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Abstract
This paper presents a task allocation strategy for a multi-robot system with a human supervisor. The multi-robot system
consists of a team of heterogeneous robots with different capabilities that operate in a dynamic scenario that can change
in the robots’ capabilities or in the operational requirements. The human supervisor can intervene in the operation scenario
by approving the final plan before its execution or forcing a robot to execute a specific task. The proposed task allocation
strategy leverages an auction-based method in combination with a sampling-based multi-goal motion planning. The latter is
used to evaluate the costs of execution of tasks based on realistic features of paths. The proposed architecture enables the
allocation of tasks accounting for priorities and precedence constraints, as well as the quick re-allocation of tasks after a
dynamic perturbation occurs –a crucial feature when the human supervisor preempts the outcome of the algorithm and makes
manual adjustments. An extensive simulation campaign in a rescue scenario validates our approach in dynamic scenarios
comprising a sensor failure of a robot, a total failure of a robot, and a human-driven re-allocation. We highlight the benefits
of the proposed multi-goal strategy by comparing it with single-goal motion planning strategies at the state of the art. Finally,
we provide evidence for the system efficiency by demonstrating the powerful synergistic combination of the auction-based
allocation and the multi-goal motion planning approach.

Keywords Auction · Task allocation · Motion planning · Path planning · Multi-robot system · Multi-robot task allocation

1 Introduction

In the near future, multi-robot systems (MRSs) are envis-
aged to significantly impact different social fields [1]; from
surveillance missions [2] to industrial applications [3], from
rescue operations [4] to agriculture [5].

MRSs exhibit significant advantages over Single-Robot
Systems (SRSs), due to their redundancy, flexibility, effi-
ciency, and the absence of a single point of failure [6, 7].
However, communication, coordination, and control over-
head are required in order to orchestrate the action of the
team as a whole.
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Complex and life-critical tasks, such as rescue operations,
often involve the adoption of MRSs consisting of unmanned
vehicles and human operators, where humans are in charge of
important decisions and of some aspects of the coordination
of the operations, especially those related to the evaluation
of the overall success of the work plan, the safety of human
lives, and the management of unforeseen situations. Rescue
operations, in particular, involve a large quota of human oper-
ators within the team, which may attain up to two humans
for each robot [8].

Reducing the number of human operators in such teams
is desirable to enhance safety, avoid confounding factors
emerging from the adoption of contrasting strategies by dif-
ferent operators in the team, and reduce the odds of human
mistakes [9]. On the other hand, operations that involve eth-
ical challenges related to decision-making [10] and respon-
sibility on decision [11] will continue to require human
intervention or supervision in the foreseeable future [12].

For example, choices about allocating resources in emer-
gency situations, including where to concentrate rescue
efforts, assessing risks, determining the order of people to
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be rescued, prioritizing medical treatment, managing who
must be left to wait, and optimizing the utilization of scarce
resources are unplausible to be made by teams constituted by
robots only [10]. In this context, Harbers et al. [11] raise the
issue related to moral and legal responsibility, where the for-
mer concerns blame and the latter concerns accountability.
These issues, according to the authors, occur when robots are
not supervised by a human. If a robot undergoes a malfunc-
tioning, behaves inappropriately, makes an error, or causes
harm, it can be difficult to determine who is responsible for
the resulting damage. This issue becomes evenmore complex
when the robot has some level of autonomy, self-learning
abilities, or is capable of making decisions that were not
explicitly programmed.

This calls for the design of robust and efficient design of
coordination algorithms for MRSs with human supervisors,
referred as to HMRS in the following.

In this work, we propose a task allocator strategy for a
HMRS with heterogeneous capabilities, where the human
supervisor can be either a pilot of one of the robots or an
external coordinator. The proposed task allocation can man-
age a dynamic environment, involving both changes in the
operation requirements or in the robots’ capabilities. Also,
a human supervisor can intervene in the planning process
by: (i) approving or canceling a proposed plan; or (ii) intro-
ducing new constraints to a proposed plan; for example, by
assigning a specific task to a given robot, along with a given
execution time set for safety reasons or due to a change in
the capabilities required to execute a given task. We advance
the state of the art along two main directions. First, our task
allocation combines an auction-based strategy [13] with a
motion planner [14] enhanced with a multi-goal approach,
to take full advantage of the features of the sequential single-
item auction and leverage real and measurable features of
the path to be accomplished, rather than its mere description.
Second, flexibility in operations is attained through dynamic
re-allocation, which can be triggered at any time, either by
changes in the operational conditions or by the human super-
visor.

1.1 PreviousWorks

Our contribution falls in the broad category of multi-robot
task allocation problems (MRTA) [15] –a variant of the mul-
tiple Traveling Salesman Problem (mTSP) [15], which is
notoriously NP-hard.

Main approaches to the solution of task allocation prob-
lems are Mixed-Integer Linear Programming (MILP) [16,
17], and auction-based techniques [2, 13, 18–22].

The former may lead toward the optimal solution at the
cost of an often unaffordable computational complexity,
which calls for the combined usage of heuristics and the
consequent attainment of suboptimal solutions. In the context

of HMRS, the support of a human supervisor was included
in [17] to evaluate the intermediate solutions of the MILP
based on objective or subjective quality criteria and per-
sonal expertise. In this way, also sub-optimal solutions may
be adopted, and the solver can be conducted to an early
termination. However, in this case, the human supervisor
is continuously required to evaluate operational scenarios,
practically providing heuristic criteria to reduce the com-
putational load of the solver, at the expense of their own
cognitive load, entailing an increase in the level of stress and
subtracting precious intellectual resources to the execution
of complex tasks.

The latter, on the other hand, consists of an iterative strat-
egy based on the optimization of the interest of selfish agents,
typically leading to sub-optimal solutions with a reasonable
computational complexity. Auction algorithms have grown
in popularity within the robotics community [13] to handle
task allocation problems [2, 23] efficiently and robustly [18].
In an auction, each robot (the bidder) places a bid to commit
to the execution of each task (item) based on a given cost
function. Then, a coordinator (the auctioneer) assigns (sells)
the items to the highest or the lowest bidder, depending on
whether the considered cost function should be maximized
or minimized [13]. Auctions are particularly suitable for
dynamically-changing environments and can be deployed in
centralized, decentralized, and distributed architectures [24].
Specifically, the calculations of the auctioneer and the bid-
ders can be done on a single system (centralized), multiple
systems (decentralized), or without a unique and centralized
auctioneer (distributed).

In the literature, auction-based methodologies have been
used in different applications with MRS, such as exploration
and destruction, patrolling, and surveillance mission, [2, 18,
25]. Notably, [2] adopts an auction-based methodology to
solve a task allocation problem of a HMRS in a dynamic
scenario with priority constraints between tasks. Differently
from our approach, however, the human-controlled vehicle
has neither supervisory features nor specific privileges. This
makes the solution of the problem equivalent to that com-
puted for a fully automated team.

Some works in the literature aimed at combining a task
allocation strategy with a motion planning. In [26] a MILP
is combined with an RRT*-based algorithm, while in [27]
an integer programming model integrates a motion planner
based on a genetic algorithm. Instead, authors in [21, 28]
integrate an auction-based task allocator with the A* algo-
rithm. Specifically, in [21], the authors apply the auction in
a dynamic environment for UAVs where the mission is con-
tinuously allocated and executed autonomously.

Auction-based task allocation is also combined with RRT-
based algorithms [29, 30]. RRTs are suitable for supporting
task allocation because they are able to rapidly compute
a path in the search space by constructing an incremental
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exploration tree [31]. However, studies in [29, 30] use the
standard RRT algorithm, which has the drawback of com-
puting non-optimal solutions. The optimality of the motion
planning is an essential feature for the quality of the task allo-
cation because the computed paths are evaluated to assign the
task to the robot that offers the best solution. For this reason,
differently from [29, 30], our motion planner guarantees an
optimal path thanks to the RRT# algorithm [14].

1.2 Our Contributions

TheHMRS aims to handle a complex operation happening in
a dynamic environment. We assume that such an operation
may be decomposed according to a hierarchical structure,
illustrated in Fig. 1.

Such a complex operation consists of some independent
sub-operations that must be executed by a robot with appro-
priate capabilities. Each sub-operation may have a priority.
Each sub-operation is in turn composed of several tasks, sub-
ject to precedence constraints.

The operation structure mentioned above is relevant to
many complex operation scenarios, such as people rescuing.
In this context, the operation consists of some sub-operations
equal to the number of people to be rescued. In particular,
each sub-operation consists of all the actions (tasks) neces-
sary to save one person (target). Each target has a priority that
is related to the urgency of the rescue. Each task coincides
with the visit of a location in the operational scenario.

The HMRS consists of a team of heterogeneous robots,
i.e. each robot has a set of capabilities, which allow it to
execute certain tasks. The dynamic nature of the environ-
mentwhere theHMRSoperatesmay elicit re-allocation upon
changes in the operational conditions, also called perturba-
tions. For instance, a robot or one of its capabilities may
become unavailable due to a collision, a system failure, the
exhaustion of its battery; or the human supervisor demands
a re-allocation, due to safety reasons or other technical con-
siderations not intelligible by machines. More specifically,
the human supervisor may trigger a re-allocation of the
HMRS through one of the following actions: (i) rejecting the
computed plan before its execution; or, (ii) forcing a partic-

ular robot to execute a task. Regarding the rescue operation,
the former is typically related to an overall approval of the
plan, in light of ethical or safety implications, while the lat-
ter may relate to on-the-go decisions that may increase the
chances of safety in light of the actual operational conditions.
Such a dynamic scenario is summarized in the flow chart of
Fig. 2.

Our effort presents several novelties and improvements
compared to the state of the art. First, we propose an
auction-based method for a heterogeneous team operating
in a dynamic scenario with human supervision, which sup-
ports precedence constraints between tasks, priority between
sub-operations, and on-the-go re-allocation due to perturba-
tions, coming either from the environment or from the human
supervisor –a setting that was not entirely contemplated in
the past [2, 17, 18, 20, 21, 25]. Along the lines of [17, 32], we
design a systemable to simulate the interventionof the human
supervisor by dynamically adding constraints to the auction-
based task allocation, such as forcing a robot to execute a
specific task within a given completion time or changing the
capability required for a given task. This scenario may arise
for safety reasons or, for example, to adjust the allocation
problem when a malfunction occurs, thus enabling the oper-
ation to be completed. However, the MILP approach used
in [17] hampers its concrete applicability to complex and
dynamically changing scenarios, due to its inherent compu-
tational burden. Conversely, Hussaini et al in [32] describe
a scenario where the multi-robot system is supervised by a
human operator who can actively address corrective actions
in the assignment plan based on the estimated or the notified
contingencies. However, their re-allocation process is han-
dled by using a heuristic-based task allocation, which may
face scalability issues, making it inefficient or impractical to
find a suitable allocation within a reasonable time.

Second, along the lines of [33], we use a multi-goal
motion planner in combination with the auction-based allo-
cation, achieving an overall method that is fast, effective, and
reactive to perturbations. However, in [33], the authors are
focusedmore on the optimality of the planning rather than on
the responsiveness of the whole system. Also, the efficiency
of the strategy claimed in [33] is hampered by the assignment

Fig. 1 Hierarchical structure of
operation, sub-operations, and
tasks
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Fig. 2 Dynamic scenario of an
operation and re-allocation
mechanisms

of capacity constraints to each robot. Notably, with more
than six scheduled tasks for each robot, the computational
burden already tends to become unmanageable. Here, such
constraints are not posed and efficiency is privileged, if nec-
essary, through a trade-off between computational burden
and pursuit of optimality. Moreover, in [33] the authors use
the general logic of the auction but the motion planner does
not leverage any particular feature of the auction to work in
synergy with it. In fact, the motion planner creates a gen-
eral graph that is used to evaluate the effect of the candidate
task on the entire robot schedule. In particular, the graph is
useful to evaluate different links (robot-task and task-task)
and finally to compute the best solution for the TSP prob-
lem. Here, on the other hand, the multi-goal motion planner
is used to fully leverage the features of the sequential single-
item auction by simultaneously computing the cost for each
robot to accomplish a given task.

To the best of our knowledge, there are no works
that describe a system incorporating a human supervisor
with the aforementioned functions, imposing constraints
on an auction-based task allocator with the described fea-
tures, specifically designed to address ethical challenges in
demanding environments.

Moreover, we remark that, although the strategy proposed
in this paper is tailored to a rescue scenario for illustrative
purposes, the application field is extensive and may embrace
robots of heterogeneous nature, such as ground, aerial, or
underwater.

The rest of the paper is structured as follows. Section 2
explains the problem statement and states the assumptions
of our approach. Section 3 presents our methodology, based
on an auction-based task allocator and a multi-goal RRT#

algorithm. The effectiveness and robustness of our method-

ology are demonstrated by simulations in Section 4. Finally,
in Section 5, we draw our conclusions and offer a discussion
toward further developments.

2 Problem Statement

In the following,weuse roman font to denote scalar quantities
(x ∈ R), low bold font to denote vectors (x ∈ R

2), and
upper bold font to denote sets (X ∈ R

N ) and matrices (X ∈
R

N×M ).
We assume a two-dimensional operational space X ∈ R

2

defined as a Euclidean state space in which each element
x ∈ X represents a possible location for a robot. The sub-
set Xobs ⊆ X contains locations where a robot cannot be
located, e.g. those occupied by obstacles. We assume that
the positions of the obstacles are known a-priori to the task
allocator and the motion planner. The set Xfree = X \ Xobs

includes the remaining positions where a robot can be
located, also called the valid locations.

The HMRS comprisesm robots and is identified by the set
R={r1, r2, . . . , rm}. The set Xr = {x(r1), x(r2), . . . , x(rm)}
indicates the position of each robot, with x(ri )∈ Xfree, i =
1, . . . ,m.

The set Cap = {p1, p2, . . . , pl} indicates the l available
capabilities used to execute all the tasks by the multi-robot
system. A capability is a particular feature that empowers a
robot to accomplish a particular operation; for example, the
capability of moving hazardous materials or illuminating the
scene at night.

Each robot has different capabilities that may change in
time. They are summarized in a boolean time-varying matrix
RC(t) of dimensions m × l. The element RC(t)i, j is set to
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one if the robot i , with i = 1, . . . ,m, is equipped with the
capability j , with j = 1, . . . , l, and to zero otherwise.

The operation to be allocated aims to manage s tar-
gets defined by the set G = {g1, g2, ..., gs}. The set Xg =
{x(g1), x(g2), . . . , x(gs)} indicates the position of each tar-
get g ∈ Xfree. Each target has a priority defined by the set
GP = {gp1, gp2, ..., gps} that defines which target has to
be managed first, with gpi ∈ N, i = 1, . . . , s.

In particular, the higher the priority, the more urgent the
target to manage. Nevertheless, it might also happen that
two or more sub-operations have the same priority, then the
auction will try to handle them in parallel, when possible.

Hence, the operation consists of s sub-operations because
each sub-operation is responsible for managing only one tar-
get while respecting its priorities.

Each sub-operation consists of several tasks. The set

K i =
{
ki1, k

i
2, . . . , k

i
ni

}
denotes the list of ni tasks that form

the sub-operation i , with i = 1, 2, ..., s, in which the sub-
script represents the sequencing of the tasks. Tasks must be
performed sequentially. For instance, task ki2 has to be per-
formed after the task ki1. K

tot = K 1∪K 2∪. . .∪Ks represents
the set of all tasks, with cardinality ntot = n1 +n2 + ...+ns .

Each task has to be performed in a specific location. The
set Xk ⊆ Xfree includes the positions of the free space,where
all tasksmust be executed. The notation x(kij ) ∈ Xk ⊆ Xfree

indicates the position of a task k j of the sub-operation
i = 1, ..., s. We assume that the task allocator and the cen-
tralized motion planner know the positions of every robot
x(ri )∈ Xr and every task x(kij )∈ Xk.

The subdivision of the operation in sub-operations and,
subsequently, in tasks is shown in Fig. 1. The decomposition
of the complex operation in its tasks is out of the scope of this
paper; hence, we assume that the sets of sub-operations and
tasks are made available to the task allocator by an external
mechanism.

Each task requires some capabilities to be performed. The
combination of tasks and capabilities is summarized in a
boolean matrix TC of dimensions ntot × l. Element TCi, j

is set to one if the task i , with i = 1, 2, . . . , ntot requires the
capability j , with j = 1, 2, . . . , l; it is set to zero otherwise.

The role of the task allocation is to handle the ntot

tasks to the HMRS composed by m robots equipped with
different capabilities l. The computed plan is designed to
optimize the total time of the operation, guaranteeing that
tasks are executed by the robots that possess proper capabili-
ties, respecting the prioritization between sub-operations and
precedence constraints between tasks. Re-allocation can be
triggered by perturbations,which can be external or internal.

An external perturbation is caused by an external and
unexpected event, such as a system or sensor failure which
can cause the loss of a robot or the loss of its capabilities.

An internal perturbation occurs when it is caused by an
internal event, e.g. a change of strategy forced by the human
supervisor, such as changing capability for a given task or
assigning a task to a particular robot.

In the following, the term tnew defines the time instant
when a perturbation occurs considering a continuous time.

The intervention of the human supervisor is defined by
the boolean matrix TCH of dimension ntot × l, in which
each element TCH

i, j defines if the human supervisor forces
the capability j , with j = 1, 2, . . . , l to perform the task i ,
with i = 1, 2, . . . , ntot. Instead, the matrix Cp of dimension
ntot × m includes the completion time forced by the human
supervisor. Each element Cp(i, j) defines to whom the task
i , with i = 1, 2, . . . , ntot is assigned to the robot j , with
j = 1, 2, . . . , l and when the task i must be completed.

3 Methodology

In this paper, a centralized approach is adopted since the
human supervisor must have the possibility to approve the
final plan and to take action (e.g. change capabilities for a
given task or assign a task to a particular robot) about the plan
in two different situations: when the plan is in execution; and
when the human supervisor does not approve the plan.

Once the plan is approved, assigned tasks are executed
in a completely autonomous fashion. That is, each robot is
able to move toward the assigned position and autonomously
execute its task, counting only on its capabilities. We also
assume that, once scheduled, each robot is able to perform
the planned tasks successfully.

The centralized system is composed by a task allocator
based on a sequential single-item auction, and a centralized
motion planner based on RRT# with a multi-goal approach.
These blocks continuously interact to compute all the paths
connecting robots and tasks and estimate their costs in order
to compute the plan which will be checked by the human
supervisor, as shown in Fig. 3.

The communication between the two blocks is assumed
as ideal –without delays and losses of information.

In the following section, each algorithm is detailed.

3.1 Algorithms

3.1.1 Auction-Based Task Allocator

A traditional auction is composed of two steps: the bidding
step and the winner determination step. In the bidding step,
the auctioneer informs the robots about the tasks for sale.
Then, each robot evaluates the tasks, calculates the bid, and
returns the bid to the auctioneer. Then, during the winner
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Fig. 3 Overview of the
methodology for each block of
the HMRTA

RRT
#

determination step, the auctioneer determines the winner for
each task and informs the winning robots. These two steps
compose the so-called round of the auction.

In our problem, we choose a sequential single item (SSI)
auction where the auctioneer (the centralized task alloca-
tor) sells one item (task) for each round in an order selected
respecting the priority of targets s.

In the proposed strategy, a centralized motion planner is
called at each round with the aim of computing the bids of all
robots to perform a task. In fact, the bid returned by a robot
includes the cost of moving toward the task’s position.

During the winner determination step, the auctioneer
assigns the task to the robot rbest with the right capabilities
and with the lowest bidder.

In particular, our algorithm based on a sequential single-
item auction with the decision of the human supervisor is
summarized in Algorithm 1.

The inputs of the task allocator are: the set of all the tasks
K tot, the set of robots R, the possible instant of perturbation
tnew, the set of priority for each sub-operation GP , thematrix
with the combination of robots and capabilities RC(t), the
matrixwith the combination of tasks and capabilities TC, the
operational space X including obstacles and free space, the
vector of robots’ positions Xr, the vector of tasks’ positions
Xk, the matrix with the assignment of tasks to robots made

by the human supervisor Cp, and the matrix TCH with the
assignment of sensors to tasksmade by the human supervisor.

The Algorithm 1 is split into two macro steps: Initializa-
tion and Auction.

The Initialization is fundamental in order to create and
initialize variables essential for the auction.

C is the matrix of the completion time for all the tasks,
where the element C(k, r) denotes the completion time of
the task k ∈ K tot performed by the robot r ∈ R (line 3). T0

is the vector of the starting times of all the tasks ntot, where
t0(k) is the starting time of task k ∈ K tot (line 4).

TCH is the matrix with the capabilities assigned to the
tasks by the human supervisor. Each element TCH

i, j defines if

the task i ,with i = 1, 2, ..., ntot requires the capability j ,with
j = 1, 2, ..., l. If the TCH matrix is empty, the human super-
visor has not added any constraint on the capabilities for the
tasks. Otherwise, the function HumanChoiceCapabilities
updates the TC matrix with the information of TCH (line
6).

The Auction represents the main task allocation algo-
rithm. In this macro step, if at least a robot performing each
task exists, the auction handles sequentially each task accord-
ing to the list of prioritized tasks.

In the following, we describe each function of Algorithm
1:
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Algorithm 1 Task allocation algorithm based on Auction

1 Input: K tot, R, tnew,GP, RC(t), TC, X, Xobs, Xr, Xk,Cp, TCH

2 Initialization:
3 C ← zeros(ntot,m)

4 T0 ← zeros(ntot)

5 if TCH is not empty then
6 TC ← HumanChoiceCapabilities(TCH)

7 Auction:
8 Mst ← CreationStaticMask(TC, RC)
9 if ControllingFeasibleOperation(Mst) = True then

10 Lpr ← CreationListPrioritizedTask(K tot,GP)
11 (K forced,C) ← HumanChoiceTasksRobot(Cp, Lpr)

12 foreach task kpr ∈ Lpr do
13 if kpr /∈ K forced then
14 (Mdyn, t

exp
0 (kpr)) ← CreationDynamicMask(Mst,C, K tot, kpr, tnew)

15 (Costs,Times) ← GetCosts(Mst, X, Xr, x(kpr))
16 if ControllingAvailabilityRobots(kpr,Mdyn) = False then
17 rbest ← SelectionBestRobot(Costs,Mst)

18 t0(kpr) ← max(C(k, rbest)) ∀k ∈ K tot

19 else
20 rbest ← SelectionBestRobot(Costs,Mdyn)

21 t0(kpr) ← texp0 (kpr)

22 C(kpr, rbest) ← t0(kpr) + T imes(rbest)
23 x(rbest) ← x(kpr)

24 else
25 return warning to supervisor

– CreationStaticMask: the main goal of this function is to
create a static mask that defines which robot is able to
do which task. In particular, the Mst is a boolean matrix,
where the element Mst(k, r) denotes if the robot r is able
to perform the task k;

– ControllingFeasibleOperation: given the staticmaskMst,
this function controls if at least a robot is able to perform
each task. If not, the task allocation cannot solve the prob-
lem and the function returns a False state, warning the
supervisor (line 25). Otherwise, the auction can be per-
formed;

– CreationListPrioritizedTask: this function computes the
list Lpr, in which each task is ordered sequentially start-
ingwith the onewith the highest priority. If two tasks have
the same priority, then the algorithm randomly chooses
the task to be evaluated first. This situation could happen
when there are sub-operations with the same priority;

– HumanChoiceTasksRobot: given the matrix with the
assignment of tasks to robots Cp forced by the human
supervisor and the list of the prioritized tasks Lpr, this
function updates thematrix of the completion time C and
computes the vector of the tasks already assigned by the
human supervisor K forced;

– CreationDynamicMask: if the selected task kpr is not
located in K forced (line 13), the task kpr has not already
been allocated and, then, the auction tries to assign

the task. Given the static mask Mst, the matrix of the
completion time C , the lists of sub-operations with the
corresponding sequences between tasks K tot, the task to
be handled kpr, and the eventual instant of perturbation
tnew (if we are in the re-allocation phase), this function
computes the time in which the task kpr should start
texp0 (kpr) ∈ T exp

0 and the dynamic mask Mdyn. Mdyn

is a boolean matrix that allows the algorithm to know
which robot is busy when the algorithm is assigning the
task kpr (t

exp
0 (kpr)) and does not have the capabilities to

perform the task kpr. For completeness, the dimensions of
the dynamic mask Mdyn are the same as the static mask
Mst;

– GetCosts: this function provides the interaction with the
motion planner implementing the bidding step of the auc-
tion. Given the static mask Mst, the operational space X ,
the robots’ positions Xr, the task position x(kpr), the
motion planning computes the costs (Costs) and execu-
tion times (Times) to reach the task x(kpr) by each robot
that has the proper capabilities. In our problem, we solely
consider the time required to reach the position of a task,
as we assume that the execution time of the task is typi-
cally negligible than the time to reach its position. More
details about this function have been provided belowwith
the description of Algorithm 2;

– ControllingAvailabilityRobots: this function controls if
at least one robot available to perform the task kpr at the
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expected starting time texp0 (kpr) exists by checking the
dynamic mask Mdyn. If it does not exist, the function
returns a False value. This condition implies that at the
instant of assignment (texp0 (kpr)) there is no free robot
because robots that would have the capabilities to per-
form the task kpr are busy;

– SelectionBestRobot: this function provides the second
step of the auction– the winner determination step. If no
robot can perform the task kpr at the expected starting
time texp0 (kpr ) (i.e. ControllingAvailabilityRobots() =
False), the SelectionBestRobot function selects the robot
with the minimum cost to perform the task k but con-
sidering the static mask Mst. This detail is important
because in this case, the choice of the best robot (rbest)
is made only in consideration of who has the capabilities
to do it and thus not considering the availability at the
expected starting time texp0 (kpr). For this reason, the real
starting time t0(kpr) for the task kpr is updated consider-
ing the maximum value between the completion time of
the tasks already assigned to the winner robot (line 18).
On the other hand, if at least a robot to perform the task
kpr exists (i.e. ControllingAvailabilityRobots() = True),
the SelectionBestRobot() function selects the robot with
the minimum cost to perform the task kpr but, unlike the
previous case, considering the dynamicmaskMdyn since
we want to allocate the task at texp0 (kpr). Then, in line 21
the actual starting time (t0(kpr)) for the task kpr is updated
with the expected one (texp0 (kpr)). Finally, the completion
time for task kpr is computed (line 22), and the position
of the winner robot is updated with the position of task
kpr (line 23).

3.1.2 Motion Planner

As previously defined, themotion planner algorithm is called
several times by the task allocation algorithm with the func-
tion GetCosts. The motion planner is implemented using the
RRT# algorithm extended with a multi-goal strategy. In fact,
in this work, the well-known RRT# is exploited to construct
an asymptotically optimal graph exploring the entire map
(i.e. the search space). The graph is rooted from the task
position and is constructed by randomly sampling and con-
necting states of the search space as in [14]. Hence, we use
the constructed graph to compute all the paths connecting the
task position with the robot positions. In fact, as with all the
RRT-based algorithms, only one branch of the graph exists
connecting the origin of the graph (i.e. the task position) and
any other state of the graph. This strategy is perfectly suited
to the centralized task allocator because only one exploration
graph is constructed to compute all the paths and their costs,
instead of computing all the paths sequentially as commonly

Fig. 4 Example of the exploration graph constructed by the RRT# algo-
rithm rooted from the task position. The graph (in blue) explores the
map reaching all the robots (in red) avoiding the obstacles (in black).
The computed path per each robot is the branch connecting task and
robot positions

performed in the literature. An example of this strategy is
shown in Fig. 4.

The pseudocode of the motion planner is described in
Algorithm 2. The inputs of the function are: the set Xr with
the robot positions; the position x(kpr) of the task kpr; the
matrix Mst that defines which robots have the capabilities
to execute the task kpr; and the operational space X that
determines the search space of the motion planning problem
including obstacles.

First, the task position is added to the graph G as the ini-
tial state (lines 2 and 3). Then, the iterative procedure that
constructs the exploration graph starts and continues until a
certain number of states are added to the graph (lines 4 to
7). At each iteration, a new state xrand is randomly sampled
in the search space (line 5), and it is added to the graph G
with the Extend() procedure (line 6). The Extend() proce-
dure is an essential step of the RRT# algorithm because it
extends the current graph by connecting xrand to the state
with the minimum cost. Then, the Replan() procedure prop-
agates all the updated costs on the graph, in order to update
the graph accordingly (line 7). The Extend() and Replan()
procedures are implemented exactly as in the original RRT#,
for more details refer to [14]. After the graph is constructed,
the algorithm defines the path for each robot position (lines
8 to 19). First, the algorithm verifies if the robot r with posi-
tion xr ∈ Xr has the capabilities to perform the task kpr. In
case, the branch T connecting the task and robot positions
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Algorithm 2 The GetCosts function implementing the
multi-goal RRT#.

1 GetCosts(Mst, X, Xr, x(kpr))
2 x0 = x(kpr);
3 G ← {x0};
4 for i = 0 to N do
5 xrand ← Sample();
6 G ← Extend(G, xrand);
7 Replan(G);
8 foreach xr ∈ Xr do
9 if Mst(r) = True then

10 T ← SpanningTree(G, xr);
11 if T = ∅ then
12 Costs ← {NaN };
13 Times ← {NaN };
14 else
15 Costs ← {c(T )};
16 Times ← {t(T )};
17 else
18 Costs ← {NaN };
19 Times ← {NaN };
20 return Costs,Times

is extracted from the graph (line 10), and the corresponding
cost and time are included in the vector of costs and times,
respectively. If a solution connecting the robot position xr
and the task position x(kpr) does not exist, the cost and the
time related to the robot-task combination are defined asNaN
(Not a Number) (lines 12 and 13). A similar condition occurs
if the robot is not suitable to perform the task (lines 18 and
19).Otherwise,when a solution connecting the robot position
and the task position exists, the cost is defined considering
the cost function used to compute the path, i.e. the path length
in this paper. Instead, the time to reach the task position is
estimated assuming that a robot moves at a constant speed.
Then, the vectors Costs and Times are returned to the task
allocation (line 20).

4 Results

In this section, the proposed task allocation and motion plan-
ning strategy is tested through simulations. The proposed
strategy is implemented using the ROS (Robot Operating

Fig. 5 The basic scenario evaluated in this work with the multi-robot
system composed of 3 robots indicated with red circles in the upper left
corner

System) framework [34]. Specifically, the auction-based task
allocation is implemented as a ROS node using Python,
while the motion planner node is implemented using C++
and exploiting the OMPL (Open Motion Planning Library),
an open-source library that contains several sampling-based
motion planning algorithms [35].

In the following, the results have been split into four parts:
first, we show how the proposed strategy is able to handle a
basic scenario; second, the results related to dynamic scenar-
ioswith a human supervisor action are shown; third, we focus
on the motion planner, showing the advantages of the pro-
posed multi-goal strategy; finally, we show the advantages
of adopting a synergetic combination of the auction-based
allocation and the multi-goal RRT# motion planning.

4.1 Basic Scenario

In this paragraph,we introduce the basic scenario considering
a rescue operation as shown in Fig. 5. The main goal of the
operation is to rescue two people with the same priority in

Table 1 Tasks with precedence for each sub-operation considering the basic scenario of Fig. 5

Sub-operation Tasks

1 Fix(Zone_1) → Operate(Zone_1) → Fix(Zone_2) → Operate(Zone_2) → Rescue(Target_1)

2 Fix(Zone_3) → Operate(Zone_3) → Fix(Zone_4) → Operate(Zone_4) → Rescue(Target_2)
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Table 2 Capabilities for each
robot (RC) considering the
entire simulation time of the
basic scenario

p1 p2 p3 p4

r1 x x x x

r2 x x

r3 x x x

the areas denoted as Target_1 and Target_2, therefore, in this
example, the number s of targets is set to 2.

The black zones are obstacles (Xobs), while yellow areas
(Zone_1, Zone_2, Zone_3, and Zone_4) are zones to be
adjusted to unlock the passage (Fix task), and, then, to be
managed for example by extinguishing the fire (Operate task)
to enable the navigation in that area by the robot in charge of
rescue people (Rescue task).

In this example, the hierarchical structure shown in Fig. 1
is observed. Indeed, the final goal of the operation is to rescue
two targets, i.e. two people with the same priority. Thus,
the sub-operations are two and are composed of tasks with
precedence. The tasks for each sub-operation are described
in Table 1.

Thefirst sub-operation, inTable 1, is to handle theZone_1,
Zone_2 and Target_1 sequentially. Instead, the second sub-
operation is to handle the Zone_3, Zone_4 and Target_2
sequentially. Both the sub-operations have the same prior-
ities and, then, can be performed simultaneously. Practically,
the sub-operations force that Zone_1 and Zone_3 must be
adjusted andmanaged before Zone_2 and Zone_4 and, lastly,
people can be rescued in Target_1 and Target_2.

We assume that each robot can have at most 4 capabilities
(i.e. l = 4). Table 2 shows the capabilities of each robot (RC)
belonging to the heterogeneous multi-robot system during
the entire simulation time of the basic scenario. Thus, in
this case, the capabilities of each robot remain unchanged
throughout the simulation.

The capabilities p1, p2, p3 and p4 are particular features
that empower a robot to accomplish a particular operation. In
a practical rescue scenario, these capabilities aim to enhance
the robot’s effectiveness in saving lives and providing assis-
tance during the emergency situations. For example, p1 may
refer to the ability to manipulate objects within the scenario,
enabling to move obstacles and clearing the path required
to reach the person in need of rescue. In our simulations,
this capability is used in the “fix” task. Furthermore, p2
may improve the robot performance during nighttime res-
cue operations. By incorporating special equipment to rescue
the person (e.g. rescue ropes) and night vision, the robot is
equipped to navigate and rescue people even in low-light con-
ditions. On the other hand, p3 may focus on daytime rescue
operations. This capability provides the robot with equip-
ment to rescue the person but does not include night vision,
limiting its effectiveness to daylight hours. Lastly, p4 may

Table 3 Capabilities for each task (TC)

Task p1 p2 p3 p4

Fix zone 1 x

Operate zone 1 x

Fix zone 2 x

Operate zone 2 x

Fix zone 3 x

Operate zone 3 x

Fix zone 4 x

Operate zone 4 x

Rescue target 1 x

Rescue target 2 x

address the specific hazard of fires encountered during res-
cue operations. This capability, used in the “operate” task in
our simulations, equips the robot with fire extinguishers.

Table 3 summarizes the capabilities needed for the execu-
tion of each task.

The auction-based task allocation, through the ongoing
support of the motion planner, is able to successfully man-
age the basic scenario. Figure 6 shows the resulting plan
that respects the precedence constraints between tasks, the
heterogeneity of the team, and the prioritization between sub-
operations. The time to reach the position for each task is
estimated by the motion planner, considering the robot mov-
ing at constant speed.

4.2 Dynamic Scenario

The results of this section are obtained by evaluating the basic
scenario of Fig. 5 but considering different perturbations at
different instants. Thus, the auction-based task allocation is
tested by simulating a dynamic scenario, and performing a
re-allocation of the basic plan.

Specifically, results show how the system is able to handle
both a sensor or a robot failure, and both the intervention of
the human supervisor that decides to assign a task to a specific
robot.

Figures 7 and 8 show the resulting plan after two different
perturbations.

In the first condition, starting from the basic scenario, the
re-allocation phase is triggered at the time instant of 500 s due
to a failure of capability 4 on the second robot (see Table 4).
Thus, the task allocator is called and the plan is re-allocated
(see Fig. 7), thanks to the auction and the multi-goal motion
planner.

In the second condition, starting from the basic scenario,
the re-allocation phase is triggered at the time instant of 1500
s due to a total failure of the third robot. Thus, the whole
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Fig. 6 Allocation of the basic
scenario

system re-allocates the plan and the result is summarized in
Fig. 8.

Another simulation is performed including an action of
the human supervisor.

Starting from the basic scenario, Fig. 9 shows the plan
after the action of the supervisor that forces the assignment
of the task Fix(Zone_1) to the third robot. Here, the task allo-
cator complies with this additional condition and allocates all
other tasks accordingly, while respecting all the constraints
we have detailed above.

4.3 Multi-goal Motion Planner

As previously defined, themotion planner plays a crucial role
in the proposed strategy. Table 5 shows how the proposed
motion planning improves the performance in terms of com-
putational time without compromising the quality of the
solution (i.e. the path length). The results of Table 5 compare
the use of the standard RRT# algorithm with the one with the
multi-goal strategy proposed in this paper. Specifically, the

values of Table 5 are the average ones of 20 executions of
the scenario of Fig. 6.

The use of the standard RRT# requires the computation
of each path between a robot and task position. Hence, the
motionplanner is called several times in the scenario ofFig. 6.
On the contrary, the use of the multi-goal RRT# reduces the
number of calls of the motion planner, since it computes
simultaneously the paths between a task position and all the
robot positions. As a consequence, the computational time
is reduced. Moreover, Table 5 affirms that the quality of the
solution in terms of path length does not change. The solution
costs of the multi-goal RRT# and original RRT# are very
similar. The small difference is due to the non-deterministic
nature of the algorithm that never computes the same solution
at each execution.

Another analysis is shown in Fig. 10, where the compu-
tational time between the multi-goal RRT# and the original
RRT# is plotted as a function of the number of robots. Here,
the path is computed between a fixed task position and sev-
eral robots distributed in the scenario. Both multi-goal and
original RRT# generate an exploration graph of 5000 states

Fig. 7 Re-allocation starting
from the basic scenario due to a
failure of capability 4 of the
second robot
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Table 4 Capabilities for each
robot after a sensor failure

p1 p2 p3 p4

r1 x x x x

r2 x

r3 x x x

to compute the path. As a result, the computational time
required by the multi-goal RRT# increases slower than the
computational time of the original RRT#. This analysis con-
firms that the effectiveness of the proposed multi-goal RRT#

increases with the number of robots in the scenario.

4.4 Auction andMulti-goal Motion Planner

To demonstrate the effective synergy of the sequential-single
item auction with the multi-goal motion planner, we con-
duct a computational time analysis for the basic scenario
shown in Fig. 5. The analysis compares the computational
time required by the sequential-single item auction imple-
menting the original RRT# with the one implementing the
multi-goal RRT#, evaluating both the computation of the ini-
tial scheduling of Fig. 6 and the dynamic scheduling of Fig. 8.
Simulations were executed on a laptop with Intel Core i5-
10210U processor.

Regarding the initial scheduling, the proposed approach
with the multi-goal RRT# computes the solution of Fig. 6
in 2.27 seconds. Instead, the computational time required
to compute a solution using the original RRT# increases to
5.32 seconds. As previously discussed, this difference in the
computational time is caused by the fact that the standard
RRT# is executedm (number of robots) times per each round
of the auction. On the other hand, the multi-goal RRT# is
called only once per each round of the auction.

A similar trend is shown evaluating the dynamic schedul-
ing of Fig. 8. The use of the multi-goal planner requires
1.16 seconds, while the use of standard RRT# implies a
computational timeof 2.03 seconds. In this scenario, the com-
putational time is lower because the task allocation problem
involves only 2 robots and 6 tasks. This test highlights the
benefits introduced by the proposed approach. Moreover, as
also shown in Fig. 10, the benefits of our approach become
evident as the number of robots increases.

Table 5 Comparison between the original andmulti-goal RRT# applied
in the scenario of Fig. 5

Computational Time [s] Solution Cost [s]

original RRT# 1.716 (+45%) 356.609 (-0.1%)

multi-goal RRT# 1.182 356.953

Fig. 8 Re-allocation due to a total failure of robot 3 starting from the
basic scenario

5 Discussion and Conclusions

In this paper, a dynamic task allocation and amotion planning
strategy for a team of heterogeneous robots are proposed
by also including the interaction with a human supervisor.
Specifically, the proposed solution consists of an auction-
based task allocation, and a sampling-based motion planning
based on the RRT# algorithm and enhancedwith amulti-goal
approach.

We adopted a centralized architecture composed by a cen-
tralized task allocator and a centralizedmotion planner, since
it offers three important advantages. First, the task allocator
can directly interact with the motion planner, without avoid-
ing delays caused by the communication with each agent of
the HMRS. Second, the motion planner can parallelize path
calculations. This logic could not have been adopted with
the decentralized structure. Third, a centralized architecture
is suitable for the interaction with a human supervisor. In
this way, the supervisor has the possibility to intervene in the
planning of the operation from a global point of view.

The proposed framework is tested in a simulation envi-
ronment proving that our strategy is able to tackle a complex
operation composed of different tasks in a dynamic scenario.

The proposed strategy is capable to handle the rescue oper-
ation of the basic scenario, as well as to handle perturbation
events, e.g. sensor and robot failures. Results indicate that our
approach can handle a multi-robot heterogeneous system in
a dynamic scenario respecting precedence between tasks and
priorities among sub-operations having computational effi-
ciency as the main constraint since the system must be able
to re-allocate on-the-go. This peculiarity is fulfilled by two
features of our methodology: (i) the use of an auction-based
task allocation with a human supervisor that is computation-
ally efficient compared with MILP [16] and heuristic [32]
approaches; (ii) the adoption of a motion planner with the
multi-goal approach to take full advantage of the features of
the sequential single-item auction.
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Fig. 9 Basic scenario with a
supervisor decision. Indeed, the
allocation of the task "Fix zone
1" has been assigned to the third
robot by the supervisor and the
remaining tasks have been
allocated by the auction
algorithm

The proposed multi-goal motion planner introduces sev-
eral benefits to the overall system. A comparative analysis
conducted in this study highlights the effectiveness of the
proposed multi-goal motion planner in terms of computa-
tional time compared with the single-goal motion planner.
This analysis proves the advantages introduced by the pro-
posed method in terms of the scalability of the number of
robots in the system and demonstrates the superiority of the
sequential-single item auction when paired with the multi-
goal RRT#.

Furthermore, unlike [29, 30], in this studywe demonstrate
that the multi-goal RRT# guarantees an optimal path in the
exploration graph. This is an essential feature because the
quality of the solution of the auction-based task allocation
strictly depends on the quality of the computed paths.

Moreover, the simulations with the interaction of the
human supervisor led to promising results. The human super-
visor is capable of constraining the plan by forcing the
assignment to a specific robot or changing the capabilities

Fig. 10 Comparison of the computational time between the original
and multi-goal RRT# as a function of the number of robots

required for tasks. Also in this scenario, the auction computes
a valid plan respecting the constraints of the human super-
visor. This is an important achievement since in the auction
literature the human supervisor is almost never included [2,
19, 21].

Despite the promising results, the proposed approach is
not exempt from limitations. First, we do not account for the
stochasticity of the duration of a task due to an event that was
not predicted in the scenario. Second, although in the interest
of the system’s responsiveness, the solution obtained by the
task allocation is suboptimal, since the adopted task allo-
cation is based on a single-item auction. Our approach does
not also take into account the possibility of collaborations
between robots to perform tasks, nor does it contemplate
temporal windows or deadlines for task completion. More-
over, the formulation of a low-level controller is required for
the practical execution of the task on hardware.

The analysis of the limitations paves the way for possi-
ble improvements in the proposed strategy. For example, the
uncertainty can be included in the estimation of the task exe-
cution time through the consideration of a specific probability
distribution, along the lines of [36].

The suboptimality of the solution can be improvedwithout
affecting too much the computational efficiency by comple-
menting the auction with heuristic approaches [37].

Collaborative tasks may be contemplated, similar to [2],
where more than one agent collaborates in executing a task,
together with time constraints in the execution times. The
inclusion of all these aspects will affect the formulation and
efficiency of the optimization problem –an aspect that noto-
riously lead to significant trade-offs.

In addition, a future implementation on hardware will call
for the design of a low-level controller to materially execute
the planned task once scheduled. Several well-established
techniques have been proposed in the literature, such as
in [38], where the authors present a control methodology for
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a mobile robot in dynamic environments that contain both
fixed and moving unforeseeable obstacles.

Furthermore, different operational aspects can involve dif-
ferent criteria for the design of the objective function, such
as the minimization of the risk of the operation [39, 40],
the travel distance, or the fuel consumption. The selection
of these criteria could be operated automatically, or by the
human operator according to his analysis of the operational
scenario.

Finally, also unreliable communications between the
robots and the task allocation unit should be considered and
managed. This is a crucial issue in critical scenarios, such as
in rescue operations in adverse weather conditions [19].
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15. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of
task allocation in multi-robot systems. Int. J. Robot. Res. 23(9),
939–954 (2004)

16. Bellingham, J., Tillerson, M., Richards, A., How, J.P.: Multi-task
allocation and path planning for cooperating uavs. In: Coopera-
tive Control: Models, Applications and Algorithms, pp. 23–41.
Springer (2003)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Intelligent & Robotic Systems           (2023) 109:24 Page 15 of 16    24 

17. Kurowski K., Stryk, O.V.: Online interaction of a human super-
visor with multi-robot task allocation. In: Intelligent Autonomous
Systems 13, pp. 965–978. Springer (2016)

18. Dai, W., Lu, H., Xiao, J., Zeng, Z., Zheng, Z.: Multi-robot dynamic
task allocation for exploration and destruction. J. Intell. Robot.
Syst. 98(2), 455–479 (2020)

19. Otte, M., Kuhlman, M.J., Sofge, D.: Auctions for multi-robot task
allocation in communication limited environments. Auton. Robot
44(3), 547–584 (2020)

20. Nunes, E., Gini, M.: Multi-robot auctions for allocation of tasks
with temporal constraints. In: Proceedings of theAAAIConference
on Artificial Intelligence, 29(1) (2015)

21. Moon,S.,Oh,E., Shim,D.H.:An integral frameworkof task assign-
ment and path planning for multiple unmanned aerial vehicles
in dynamic environments. J. Intell. Robot. Syst. 70(1), 303–313
(2013)

22. Liu, L., Shell, D.A.: Optimal market-basedmulti-robot task alloca-
tion via strategic pricing. In: Robotics: Science and Systems, vol.9,
no.1, pp. 33–40 (2013)

23. Das, G.P., McGinnity, T.M., Coleman, S.A., Behera, L.: A dis-
tributed task allocation algorithm for a multi-robot system in
healthcare facilities. J. Intell. Robot. Syst. 80(1), 33–58 (2015)

24. Rizk, Y., Awad, M., Tunstel, E.W.: Cooperative heterogeneous
multi-robot systems: a survey. ACM Computing Surveys (CSUR)
52(2), 1–31 (2019)

25. Pippin, C., Christensen, H., Weiss, L.: Performance based task
assignment in multi-robot patrolling. In: Proceedings of the
28th annual ACM symposium on applied computing, pp. 70–76
(2013)

26. Tan, K.C., Jung, M., Shyu, I., Wan, C., Dai, R.: Motion plan-
ning and task allocation for a jumping rover team. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 5278–5283. IEEE (2020)

27. Li, Z., Li, X., et al.: Research on model and algorithm of task
allocation and path planning for multi-robot. Open J. Appl. Sci.
7(10), 511 (2017)

28. Hussain, M., Kimiaghalam, B., Ahmedzadeh, A., Homaifar, A.,
Sayyarodsari, B.: Multi-robot scheduling using evolutionary algo-
rithms. In: Proceedings of the 5th Biannual World Automation
Congress, vol. 13, pp. 233–238. IEEE (2002)

29. Nanjanath, M., Gini, M.: Repeated auctions for robust task execu-
tion by a robot team. Robot Auton. Syst. 58(7), 900–909 (2010)

30. Nanjanath, M., Gini, M.: Dynamic task allocation for robots via
auctions. In: Proceedings 2006 IEEE International Conference on
Robotics and Automation, pp. 2781–2786, IEEE (2006)

31. LaValle, S.M.: Planning algorithms. Cambridge University Press,
(2006)

32. Al-Hussaini, S., Gregory, J.M., Gupta, S.K.: Generating task real-
location suggestions to handle contingencies in human-supervised
multi-robot missions. IEEE Trans. Autom. Sci, Eng (2023)
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