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Abstract. This study examines the use of Convolutional Neural Networks (CNN) to determine the 

optimal structural theories to adopt for the modeling of composite shells, to combine accuracy and 

computational efficiency. The use of the Axiomatic/Asymptotic Method (AAM) on higher-order 

theories (HOT) based on polynomial expansions can be cumbersome due to the amount of Finite 

Element Models (FEM) virtually available and the problem-dependency of a theory’s 

performance. Adopting the Carrera Unified Formulation (CUF) can mitigate this obstacle through 

its procedural and lean derivation of the required structural results. At the same time, the CNN can 

act as a surrogate model to guide the selection process. The network can inform on the 

convenience of a specific set of generalized variables after being trained with just a small 

percentage of the results typically required by the AAM. The CNN capabilities are compared to 

the AAM through the Best Theory Diagram (BTD) obtained using different selection criteria: 

errors over natural frequencies or failure indexes. 

 

Introduction 

The modeling of composite structures involves the balancing between accuracy and computational 

costs. Focusing on 2D models, using refined theories based on higher-order polynomial thickness 

expansions [1,2] is particularly useful in describing crucial aspects such as transverse anisotropy 

and shear deformability. However, their accuracy is strictly problem-dependent, and their variety 

is virtually unlimited.  

The Axiomatic/Asymptotic Method [3-6] can be used to identify the best models for different 

levels of numerical complexity. The AAM starts with selecting a maximum order for the 

polynomial expansion and then gradually suppresses its terms. The resulting models are then 

compared to a reference using a control parameter, e.g., displacements or frequencies. Different 

theories can emerge as optimal for the same structural problem depending on the control parameter 

chosen. Implementing the AAM may be cumbersome due to the vast number of results required, 

becoming even less manageable for complex structures. The numerical efficiency of AAM can be 

augmented by Machine Learning (ML), more specifically through Convolutional Neural 

Networks [7]. By exploiting feature extraction capabilities, CNN can create surrogate models that 

identify the best theories at a fraction of the cost required by the AAM. This result is achieved by 

drastically reducing the FEM analyses needed to train the network successfully. 

The new methodology presented in this paper is based on the Carrera Unified Formulation 

(CUF) [6] for deriving the finite element results used to train the network and to perform the 
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comparison with the outcome expected from the AAM. For the structural case presented here, the 

best models were selected based on the accuracy in estimating different natural frequencies and 

failure indexes, with the results summarized through the Best Theory Diagram (BTD).  

 

CUF and FEM Formulation 

CUF efficiently obtains the governing equations and the finite element formulations for virtually 

any higher-order theory. For shells, the displacement field is expressed as 

 

u(α, β, z) = Fτ(z)uτ(α, β)              τ = 1, … , M                   (1) 

 

Fτ(z) are the expansion functions adopted along the thickness, uτ(α, β) is the vector of the 

generalized unknown displacements, and M is the total number of expansion terms. The Einstein 

notation is used on 𝜏 . As an example of displacement field formulation stemming from a 

higher-order theory, a complete fourth-order model (E4) is reported herein extended format, 

 

uα = uα1
+ zuα2

+ z2uα3
+ z3uα4

+ z4uα5
  

uβ = uβ1
+ zuβ2

+ z2uβ3
+ z3uβ4

+ z4uβ5
                                                          (2) 

uz = uz1
+ zuz2

+ z2uz3
+ z3uz4

+ z4uz5
  

 

From the geometrical and constitutive relations described in [8], and by applying the Principle 

of Virtual Displacements (PVD), the governing equation for the free-vibration problem can be 

derived for the k-th layer: 

 

mτisj
k üτi

k + kτsij
k uτi

k = 0                                                                                                              (3)                                                                                                                                                                     

 

kk
τsij and mk

τisj are 3x3 matrices known as fundamental nuclei of the stiffness and mass matrices, 

respectively. By assembling all nodes and elements and introducing the harmonic solution, the 

complete formulation of the eigenvalue problem can be obtained, 

 

(−ωn
2M + K)Un = 0                                                                               (4) 

 

Using the same approach for the static case, the governing equation reads: 

 

kτsij
k uτi

k = psj
k                                                                                                           (5)                                                                                 

 

Here, pk
sj is the fundamental nucleus for the external mechanical load. Similarly , the 

well-known static problem formulation is derived through the assembly procedure. 

 

KUn = P                                                                                                          (6) 

 

For a more in-depth description of the assembly procedure and other mathematical details, the 

reader can refer to [8]. 

Axiomatic/Asymptotic Method 

AAM selects the optimal set of expansion terms, or generalized variables, to adopt for a specific 

problem configuration. The aim is to find the most convenient structural theory to provide the best 

accuracy at the lowest computational cost. Dealing with polynomial expansions, this procedure’s 
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first step is defining the maximum order allowed. For the work presented in this paper, a maximum 

order of four was considered, leading to a total amount of possible theories equal to 215. This 

number was reduced to 212 by always considering the constant terms for each of the three 

displacement components. The accuracy of each model can be evaluated by choosing a reference 

solution, e.g., the full fourth-order expansion, E4, and a control parameter.  The first one 

considered in this paper was the percentage error over the single natural frequency, defined as 

follows: 

%Efi
= 100 ×

|fi−fi
E4|

fi
E4                                                                                 (7) 

where fi
E4 is the i-th frequency evaluated using the reference full fourth-order Taylor expansion. 

The second indicator adopted was the percentage error over a failure index evaluated at a specific 

location in the structure. The 3D Hashin criterion [9] was selected for this purpose. For example, 

the percentage error over the index for the matrix tension (MT) mode is  

 

    %EMT = 100 ×
|MT−MTE4|

MTE4                                                                            (8) 

 

The outcome of this selection procedure is summarized by the BTD, a graphical representation 

of the accuracy achievable by varying the number of generalized variables adopted. Each point of 

the BTD corresponds to the best theory, given the number of active expansion terms. 

Convolutional Neural Network 

A CNN able to handle multi-dimensional inputs and outputs was used. The input is represented by 

the set of active generalized variables identifying a specific structural theory. This information is 

first encoded into a series of 0 and 1, corresponding to a deactivated and active term, respectively. 

An example of this procedure is presented here, 

 

uα = uα1
+ zuα2

+ z4uα5
  

uβ = uβ1
+ zuβ2

+ z3uβ4
            =>          [111001010100]                                             (9) 

uz = uz1
+ zuz2

+ z2uz3
  

 

Note that the three constant terms were not included in the sequence because they were always 

considered active. This sequence is then re-shaped into a 3x4 matrix, constituting the actual input 

to the network. The output consists of the percentage errors over the first ten natural frequencies or 

the two evaluated failure indexes. The complete architecture is presented in Table 1. The training 

of the network was performed only using 10% of all possible theories and related errors. 

 

Table 1. Parameters and architecture of the adopted CNN. 

 
Layer Type Filters (Size) / Neurons Activation Function 

Convolutional 128 (3x3) ReLU 

Convolutional 128 (3x3) ReLU 

Convolutional 128 (3x3) ReLU 

Flatten - - 

Dense 128 ReLU 

Dense 128 ReLU 

Output 10 or 2 Sigmoid 
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Numerical Results 

A simply-supported shell with [0°/90°/0°] stacking sequence was considered. The curvature radii 

were kept equal along the two curvilinear coordinates α and β, imposing R/a=5. A thickness ratio 

a/h=10 was used, and the following material properties were employed: E11/E22=25, 

G12/E22=G13/E22=0.5, G23/E22=0.2, υ12= υ13= υ23=0.25. Only a quarter of the shell was modeled to 

reduce computational costs further. This choice required the use of symmetry boundary 

conditions, thus allowing to consider symmetrical vibration modes exclusively. A 4x4 mesh of Q9 

elements was adopted.  

Starting with the free-vibration problem, Figs. 1 and 2 show the BTDs for the first and third 

natural frequencies, respectively. In each of them, the results obtained from the direct application 

of the AAM are compared to those obtained by the CNN. Table 2 shows the best theories provided 

by CNN for the first five frequencies having eight active degrees of freedom; an active term is 

indicated by a black triangle, with their order increasing from left to right, up to the fourth.  

In the case of failure indexes as control parameters, a static analysis was performed on the same 

structure. A bi-sinusoidal pressure of unit amplitude was applied to the top surface. Failure indexes 

were evaluated at the center of the top and bottom edges, for the compressive and tensile modes, 

respectively. Figure 3 shows the resulting BTD. In each diagram, some of the resulting best 

models are presented. 

                        
Figure 1. BTD for the 1st frequency.        Figure 2. BTD for the 3rd frequency.                  

For the free-vibration case, the CNN accurately reproduced the BTD for different frequencies 

while also correctly providing indications regarding the relevance of specific terms. The results 

obtained over the failure indexes show similar levels of accuracy, with just a slight reduction when 

dealing with larger amounts of degrees of freedom. This behavior is related to the influence of each 

expansion term on the various stress components involved in the failure index estimation. 

 

Table 2. Best models with eight active terms for the first five frequencies. 

 
I II III 

𝑢𝛼 ▲ ▲ △ ▲ △ 𝑢𝛼 ▲ ▲ △ ▲ △ 𝑢𝛼 ▲ ▲ △ △ △ 

𝑢𝛽 ▲ ▲ △ ▲ △ 𝑢𝛽 ▲ ▲ △ ▲ △ 𝑢𝛽 ▲ ▲ △ ▲ △ 

𝑢𝑧 ▲ △ ▲ △ △ 𝑢𝑧 ▲ △ △ △ ▲ 𝑢𝑧 ▲ ▲ △ △ ▲ 

   IV V    

   𝑢𝛼 ▲ ▲ △ ▲ △ 𝑢𝛼 ▲ ▲ △ ▲ △    

   𝑢𝛽 ▲ ▲ △ ▲ △ 𝑢𝛽 ▲ ▲ △ ▲ △    

   𝑢𝑧 ▲ △ △ △ ▲ 𝑢𝑧 ▲ △ △ △ ▲    
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Figure 3. BTD based on the failure index 

Summary 

This paper explores the use of Convolutional Neural Networks in the analysis of composite shells. 

Focusing on higher-order theories obtained through polynomial expansions, CNN can identify the 

best models for various structural configurations with a fraction of the computational overhead 

required by the Axiomatic/Asymptotic Method. This new efficient approach can be extended to 

different families of problems maintaining consistent precision levels in providing the optimal 

modeling strategy. 
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