ Λ̃u0du

827

=

∫ t

0

2P
(
Y V (u) 6= Y (u)

)
Λ̃u0du = 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u0du,828

829

where in the last equality we used (A.5). In conclusion,830

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t1 ) + 2

∫ t

0

E
[
‖Ŷ V (u)− Y (u)‖∞

]
Λ̃u0du.831

By the Gronwall inequality we then have832

E
[
‖Ŷ V (t)− Y (t)‖∞

]
≤ (δ̃V,ε,t1 + εL̃ε,t1 )e2Λ̃t1 .833

The result follows by taking the sup over t ∈ [0, T ] on both sides (the quantity834

on the right-hand side of the inequality is non-decreasing in t) and by noting that835

1AV,ε,T Ŷ
V (t) = 1AV,ε,T Y

V (t) for all t ∈ [0, T ]. Hence,836

‖Y V (t)− Y (t)‖∞ = ‖Y V (t)− Y (t)‖∞1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞1AV,ε,T837

≤ 1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞1AV,ε,T838

≤ 1AcV,ε,T + ‖Ŷ V (t)− Y (t)‖∞.839
840

We are now ready to prove Theorem 5.2841
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Proof of Theorem 5.2. It follows from Theorem A.4 that P
(
Y V (t) 6= Y (t)

)
=842

E
[
‖Y V (t)− Y (t)‖∞

]
. Moreover, for any ε > 0 we have limV→∞ pV,ε,T = 0 by843

Theorem 3.2, and limV→∞ δ̃V,ε,T1 = 0 by Lemma 5.1 and (A.4). Hence,844

lim
V→∞

sup
t∈[0,T ]

E
[
‖Y V (t)− Y (t)‖∞

]
≤ εL̃ε,T1 e2Λ̃T1 ,845

which concludes the proof by the arbitrariness of ε > 0 and by the fact that L̃ε,T0846

(hence L̃ε,T1 ) is non-decreasing in ε.847

A.3. Proof of Theorem 5.8. Similarly to what was done in the previous sec-848

tion, we define the following quantities to give an upper bound for our approximation849

error. Define850

R̂ = max
y→y′∈R

‖π(y′ − y)‖∞, r̂ = max
S̃+y→S̃′+y′∈R̃

∥∥∥∥∥ τ(S̃′)

α(τ(S̃′))
− τ(S̃)

α(τ(S̃))

∥∥∥∥∥
∞

,851

Λ̂t0 = r̂
∑

S̃+y→S̃′+y′∈R̃

λS̃+y→S̃′+y′(S̃, Z(t)), Λ̂t1 =

∫ t

0

Λ̂u0du,852

Λ̂t2 = max
S̃∈X̃\{∆}

∑
S̃+y→S̃′+y′∈R̃

∫ t

0

λS̃+y→S̃′+y′(S̃, Z(u))du,853

Λ̂V,ε,t3 =

∫ t

0

sup
z∈Ωε,u1

∑
y→y′∈R

λVy→y′(bV zc)
V

du,854

ωε,t = r̂ sup
(z,z′)∈Ωε,t2

‖z−z′‖∞≤ε

∑
S̃+y→S̃′+y′∈R̃

∣∣∣λS̃+y→S̃′+y′

(
S̃, z

)
− λS̃+y→S̃′+y′(S̃, z

′)
∣∣∣ ,855

ζε,t =

∫ t

0

(‖Z(u))‖∞ + ε)du.856
857

Note that Λ̂t0, Λ̂t2, and ζε,t are finite for any t ∈ [0, T ], because Z is defined858

over the whole interval [0, T ] and the functions λS̃+y→S̃′+y′ are continuous on Rd>0 by859

Lemma 5.1. Lemma 5.1 also implies that ωε,t is finite for all t ∈ [0, T ] and ε ∈ R>0.860

Finally, Λ̂V,ε,t3 is finite by Assumption 3.1. Note that, for fixed V and ε, the quantities861

Λ̂V,ε,t3 , ωε,t, and ζε,t are non-decreasing functions of t.862

We now state and prove the following result, which immediately implies Theo-863

rem 5.8. Note that δV,ε,t1 is as defined in Section A.1.864

Theorem A.5. Consider a family of stochastic reaction systems with trackable865

species (Y V , XV ), and assume that Assumptions 3.1 and 5.6 are satisfied. Let z∗ ∈866

Rd>0 and X̃V (0) = bV z∗c. Define the process X̃V by867

X̃V (t) =
∑

S̃∈X̃\{∆}

X̃V
τ(S̃)

(0)∑
i=1

τ(Y S̃,i(t))

α(τ(Y S̃,i(t)))
,868

where the processes (Y S̃,i)S̃∈X̃\{∆},i∈Z≥1
are independent and satisfy869

Y S̃,i(t) = S̃+
∑

S̃′+y→S̃′′+y′∈R̃

(S̃′′−S̃′)N S̃,i

S̃′+y→S̃′′+y′

(∫ t

0

λS̃′+y→S̃′′+y′(Y (u)S̃,i, Z(u))du

)
,870
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for a family of independent, identically distributed unit-rate Poisson processes {N S̃,i
r }S̃∈X̃\{∆},i∈Z≥1,r∈R̃.871

For arbitrary ν1, ν2, ν3 ∈ R>0 define872

ν = eΛ̂T1

(
R̂ν1 + r̂ν2 + ν3 + R̂δV,ε,T1 + ωε,T ζε,T

)
873

Then,874

875

P

(
sup

0≤t≤T

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)
≤ 6 exp

(
eΛ̂V,ε,t3

2
− ν1

√
V

3

)
876

+ 6 exp

(
ecΛ̂t2

2
− ν2

√
V

3

)
+ P

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

> ν3

)
+ pV,ε,T ,877

878

where c =
∑
S∈X α(S)z∗S.879

Proof. By the superposition property of Poisson processes, for all V ∈ Z≥1 there880

exist two unit-rate Poisson processes UV1 and UV2 such that for all t ∈ R≥0881

UV1

 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

 =
∑

y→y′∈R
Ny→y′

(∫ t

0

λVy→y′(X
V,ε(u))du

)
882

and883

884

UV2

 ∑
S̃∈X̃\{∆}

X̃V
τ(S̃)

(0)∑
i=1

∑
S̃′+y→S̃′′+y′∈R̃

∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du

885

=
∑

S̃∈X̃\{∆}

X̃V
τ(S̃)

(0)∑
i=1

∑
S̃′+y→S̃′′+y′∈R̃

N S̃,i

S̃′+y→S̃′′+y′

(∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du

)
886

887

Note that888

889

X̃V (t) = X̃V (0) +
∑

S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)
×890

×N S̃,i

S̃′+y→S̃′′+y′

(∫ t

0

λS̃′+y→S̃′′+y′(Y (u)S̃,i, Z(u))du

)
.891

892

Hence, by triangular inequality,893

sup
0≤u≤t

∥∥∥∥∥π(X̂V,ε(u))

V
− X̃V (u)

V

∥∥∥∥∥
∞

≤

∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+

5∑
i=1

Υi894

895
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where896

Υ1 = sup
0≤u≤t

∑
y→y′∈R

‖π(y′ − y)‖∞
1

V

∣∣∣∣Ny→y′

(∫ u

0

λVy→y′(X
V,ε(w))dw

)∣∣∣∣897

≤ R̂

V
sup

0≤u≤t

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ u

0

λVy→y′(X
V,ε(w))dw

∣∣∣∣∣∣898

Υ2 = sup
0≤u≤t

∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

∥∥∥∥∥ τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

∥∥∥∥∥
∞

×899

× 1

V

∣∣∣∣N S̃,i

S̃′+y→S̃′′+y′

(∫ u

0

λS̃′+y→S̃′′+y′(Y
S̃,i(w), Z(w))dw

)∣∣∣∣900

≤ r̂

V
sup

0≤u≤t

∣∣∣∣∣∣∣U
V

2

 ∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

∫ u

0

λS̃′+y→S̃′′+y′(Y
S̃,i(w), Z(w))dw


∣∣∣∣∣∣∣901

Υ3 = sup
0≤u≤t

∑
y→y′∈R

‖π(y′ − y)‖∞
∫ u

0

∣∣∣∣∣λVy→y′(XV,ε(w))

V
− λy→y′

(
XV,ε(w)

V

)∣∣∣∣∣ dw902

≤ R̂δV,ε,t1903

Υ4 = sup
0≤u≤t

∥∥∥∥∥ ∑
y→y′∈R

π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw904

−
∑

S̃′+y→S̃′′+y′∈R̃

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)∫ u

0

XV,ε

τ(S̃′)
(w)

V
λS̃′+y→S̃′′+y′(S̃

′, Z(w))dw

∥∥∥∥∥
∞

905

Υ5 = sup
0≤u≤t

∥∥∥∥∥ ∑
S̃′+y→S̃′′+y′∈R̃

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)∫ u

0

XV,ε

τ(S̃′)
(w)

V
λS̃′+y→S̃′′+y′(S̃

′, Z(w))dw906

− 1

V

∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)∫ u

0

λS̃′+y→S̃′′+y′(Y
S̃,i(w), Z(w))dw

∥∥∥∥∥
∞

907

908

We first focus on rewriting Υ4 and Υ5. To this aim, first note that by identifying909

species with canonical vectors of Rd as previously done in the paper, we have that for910

all y ∈ C911

π(y) =
∑
S∈X

ySS =
∑

S̃∈X̃\{∆}

yτ(S̃)τ(S̃)

α(τ(S̃))
.912
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Hence, for all y → y′ ∈ R913

π(y′ − y) =
∑

S̃′∈X̃\{∆}

yτ(S̃′)τ(S̃′)

α(τ(S̃′))
−

∑
S̃∈X̃\{∆}

yτ(S̃)τ(S̃)

α(τ(S̃))
914

=
∑

S̃′∈X̃\{∆}

τ(S̃′)

α(τ(S̃′))

∑
S̃∈X̃\{∆}

yτ(S̃)py→y′(S̃, S̃
′)−

∑
S̃∈X̃\{∆}

yτ(S̃)

α(τ(S̃))
τ(S̃),915

916

where we used Assumption 5.6 in the last equality. By recalling that τ(∆) = 0 and917 ∑
S̃′∈X̃ py→y′(S̃, S̃

′) for all y → y′ ∈ R and S̃ ∈ X̃ , we further obtain918

π(y′ − y) =
∑
S̃′∈X̃

τ(S̃′)

α(τ(S̃′))

∑
S̃∈X̃\{∆}

yτ(S̃)py→y′(S̃, S̃
′)919

−
∑

S̃∈X̃\{∆}

yτ(S̃)

α(τ(S̃))
τ(S̃)

∑
S̃′∈X̃

py→y′(S̃, S̃
′)920

=
∑

S̃∈X̃\{∆}

∑
S̃′∈X̃

(
τ(S̃′)

α(τ(S̃′))
− τ(S̃)

α(τ(S̃))

)
yτ(S̃)py→y′(S̃, S̃

′).921

922

It follows that923

∑
y→y′∈R

π(y′ − y)

∫ u

0

λy→y′

(
XV,ε(w)

V

)
dw924

=
∑

S̃′+y→S̃′′+y′∈R̃

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)∫ u

0

yτ(S̃′)py→y′(S̃
′, S̃′′)λy→y′

(
XV,ε(w)

V

)
dw925

=
∑

S̃′+y→S̃′′+y′∈R̃

(
τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

)∫ u

0

XV,ε

τ(S̃)
(w)

V
λS̃′+y→S̃′′+y′

(
S̃′,

XV,ε(w)

V

)
dw,926

927

which in turn implies928

Υ4 ≤ sup
0≤u≤t

∑
S̃′+y→S̃′′+y′∈R̃

∥∥∥∥∥ τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

∥∥∥∥∥
∞

×929

×
∫ u

0

XV,ε

τ(S̃)
(w)

V

∣∣∣∣λS̃′+y→S̃′′+y′ (S̃′, XV,ε(w)

V

)
− λS̃′+y→S̃′′+y′(S̃

′, Z(w))

∣∣∣∣ dw930

≤ωε,tζε,t.931932

By summing over the values of the single-molecule trajectories, we also have933

934 ∑
S̃∈X̃\{∆}

X̃V
τ(S̃)

(0)∑
i=1

λS̃′+y→S̃′′+y′(Y
S̃,i(w), Z(w)) = X̃V

τ(S̃)
(w)λS̃′+y→S̃′′+y′(S̃, Z(w)),935

936
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which implies937

Υ5 ≤ sup
0≤u≤t

∑
S̃′+y→S̃′′+y′∈R̃

∥∥∥∥∥ τ(S̃′′)

α(τ(S̃′′))
− τ(S̃′)

α(τ(S̃′))

∥∥∥∥∥
∞

∫ u

0

∣∣∣∣∣∣
XV,ε

τ(S̃)
(w)

V
−
X̃V
τ(S̃)

(w)

V

∣∣∣∣∣∣λS̃′+y→S̃′′+y′(S̃′, Z(w))dw938

≤
∫ t

0

∥∥∥∥∥XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du939

=1AcV,ε,t

∫ t

0

∥∥∥∥∥XV,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du+ 1AV,ε,t

∫ t

0

∥∥∥∥∥X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du.940

≤1AcV,ε,tM
V,ε,t +

∫ t

0

∥∥∥∥∥X̂V,ε(u)

V
− X̃V (u)

V

∥∥∥∥∥
∞

Λ̂u0du,941
942

where943

MV,ε,t =

∫ t

0

(
‖Z(u)‖∞ + ε+

∑
S∈X

α(S)
X̃V
S (0)

V

)
Λ̂u0du944

is an almost surely finite random variable, non-decreasing in t. Hence, putting every-945

thing together and applying the Gronwall inequality we have that almost surely946

sup
0≤t≤T

∥∥∥∥∥π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

≤ eΛ̂T1
R̂

V
sup

0≤t≤T

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

∣∣∣∣∣∣947

+ eΛ̂T1
r̂

V
sup

0≤t≤T

∣∣∣∣∣∣∣U
V

2

 ∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du


∣∣∣∣∣∣∣948

+ eΛ̂T1

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

+ R̂δV,ε,T1 + ωε,T ζε,T + 1AcV,ε,TM
V,ε,T

)
.949

950

Now note that if A1, A2, . . . , Aj are random variables and a1, a2, . . . , aj are positive951

real numbers, then952

P

(
j∑
i=1

Ai >

j∑
i=1

ai

)
≤ P

(
j⋃
i=1

(Ai > ai)

)
≤

j∑
i=1

P (Ai > ai).953

Hence, if ν is as in the statement of the theorem and ν < ε,954

P

(
sup

0≤t≤T

∥∥∥∥∥π(XV (t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)
= P

(
sup

0≤t≤T

∥∥∥∥∥π(X̂V,ε(t))

V
− X̃V (t)

V

∥∥∥∥∥
∞

> ν

)
955

≤ P

 1

V
sup

0≤t≤T

∣∣∣∣∣∣UV1
 ∑
y→y′∈R

∫ t

0

λVy→y′(X
V,ε(u))du

∣∣∣∣∣∣ > ν1

956

+ P

 1

V
sup

0≤t≤T

∣∣∣∣∣∣∣U
V

2

 ∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du


∣∣∣∣∣∣∣ > ν2

957

+ pV,ε,T .958959
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Since for all t ∈ [0, T ]960 ∫ t

0

λVy→y′(X
V,ε(u))du ≤ V Λ̂V,ε,t3961

and962

∑
S̃∈X̃\{∆}

∑
S̃′+y→S̃′′+y′∈R̃

X̃V
τ(S̃)

(0)∑
i=1

∫ t

0

λS̃′+y→S̃′′+y′(Y
S̃,i(u), Z(u))du ≤ V cΛ̂t2,963

the proof is concluded by Lemma A.1.964

Proof of Theorem 5.8. Note that by Lemma 5.7 and by the fact that α(S) ≥ 1965

for all S ∈ X in (5.6),966 ∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
1

≤
∥∥∥∥π(XV (h))

V

∥∥∥∥
1

+

∥∥∥∥∥X̃V (h)

V

∥∥∥∥∥
1

967

≤ 1

V

∑
S∈X

α(S)
(
XV
S (0) + X̃V

S (0)
) .968

969

Under the assumption that both XV (0) and X̃V (0) have finite expectation and con-970

verge in probability to z∗, and by the equivalence of norms in finite dimension, we971

conclude there exists M ∈ R>0 such that972

sup
V ∈Z≥1

E

[∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤M.973

Hence, if ν is as in Theorem A.5, we have that974

975

E

[
sup

0≤t≤T

∥∥∥∥∥π(XV (h))

V
− X̃V (h)

V

∥∥∥∥∥
∞

]
≤ ν + 6Me

Λ̂
V,ε,t
3
2 − ν1

√
V

3976

+ 6Me
cΛ̂t2

2 −
ν2
√
V

3 +MP

(∥∥∥∥∥π(XV (0))

V
− X̃V (0)

V

∥∥∥∥∥
∞

> ν3

)
+MpV,ε,T .977

978

The proof is concluded if we can show that for all T ∈ R>0 and any arbitrary η > 0,979

we can fix ν1, ν2, ν3 ∈ R>0 and ε ∈ (0,m) such that ν < η for large enough values980

of V . Indeed, for any fixed ε ∈ (0,m), T ∈ R>0 the other terms on the right-hand981

side of the above inequality tend to zero as V goes to infinity. To show that ν can982

be made smaller than η, simply note that ν1, ν2, ν3 can be chosen as small as desired983

among the positive real numbers, δV,ε,T1 tends to zero as V goes to infinity for all fixed984

ε ∈ (0,m) by Assumption 3.1, and ωε,T tends to zero as ε tends to zero because the985

functions λS̃+y→S̃′+y′ are locally Lipschitz on X̃ × Rd>0 by Lemma 5.1.986

A.4. Proof of Theorem 5.5. Note that under the assumptions of Theorem 5.5,987

for all t ∈ [0, T ] Y V (t) converges in probability to Y (t) by Theorem 5.2. Hence, in988

order to prove Theorem 5.5, we need to show relative compactness of {Y V } as a989

sequence of processes with sample paths in DX̃ [0, T ], and conclude by [10, Lemma990

A2.1]. To prove relative compactness of {Y V }, first note that the state space X̃ is991
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compact. Hence, we only need to show that the jump times do not accumulate as992

V tends to infinity, nor tend to 0. Let tVi with i ∈ Z≥1 denote the time of the ith993

jump of Y V , let tV0 = 0, and let TV be the time of the last jump of Y V in [0, T ]. Fix994

δ ∈ R>0 and for all j ∈ Z with −1 ≤ j ≤ T/δ let NV,δ
j be the number of jumps of Y V995

in the interval [j/δ,min{j/δ + 2δ, T}]. The NV,δ
j are introduced to control the time996

between jumps: whenever two jumps occur at times closer than δ, there necessarily997

exists an interval [j/δ,min{j/δ + 2δ, T}] with j ≥ 0 containing both of them. Also,998

whenever the time of a jump is smaller than 0, then NV,δ
−1 ≥ 1. Hence, for all ε ∈ R>0999

with ε > m,1000

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ P

(
NV,δ
−1 ≥ 1 or max

j=1,...,bT/δc
NV,δ
j ≥ 2

)
1001

≤ P
(
NV,δ
−1 ≥ 1

)
+

bT/δc∑
j=1

P (NV,δ
j ≥ 2)1002

≤ P
(

sup
0≤t≤T

∥∥∥∥XV

V
(t)− Z(t)

∥∥∥∥
∞
> ε

)
+ P (Nε(δ) ≥ 1) +

T

δ
P (Nε(2δ) ≥ 2),1003

1004

where Nε is a Poisson process with rate1005

Bε = sup
N∈Z≥1

sup
z∈Ωε,T1

max
S̃∈X̃

∑
S̃+y→S̃′+y′∈R̃

λV
S̃+y→S̃′+y′(S̃, bV zc),1006

which is finite by Lemma 5.1. Hence, by Theorem 3.21007

lim sup
V→∞

P

(
min

j=1,...,TV
(tVj − tVj−1) ≤ δ

)
≤ (1− e−δBε) +

T

δ
(1− e−2δBε − 2δBεe

−2δBε),1008

which tends to 0 as δ tends to 0. Therefore, {Y V } is relatively compact as a sequence1009

of processes with sample paths in DX̃ [0, T ] by [11, Corollary 7.4, Chapter 3], which1010

completes the proof.1011
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