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A B S T R A C T

This paper addresses a location routing problem arising in the last-mile drone delivery context,
where drones are used to deliver small packages to a set of customers. Each drone is launched
from a fulfillment center to serve multiple customers on a single trip. The goal is to find the
optimal subset of fulfillment centers to use as drone launching and landing platforms and the
optimal drone routes with the aim of minimizing the sum of customers’ waiting times. We
study the problem under two realistic assumptions. First, the drone energy consumption is
a nonlinear function of the drone load that varies along the route, as parcels are delivered.
Second, the drone flight time is not deterministically known. To hedge against drone flight
time uncertainty, we adopt a robust optimization approach. Due to the complex nature of the
problem, which turns out to be a nonlinear mixed-integer problem, we design an exact method
based on a tailored efficient Branch & Check algorithm that uses customized no-good cuts.
The computational experiments show the validity of the proposed model and the promising
performance of the exact method. Moreover, we present a case study on last-mile parcel delivery
in Turin, Italy, providing insights into the advantages of a drone-based delivery system.

1. Introduction

The disruptive impact of e-commerce on city logistics has posed significant challenges for transportation companies (Perboli and
Rosano, 2019; Perboli et al., 2021a). This impact is not only due to the increased volume of small, frequent last-mile deliveries,
often characterized by tight time-windows, but also to the changing behavior of customers who are becoming more connected and
informed. In order to develop effective solutions, it is essential to rethink city logistics with a customer-centric focus, adapting to
the evolving needs.

As a result, traditional cost-based models are being threatened, and companies are exploring new delivery methods (Crainic et al.,
2021; Perboli et al., 2018b) as drones, that have the potential to disrupt last-mile delivery (McKinsey, 2023). Forward-thinking
companies are already planning for a future where drones will play a significant role, conducting proofs-of-concept to test their
feasibility in the context of city logistics. Examples include ’’Amazon Prime Air’’ introduced in late 2013 (Bensinger, 2013), Google’s
Wing (Kanellos, 2014; Verge, 2023), which has made 300,000 commercial drone deliveries in the U.S., Europe, and Australia, and
Walmart and its partners (such as Zipline (2023)), which completed 6000 deliveries in the United States last year.

Drones may streamline last-mile operations in different ways, leading to considerable cost savings (since they have lower oper-
ational and maintenance costs, compared to terrestrial vehicles), and delivery time reduction; notably, they are eco-friendly (Good-
child and Toy, 2018) and almost noise- and traffic-free, all characteristics in line with emerging green and sustainable logistics
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goals (Melkonyan et al., 2020). In addition, drones often represent the unique option to reach distant and/or isolated areas.
For these reasons, drones are increasingly used in a wide range of applications, such as surveillance (Panadero et al., 2020; Di
Puglia Pugliese et al., 2021), humanitarian logistics (Zhang and Li, 2023; Kyriakakis et al., 2022; Ghelichi et al., 2021), and traffic
monitoring (Barmpounakis and Geroliminis, 2020).

Despite these advantages, the integration of drones into city logistics poses operational challenges and has limitations (Benarbia
nd Kyamakya, 2022) among which limited payload capacity and flight range (Moshref-Javadi and Winkenbach, 2021). For
his reason, drone logistics has been usually considered in a collaborative framework, where traditional vehicles support drone
perations. Since this solution brings non-trivial synchronization issues between vehicles and drones, more often, logistics facilities
s Fulfillment Centers (FCs) are used to support drone delivery services. In particular, in FCs, drones can be launched and retrieved,
eloaded and recharged. This poses the problem of the optimal selection of FCs, since a wrong choice could hinder the efficiency of
he service, increasing power consumption, flight distance, and total customers’ waiting time.

It is worth noting that while the recent literature has extensively studied truck and drone delivery systems, location routing
roblems with drones have received relatively less attention. This problem combines two sub-problems: the FCs selection problem
nd the latency routing problem, where the objective is the minimization of the customers’ waiting time, also called latency.
he very few scientific contributions that tackled the two problems (location and routing) in an integrated model neglect two
undamental characteristics of drones, namely the limited payload and the energy consumption model. While the former is relatively
traightforward, the latter plays a critical role in determining the performance of drone delivery systems, especially when multiple
isits are allowed in a single drone trip. The majority of the models in the drone-aided literature incorporate energy consumption
nly indirectly through flight time limits or flight distance limits. In the best-case scenario, where the fundamental physical forces
nvolved in flight are approximated, energy consumption is modeled as a linear function of flight time (Troudi et al., 2018; Dorling
t al., 2016), which is a crucial factor affecting battery consumption (Zhang et al., 2021). In this paper, following the approach
roposed by Dorling et al. (2016) and then used in Cheng et al. (2020a), we explicitly consider the internal and external factors that
ffect energy consumption, namely the drone design (like the weight of different drone parts, the number of rotors), the environment
like air density, gravitational force), and the load carried out by the drone. This last aspect adds complexity to the problem for two
easons. First, the load carried out by drones depends on the assignment of customers to drones. Second, the load of the drone varies
ach time a package is delivered, and hence, it is directly influenced by the routing plan to be optimized. Ignoring load-dependent
nergy consumption can lead to an underestimation of the energy consumption. Additionally, we indirectly incorporate the effects of
ind speed, weather conditions, and physical obstacles like the canyons of tall buildings (Vural et al., 2021a; Evers et al., 2014) by

onsidering flight time uncertain. In fact, the exogenous uncertain factors mentioned above have a direct impact on the drone speed,
nd hence, on the flight time. The incorporation of the uncertainty in flight time strongly affects the total customers’ waiting time,
hich is the key customer-centric Key Performance Indicator (KPI) that we want to optimize. Recently, the issue of incorporating
ncertainty into latency-based routing problems has been addressed in Beraldi et al. (2019), Bruni et al. (2020a,b) and Bruni et al.
2018).

Summarizing, the contributions of this paper are as follows. We introduce the Drone Latency Location Routing Problem (DLLRP)
s a new problem able to jointly address the FCs selection and the drone routing problem, considering load-dependent drone
nergy requirements. The problem is addressed within a robust optimization framework (Ben-Tal and Nemirovski, 2002), where
ncertainty affects the energy consumption constraints through uncertain flight times. Rather originally, we consider a nonlinear
obust optimization model, for which we derive deterministic counterparts for two commonly used uncertainty sets. The resulting
roblem is a robust optimization problem, where robust constraints are nonlinear in the decision variables even when linear
ncertainty sets are considered. Only a few papers have addressed nonlinear robust optimization models (see for instance Yuan
t al. (2018), Mittal et al. (2011) and Kolvenbach et al. (2018)): this is the only paper in the routing context and one of the very
ew presenting an exact solution approach. Previous work by the same authors (Bruni and Khodaparasti, 2022) addressed a simplified
ersion of the model with a box uncertainty set and presented a heuristic approach. In this paper, we extend the research providing
n efficient exact algorithm to address the computational complexity of the problem, also considering the more complex case of
llipsoidal uncertainty, which is deemed more appropriate for flight time uncertainty (Chassein et al., 2019) and is less conservative
han the box case. To the best of our knowledge, this is the first location routing model for drone delivery that simultaneously
ccounts for all these aspects.

The rest of this paper is organized as follows. Section 2 discusses the related literature. Section 3 presents the problem and
discussion on drone energy consumption under uncertain flight times. The deterministic counterparts are then derived for two

ncertainty sets. Section 4 describes the exact solution approach. Section 5 is devoted to an extensive computational study carried
ut with the aim of assessing the performance of the exact method. Section 6 provides managerial insights through a case study,
oncerning the metropolitan area of Turin (Italy), derived from recent collaborations of the authors with the Center for Automotive
esearch and Sustainable mobility of Politecnico di Torino (CARS@Polito) and the Regional Government of Piedmont, as part of the
evelopment of the new Logistics and Mobility Plan to be implemented in 2025 (CARS@POLITO, 2012; Perboli et al., 2021a,b).
inally, Section 7 concludes the paper.

. Literature review

Over the last decade, abundant research has been conducted concerning drone-aided delivery systems (the reader is referred
o the recent surveys (Moshref-Javadi and Winkenbach, 2021; Macrina et al., 2020; Poikonen and Campbell, 2021)). The multi-
2

epot drone delivery problem (also with facility location) has recently received some attention. Table 1 classifies such contributions
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Table 1
Characteristics of the contributions on multi-depot/location problems.

Location Routing Drone Energy
payload consumption

Yakıcı (2016) 𝐼 ✓ ✗ ✗

Chowdhury et al. (2017) – ✗ ✓ Linear
Golabi et al. (2017) – ✗ ✓ ✗

Kim et al. (2017) 𝐻 ✓ ✓ ✗

Pulver and Wei (2018) – ✗ ✗ ✗

Chauhan et al. (2019) – ✗ ✓ Linear
Liu et al. (2019) 𝐼 ✓ ✗ ✗

Macias et al. (2020) 𝐼 ✓ ✗ Linear
Torabbeigi et al. (2020) 𝐻 ✓ ✓ Linear
Kim et al. (2021) 𝐼 ✓ ✓ ✗

Li et al. (2021) 𝐼 ✓ ✗ ✗

Grogan et al. (2021) 𝐼 ✓ ✗ ✗

Dukkanci et al. (2021) – ✗ ✓ Nonlinear (speed)
Vural et al. (2021a) 𝐼 ✓ ✗ ✗

Zhu et al. (2022) 𝐼 ✗ ✓ Linear
This paper 𝐼 ✓ ✓ Nonlinear

𝐻 : Hierarchical 𝐼 : Integrated.

on the basis of the way the Location problem is addressed (either in a hierarchical or integrated model) and the presence or
absence of Routing decisions. Other critical features such as Drone payload and Energy consumption constraints are also examined.

e highlight that the distinguishing feature of drone routing problems, with respect to classical vehicle routing problems, is that
nergy consumption is not anymore a trivial function of flight time and speed, but also depends on the payload.

Yakıcı (2016) proposed a selective location routing model, with an upper bound on the number of selected stations to be used,
here the importance value corresponding to the covered points is maximized. An ant colony optimization metaheuristic is designed

o solve the problem. Chowdhury et al. (2017) and Golabi et al. (2017), in the humanitarian logistic context, proposed location
odels where drones assist people in affected areas. Kim et al. (2017) proposed a set covering model to find the optimal number of

ocations used as depots in a healthcare context, followed by a multi-depot drone routing model. A Lagrangian relaxation method
as also proposed to solve the model. Pulver and Wei (2018) presented a bi-objective covering location model to find the optimal

ocations of drone launch sites for an emergency medical service application. Chauhan et al. (2019) studied the maximum coverage
acility location problem with drones, where facilities act as launching sites for drones, performing back-and-forth trips. Liu et al.
2019) presented a model to find the optimal location of sites to launch the drones and the optimal drone routes minimizing the
otal cost, including base establishment cost, drone usage cost, and flight cost. Again, in the humanitarian relief context, Macias
t al. (2020) proposed a combined location routing and trajectory model for locating uncapacitated hubs and optimizing drone
rajectories in a relief distribution context. A trajectory optimization problem is used to optimize the state of charge in the drone
attery at the end of the flight. Torabbeigi et al. (2020) proposed two mathematical formulations involving strategic and operational
lans to optimize drone parcel delivery. At the strategic level, a set covering model is solved to determine the minimum number of
epots to open such that all customers are covered; next, at the operational stage, a drone routing model is solved in order to find
he minimum number of drones to dispatch from the open depots and the corresponding optimal paths. The authors included energy
onsumption constraints into the problem and modeled them as linear functions in terms of load and flight time. Kim et al. (2021)
roposed a drone routing model with multiple depots, multiple drones, and flight range constraints. The objective function minimizes
he routing cost and the cost assigned to drone usage. Li et al. (2021) studied a multi-depot drone routing problem to minimize
he total number of drones used and the total traveled distance. The model accounts for a maximum drone flight time. To solve the
roblem, the authors developed a heuristic approach based on a hybrid large neighborhood search. In a recent paper, Grogan et al.
2021) proposed a multi-depot routing problem with application in relief operations conducted after a tornado. It is worthwhile
oting that only a few studies in the location routing context have explicitly considered the energy consumption model. For the
ake of completeness, we mention that Dukkanci et al. (2021) introduced an explicit calculation of the energy consumption as a
onlinear function of the drone speed in a problem where drones are transported by traditional vehicles (trucks).

Focusing on the contributions under uncertainty, Vural et al. (2021b) proposed a two-stage stochastic programming model to
ddress the airbase location decisions and the drone routing plans simultaneously. The first stage decisions include the base location
nd the drone assignments to the bases. Drone routing plans represent the recourse decisions that are taken after knowing the
eather realization. The model does not explicitly account for the energy consumption but a limit for the maximum drone flight time

s considered. Zhu et al. (2022) presented a two-stage robust facility location problem, where drones are only allowed to perform
ack-and-forth trips. Considering a single-depot setting, Kim et al. (2018) studied drone flight scheduling under uncertainty on
attery duration, expressed in terms of maximum flight time. The objective function is the minimization of the drone operating
osts, used as a proxy for the number of drones. Flight duration is modeled as a robust parameter and the equivalent robust
ormulation is derived for the linear battery capacity constraint. Ulmer and Thomas (2018) considered uncertainty in customers’
rders and studied a dynamic vehicle routing problem where drones and vehicles work separately to maximize the expected reward
ained from delivering the orders within a deadline. Radzki et al. (2021a) addressed the drone routing problem under uncertainty
3

f travel parameters, modeled as fuzzy numbers, as an extension to the deterministic model presented in Thibbotuwawa et al.
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(2020). The model is solved for instances of up to 12 customers. In a recent study, Di Puglia Pugliese et al. (2021) adopted a
robust optimization approach to address weather-related uncertainty in energy consumption for a synchronized truck and drone-
based problem. In this problem, drones work in tandem with trucks to serve one customer for each trip. The proposed formulation
minimizes transportation costs while drone and truck capacity, time windows and energy consumption are taken into account. The
uncertain energy consumption is described as a piece-wise linear function, which depends on the period of time and is formulated
for the budgeted polytope case. Instances of up to 15 customers are solved by a decomposition solution approach based on Benders’
combinatorial cuts. A similar problem was addressed in Radzki et al. (2021b) with an approach based on constraint programming.
The goal is to find feasible routes for a fleet of drones under changing weather conditions, guaranteeing a minimum level of
customers’ satisfaction, expressed as a percentage of the expected amount of goods delivered to the recipients. Zhang et al. (2023)
presented a robust drone arc routing problem on a multi-graph. Lagrangian relaxation and branch-and-price framework are used
to solve the problem. Flight duration is used to approximate the energy consumption of drones. Cheng et al. (2020b) considered
the risk of drone delivery systems under uncertain wind conditions via the minimization of the essential riskiness index, to help
meet delivery deadlines by limiting the probability of tardiness. The author assumes that drones have sufficient energy to perform
a round trip and that wind conditions do not affect energy consumption.

The present study is different from the extant literature since it explicitly addresses the non-linear and uncertain nature of the
nergy consumption function. Moreover, it considers latency as the primary objective to be minimized in a location routing problem.
one of the above mentioned papers has considered these issues before.

. Problem description and mathematical formulation

The DLLRP is a location routing problem that determines the subset of launch and landing FCs for a fleet of drones with the aim
f minimizing the customers’ waiting time.

The problem assumptions are summarized as follows:

• The number of FCs is limited and each FC can host a pre-specified number of drones.
• The launching FC can be different from the retrieving FC.
• Drones are homogeneous in terms of maximum payload and battery capacity.
• Each drone can serve more than one customer on a trip.
• Battery consumption nonlinearly depends on the drone load, which varies as the parcels are dropped.
• Flight times are not deterministically known and this uncertainty affects both the arrival time at customers and the battery

energy consumption.

Fig. 1 displays a solution of the DLLRP with three FCs, two drones, and nine customers.
In what follows, we present the deterministic formulation of the DLLRP, built upon the layered formulation (Nucamendi-Guillén

t al., 2022; Bruni and Khodaparasti, 2022), which has been efficiently used to model latency-based objective functions (Bruni et al.,
020c,d,e). Fig. 2 describes a network stratified in levels or layers, and for this reason called multi-layer (Nucamendi-Guillén et al.,
016). The multi-layer network is built by adding the copies of 𝑛 customers (depicted by a square) in each level and the copies of 𝑚
otential FCs (depicted by a circle). The number of levels in the multi-layer network is denoted by 𝑁 and depends on the number
f customers to be serviced (𝑛) and the number of drones available (𝑘) (The number of levels is limited above 𝑁 = 𝑛 − 𝑘 + 1. In

fact, if 𝑘−1 drones just visit one customer, then the 𝑘th drone visits the remaining 𝑛− (𝑘−1) customers. Each level number (from 1
to 𝑁) represents the backward order of visits of a customer: the last customer is in Level 1, the last but one in Level 2, and so on.
Level 0 is always assigned to the FCs that retrieve the drones. Each path in the network corresponds to a route. It starts in a copy
of the FCs in some level (from 2 to 𝑁) and ends in a copy of the FCs visited in Level 0. Since two distinct drones cannot visit the
same customer, each customer cannot be visited in different levels.

Fig. 3 illustrates the multi-layer network for the example in Fig. 1.
By using the notation reported in Table 2, the mathematical model can be formulated as follows.

min
∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿
𝑟 𝑡𝑖𝑐 𝑦

𝑟
𝑖𝑐 (1)

∑

𝑟∈𝐿
𝑥𝑟𝑖 = 1 ∀𝑖 ∈ 𝐶 (2)

∑

𝑠∈𝐷

∑

𝑗∈𝐶

∑

𝑟∈𝐿
𝑟≠1

𝑦𝑟𝑠𝑗 = 𝑘 (3)

∑

𝑖∈𝐶
𝑥1𝑖 = 𝑘 (4)

∑

𝑗∈𝐶
𝑗≠𝑖

𝑦𝑟𝑖𝑗 = 𝑥𝑟+1𝑖 ∀𝑖 ∈ 𝐶, ∀𝑟 ∈ 𝐿, 𝑟 ≠ 𝑁 (5)

∑

𝑦0𝑗𝑠 = 𝑥1𝑗 ∀𝑗 ∈ 𝐶 (6)
4

𝑠∈𝐷
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Fig. 1. Example.

Fig. 2. Multi-layer network for the DLLRP.

∑

𝑖∈𝑉
𝑖≠𝑗

𝑦𝑟𝑖𝑗 = 𝑥𝑟𝑗 ∀𝑗 ∈ 𝐶, ∀𝑟 ∈ 𝐿, 𝑟 ≠ 𝑁 (7)

∑

𝑠∈𝐷
𝑦𝑁𝑠𝑗 = 𝑥𝑁𝑗 ∀𝑗 ∈ 𝐶 (8)

𝑧𝑠 ≥ 𝑦𝑟𝑠𝑗 ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶, ∀𝑟 ∈ 𝐿, 𝑟 ≠ 1 (9)
5
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Fig. 3. Multi-layer network corresponding to the solution of Fig. 1.

Table 2
Notation for the mathematical model for the DLLRP.

Sets

𝐶 = {𝐶1 ,… , 𝐶𝑛} Set of customers indexed by 𝑐
𝐷 = {𝐹𝐶1 ,… , 𝐹𝐶𝑚} Set of FCs, indexed by 𝑠
𝑉 = 𝐶 ∪𝐷 Set of all nodes indexed by 𝑖, 𝑗
𝐿 = {0, 1,… , 𝑁} Set of levels, indexed by 𝑟

Parameters

𝑘 Number of drones
𝑄 Drone payload capacity
𝐷𝑆 Maximum number of FCs
𝑑𝑗 Demand of customer 𝑗 ∈ 𝐶
𝑡𝑖𝑗 Flight time along arc (𝑖, 𝑗)
𝜙 Maximum number of drones that can be hosted in each FC
𝐵 Drone battery capacity
𝑀𝑠𝑗 , 𝑀 ′

𝑖𝑗 Big-M parameters

Decision variables

𝑥𝑟𝑖 Binary variable that takes 1 if customer 𝑖 is visited in level 𝑟; otherwise, 0.
𝑦𝑟𝑖𝑗 Binary variable that takes 1 if node 𝑗 is visited right after node 𝑖 and there are exactly

𝑟 nodes left to be visited after (including node 𝑗); otherwise, 0.
𝑒𝑖 Accumulated energy consumption upon arrival at node 𝑖 ∈ 𝑉
𝑧𝑠 Binary variable that takes 1 if FC 𝑠 is used; otherwise, 0.
𝑢𝑖𝑗 Total load carried by the drone while traveling over arc (𝑖, 𝑗) after serving customer 𝑖.
𝑣𝑠𝑗 Total load carried by the drone traveling over arc (𝑠, 𝑗) upon departure from FC 𝑠.
6
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∑

𝑠∈𝐷
𝑧𝑠 ≤ 𝐷𝑆 (10)

∑

𝑗∈𝐶

∑

𝑟∈𝐿
𝑦𝑟𝑠𝑗 ≤ 𝜙 ∀𝑠 ∈ 𝐷 (11)

𝑦0𝑖𝑠 ≤
∑

𝑟∈𝐿
𝑟≠1

∑

𝑗∈𝐶
𝑦𝑟𝑠𝑗 ∀𝑖 ∈ 𝐶, ∀𝑠 ∈ 𝐷 (12)

𝑣𝑠𝑗 ≥ 𝑑𝑗
∑

𝑟∈𝐿
𝑟≠1

𝑦𝑟𝑠𝑗 ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶 (13)

𝑣𝑠𝑗 ≤ 𝑄
∑

𝑟∈𝐿
𝑟≠1

𝑦𝑟𝑠𝑗 ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶 (14)

𝑢𝑖𝑗 ≥ 𝑑𝑗
∑

𝑟∈𝐿
𝑟≠𝑁

𝑦𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 (15)

𝑢𝑖𝑗 ≤ (𝑄 − 𝑑𝑖)
∑

𝑟∈𝐿
𝑟≠𝑁

𝑦𝑟𝑖𝑗 ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 (16)

∑

𝑠∈𝐷
𝑣𝑠𝑖 +

∑

𝑗∈𝐶
𝑗≠𝑖

𝑢𝑗𝑖 −
∑

𝑗∈𝐶
𝑗≠𝑖

𝑢𝑖𝑗 = 𝑑𝑖 ∀𝑖 ∈ 𝐶 (17)

𝑒𝑠 + 𝑘′(𝑊 +𝑀 + 𝑣𝑠𝑗 )3∕2𝑡𝑠𝑗 ≤ 𝑒𝑗 +𝑀𝑠𝑗 (1 −
∑

𝑟∈𝐿
𝑟≠1

𝑦𝑟𝑠𝑗 ) ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶 (18)

𝑒𝑖 + 𝑘′(𝑊 +𝑀 + 𝑢𝑖𝑗 )3∕2𝑡𝑖𝑗 ≤ 𝑒𝑗 +𝑀 ′
𝑖𝑗 (1 −

∑

𝑟∈𝐿
𝑟≠𝑁

𝑦𝑟𝑖𝑗 ) ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 (19)

𝑒𝑗 + 𝑘′(𝑊 +𝑀)3∕2
∑

𝑠∈𝐷
𝑡𝑗𝑠𝑦

0
𝑗𝑠 ≤ 𝐵 ∀𝑗 ∈ 𝐶 (20)

𝑒𝑠 = 0 ∀𝑠 ∈ 𝐷 (21)

𝑧𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝐷 (22)

𝑥𝑟𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐶, ∀𝑟 ∈ 𝐿 (23)

𝑦𝑟𝑐𝑗 ∈ {0, 1} ∀𝑐 ∈ 𝐶, ∀𝑗 ∈ 𝑉 , 𝑐 ≠ 𝑗, ∀𝑟 ∈ 𝐿, 𝑟 ≠ 𝑁 (24)

𝑦𝑟𝑠𝑗 ∈ {0, 1} ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶, ∀𝑟 ∈ 𝐿, 𝑟 ≠ 1 (25)

𝑣𝑠𝑗 ≥ 0 ∀𝑠 ∈ 𝐷, ∀𝑗 ∈ 𝐶 (26)

𝑢𝑖𝑗 ≥ 0 ∀𝑖, 𝑗 ∈ 𝐶, 𝑖 ≠ 𝑗 (27)

𝑒𝑖 ≥ 0 ∀𝑖 ∈ 𝐶 (28)

The objective function (1) minimizes the total latency, defined as the sum of customers’ waiting times. Constraints (2) ensure that
each customer is visited exactly once. Constraint (3) ensures to dispatch exactly 𝑘 drones. Constraint (4) guarantees that all the
dispatched drones are finally retrieved. Constraints (5)–(8) represent the connectivity constraints. Constraints (9) mark a FC as
used, when a drone is launched from it. Constraint (10) limits the number of FCs to use and constraints (11) avoid the FCs capacity
to be violated. Constraints (12) ensure that only FCs already used to launch one or more drones. We recall that drone launch and
collection can possibly take place at two distinct FCs. Constraints (12) ensure that only FCs already used to launch one or more
drones can be used to retrieve drones. Constraints (13)–(17) model the restrictions on drone payload capacity. Constraints (13) and
(15) determine the minimum values for 𝑣𝑠𝑗 and 𝑢𝑖𝑗 and allow to estimate the minimum capacity required to carry the demand of
customer 𝑗. Constraints (14) and (16) force the same variables to be zero whenever variables 𝑦𝑟𝑠𝑗 and 𝑦𝑟𝑖𝑗 are zero, respectively.
Also, they ensure that the drone maximum capacity 𝑄 is not violated. Note that (𝑄 − 𝑑𝑖) is an upper bound on the total demand of
customers to be visited after customer 𝑖. Constraints (18) consider the energy consumption between a FC 𝑠 ∈ 𝐷 and the customer
𝑗 ∈ 𝐶 visited right after. In a similar way, constraints (19) account for the energy consumed while traveling between two consecutive
customers 𝑖, 𝑗 ∈ 𝐶. Constraints (20) ensure that the drone battery capacity is respected. Here, the energy consumed to reach the
final FC 𝑠 ∈ 𝐷 is added. Finally, constraints (22)–(28) establish the nature of the variables.

Constraints (18)–(21) are derived from the energy consumption model proposed by Dorling et al. (2016), which is based on the
assumption that thrust balances the weight force and that the power consumed during takeoff or landing is approximately equivalent
to the power consumed while hovering. Under these assumptions, the power consumption 𝑃 (in watts W) of a 𝐻-rotor drone that
flies over arc (𝑖, 𝑗), upon departing from customer 𝑖 while carrying a load of 𝑙𝑖𝑗 , can be evaluated as:

𝑃 (𝑙 ) =

√

𝑔3
(𝑊 +𝑀 + 𝑙 )3∕2 (29)
7

𝑖𝑗 2𝜏𝜅𝐻 𝑖𝑗
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where 𝑊 is the frame weight of drone (kg) and 𝑀 is the drone battery weight (kg); 𝑔 represents the gravity (N); 𝜏 is the fluid
density of air (kg/m3); 𝜅 is the area of the spinning blade disc (m2), and 𝐻 is the number of drone rotors. Also note that the drone
load 𝑙𝑖𝑗 is specified as follows:

𝑙𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑣𝑖𝑗 𝑖 ∈ 𝐷, 𝑗 ∈ 𝐶
𝑢𝑖𝑗 𝑖 ∈ 𝐶, 𝑗 ∈ 𝐶
0 𝑖 ∈ 𝐶, 𝑗 ∈ 𝐷

From now on, for the sake of brevity, we denote
√

𝑔3
2𝜏𝜅𝐻 by 𝑘′.

Therefore, the energy consumption 𝐸 along arc (𝑖, 𝑗) traversed in time 𝑡𝑖𝑗 (in Watt-second) is represented as:

𝐸(𝑙𝑖𝑗 , 𝑡𝑖𝑗 ) =

√

𝑔3

2𝜏𝜅𝐻
(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗 (30)

Clearly, the energy consumption nonlinearly depends on the load upon departure from each node.

3.1. Robust energy consumption constraint

In this section, we describe how uncertainty in flight times can be incorporated into the model via a robust optimization approach.
This framework is particularly suitable for this problem as it explicitly balances solution quality and feasibility under worst-case
scenarios. Although this conservatism may appear restrictive, it is appropriate in our case, given the limited battery autonomy of
drones: unexpected energy consumption fluctuations could even lead to drone crashes. It is evident, then, the tremendous impact
that ignoring uncertainty could have, especially in a context where routing decisions should be taken, as in the present paper.

Let us consider an arbitrary route 𝜋 represented by the ordered set of arcs (𝑖, 𝑗), including the starting FC, the set of visited
customers, and the ending FC. We can denote the total drone energy consumption along the route by:

(𝑡, 𝜋) =
∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗 . (31)

We should note that (𝑡, 𝜋) is a convex function in 𝑙𝑖𝑗 , since 𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2 is convex in 𝑙𝑖𝑗 and the flight time 𝑡𝑖𝑗 is positive.
Let us assume that the vector of flight times 𝑡 = [𝑡𝑖𝑗 ] ∈ R𝐿1 is uncertain and belongs to the uncertainty set 𝑈

𝑈 = {𝑡 = 𝑡 +  𝜉|𝜉 ∈  ⊆ R𝐿2}. (32)

Here 𝑡 ∈ R𝐿1 is the nominal value,  = [𝑡1, 𝑡2, … , 𝑡𝐿2
] ∈ R𝐿1×𝐿2 is a given column-wise matrix and 𝜉 represents the vector of

primitive uncertainties. Depending on how the set  is defined, different uncertainty regions can be considered. For instance,
ellipsoidal and box uncertainty sets correspond to  = {𝜉| ‖𝜉‖𝑝 ≤ 𝜌} with 𝑝 = 2 and 𝑝 = ∞, respectively, where ‖⋅‖𝑝 is the
𝑝-norm (Ben-Tal et al., 2015) . We assume that the set  is nonempty, convex, and compact, 0 ∈ 𝑟𝑖() where 𝑟𝑖() denotes the
elative interior of . The energy feasibility constraint under uncertainty becomes a nonlinear constraint with robust parameters:

(𝑡, 𝜋) ≤ 𝐵, ∀𝑡 ∈ 𝑈. (33)

roposition 1. If we consider ellipsoidal and interval uncertainty sets, the nonlinear robust energy feasibility constraints (33) can be
ewritten as

∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗 + 𝜌

‖

‖

‖

‖

‖

‖

∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗

‖

‖

‖

‖

‖

‖𝑞

≤ 𝐵 (34)

here 𝜌 ∈ R is an input parameter specified by the decision maker controlling robustness in  and 𝑞 is such that 1
𝑝 +

1
𝑞 = 1.

Proof. As shown by Ben-Tal et al. (2015) (Theorem 2) constraint (33) is satisfied if and only if

𝑡𝑇 𝜆 + 𝛿∗( 𝑇 𝜆|) − ∗(𝜆, 𝜋) ≤ 𝐵 (35)

where 𝜆 ∈ R𝐿1 , 𝛿∗(𝜓|𝑆) = sup𝜇∈𝑆 𝜓𝑇 𝜇 is the support function of the arbitrary set 𝑆, and ∗ denotes the conjugate of function 
which is defined as

∗(𝜆, 𝜋) = inf
𝑡∈R𝐿1

{𝑡𝑇 𝜆 − (𝑡, 𝜋)}. (36)

In our case, the support function 𝛿∗ simplifies to 𝛿∗( 𝑇 𝜆|) = 𝜌 ‖
‖

 𝑇 𝜆‖
‖𝑞 .

Therefore, (35) reduces to

𝑡𝑇 𝜆 + 𝜌 ‖‖
‖

 𝑇 𝜆‖‖
‖𝑞

− ∗(𝜆, 𝜋) ≤ 𝐵 (37)

Clearly, (𝑡, 𝜋) is linear in terms of the robust vector 𝑡 and it can easily be verified that

∗(𝜆, 𝜋) =
{

0, 𝜆 = [
∑

(𝑖,𝑗)∈𝜋 𝑘
′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2]

∑ ′ 3∕2
8

−∞, 𝜆 ≠ [ (𝑖,𝑗)∈𝜋 𝑘 (𝑊 +𝑀 + 𝑙𝑖𝑗 ) ]
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Fig. 4. Overview of the B&Ck algorithm.

Hence, the deterministic counterpart of (33) is derived as

∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗 + 𝜌

‖

‖

‖

‖

‖

‖

∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗

‖

‖

‖

‖

‖

‖𝑞

≤ 𝐵 (38)

Moreover, flight time uncertainty also affects the objective function (1). For the box uncertainty set (𝑝 = ∞, 𝑞 = 1), its
deterministic counterpart can be rewritten as follows:

min
∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿
𝑟 𝑡𝑖𝑐 𝑦

𝑟
𝑖𝑐 + 𝜌(

∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿
𝑟 𝑡𝑖𝑐 𝑦

𝑟
𝑖𝑐 ) (39)

For the ellipsoidal uncertainty set (𝑝 = 𝑞 = 2), the deterministic counterpart is expressed as follows:

min
∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿
𝑟 𝑡𝑖𝑐 𝑦

𝑟
𝑖𝑐+

𝜌
√

√

√

√

√

∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿
𝑟2 𝑉 𝑎𝑟(𝑡𝑖𝑐 ) 𝑦𝑟𝑖𝑐 + 2

∑

𝑖∈𝑉

∑

𝑐∈𝐶
𝑐≠𝑖

∑

𝑟∈𝐿

∑

𝑖′∈𝑉
𝑖′≠𝑖

∑

𝑐′∈𝐶
𝑐′≠𝑐
𝑐′≠𝑖′

∑

𝑟′∈𝐿
𝑟 𝑟′ 𝐶𝑂𝑉 (𝑡𝑖𝑐 , 𝑡𝑖′𝑐′ )𝑦𝑟𝑖𝑐𝑦

𝑟′
𝑖′𝑐′ (40)

The NP-hardness of the DLLRP, as a location routing problem, and the presence of nonlinear constraints (also nonlinear objective
unction in case of ellipsoidal uncertainty set) call for the design of a tailored solution method able to tackle the problem at hand.

. Solution approach

In this Section, we present an efficient exact method to address the computational difficulty of the DLLRP. In particular, we
ropose a Branch&Check (B&Ck, for short) algorithm. B&Ck (Beck, 2010; Thorsteinsson, 2001) is a form of logic-based Benders
9
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decomposition approach (Bruni et al., 2022), which divides a problem into a Master Problem (MP) and a subproblem. The MP is
very often obtained by ignoring or relaxing difficult constraints of the problem. The main difference between logic-based Benders
and B&Ck is that in the logic-based Benders approach, the subproblems are optimization problems to be solved, whereas, in the
B&Ck, the subproblem only checks specific aspects of the problem, very often the feasibility of the MP solution with respect to the
original problem constraints. If the subproblem is infeasible, one or more cuts are added to the MP, with the aim of excluding the
current solution, or solutions with an identifiable infeasible pattern. Conflict analysis from constraint programming can also be used
to generate cuts and fix variables in the MP through propagation. The algorithm iterates between the MP and the subproblem until
a globally optimal solution is found. In the B&Ck, the subproblems are solved during the search for a solution to the MP, without
waiting until the MP is solved to optimality, and cuts are generated and added at each feasible MP solution. In this paper, we apply
the B&Ck, on a MP whose constraints set is defined by (2)–(17) and (22)–(27). We notice that the nonlinear energy consumption
constraints are not included in the MP. Under the box uncertainty set, the MP objective function is (39); for the ellipsoidal case,
the MP objective function is (40). The objective function is then linear for the box uncertainty set and instead nonlinear when
the ellipsoidal uncertainty set is considered. In both cases, the MP has linear constraints and mixed-integer variables. Hence, a
Branch&Bound (B&B) method is used to explore the decision tree and, at each integer solution found in the B&B tree, the (global)
feasibility of the solution is checked. Fig. 4 shows the flowchart of the proposed B&Ck algorithm.

Once an integer feasible solution is found, a procedure is invoked to check the feasibility of the master problem solution with
espect to the energy constraints. More in detail, for each of the 𝑘 drone routes 𝜋𝑝, 𝑝 = 1,… , 𝑘 identified by the current master

problem solution, the energy consumption constraints (34) are checked to know whether or not the energy consumed by the drone
is enough to complete the route. Algorithm 1 describes the pseudocode of the procedure invoked, through a callback procedure,
to build the 𝑘 drone routes starting from the information encoded into the decision variables of the master problem. In particular,
after having set the Boolean variable 𝑓𝑙𝑎𝑔 to false, and the set of eligible nodes  = 𝐶, the algorithm starts with an empty route in
line 3, looking for the last customers visited (at level 1) by one of the drones, i.e. 𝑐 ∈  such that 𝑥1𝑐 = 1. This customer is followed
by the FC 𝑠 ∈ 𝐷 such that 𝑦0𝑐𝑠 = 1 (line 9), where the drone is finally retrieved. The arc (𝑐, 𝑑) is then inserted at the end of the list 𝜋𝑝
(line 10). Then, iteratively, in lines 12–19 the customer visited before the current node 𝑐′ is found, and the arc (𝑐′, 𝑐) is inserted at
he beginning of the list 𝜋𝑝. Next, 𝑐′ becomes the current node and the process is repeated until the first customer visited is found.
f this is the case, the Boolean variable 𝑓𝑙𝑎𝑔 is set to one and, in line 21, the launching FC is found (𝑠 ∈ 𝐷,

∑

𝑟∈𝐿 𝑦
𝑟
𝑠𝑐 = 1) and the

arc (𝑑, 𝑐) inserted at the beginning of the list 𝜋𝑝. The algorithm finally ends by returning all the routes in line 24.

Algorithm 1: Pseudocode for the build route procedure
1 𝑓𝑙𝑎𝑔 ← 0,  ← 𝐶
2 for 𝑝 = 1… 𝑘 do
3 𝜋𝑝 ← ∅
4 for 𝑐 ∈  do
5 if 𝑥1𝑐 = 1 then
6 break
7 end
8 end
9 𝑑 ← {𝑠 ∈ 𝐷| 𝑦0𝑐𝑠 = 1}
10 Insert {(𝑐, 𝑑)} in 𝜋𝑝
11  ←  ⧵ {𝑐}
12 repeat
13 𝑐′ ← {𝑖 ∈ |

∑

𝑟∈𝐿 𝑦𝑟𝑖𝑐 = 1}
14 if 𝑐′ = 𝑛𝑢𝑙𝑙 then
15 𝑓𝑙𝑎𝑔 ← 1
16 break;
17 end
18 Insert {(𝑐′, 𝑐)} at the beginning of 𝜋𝑝
19 𝑐 ← 𝑐′

20 until 𝑓𝑙𝑎𝑔 = 0;
21 𝑑 ← {𝑠 ∈ 𝐷|

∑

𝑟∈𝐿 𝑦𝑟𝑠𝑐 = 1}
22 Insert {(𝑑, 𝑐)} at the beginning of 𝜋𝑝
23 end
24 return {𝜋𝑝}𝑘𝑝=1

Let 𝜋 be one of the routes retrieved by the build route procedure, the total energy consumption over 𝜋, under the box uncertainty
set assumption, is expressed as

(𝑡, 𝜋) =
∑

𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2(𝑡𝑖𝑗 + 𝜌𝑡𝑖𝑗 ). (41)
10

(𝑖,𝑗)∈𝜋
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Table 3
Example data.

Node X Y Demand

𝐶1 163 181 0.3
𝐶2 629 128 0.4
𝐶3 619 218 0.7
𝐶4 92 842 0.6
𝐹𝐶1 335 846 –
𝐹𝐶2 631 307 –

For the ellipsoidal case, the total energy consumption over 𝜋 is expressed as

(𝑡, 𝜋) =
∑

(𝑖,𝑗)∈𝜋
𝑘′(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2𝑡𝑖𝑗 + 𝜌

[

∑

(𝑖,𝑗)∈𝜋
𝑘′2(𝑊 +𝑀 + 𝑙𝑖𝑗 )3 𝑉 𝑎𝑟(𝑡𝑖𝑗 )+

2
∑

(𝑖,𝑗)∈𝜋

∑

(𝑖′ ,𝑗′)∈𝜋
(𝑖′ ,𝑗′)≠(𝑖,𝑗)

𝑘′2(𝑊 +𝑀 + 𝑙𝑖𝑗 )3∕2(𝑊 +𝑀 + 𝑙𝑖′𝑗′ )3∕2 𝐶𝑂𝑉 (𝑡𝑖𝑗 , 𝑡𝑖′𝑗′ )

]1∕2

(42)

If {𝜋𝑝}𝑘𝑝=1 are feasible, the incumbent can eventually be updated. If a route violates the energy constraint, a valid feasibility
ut is generated and added to the MP as lazy constraints. In particular, based on the general idea of ‘‘no-good’’ cuts as described
n Balas and Jeroslow (1972), we add a ‘‘no-good’’ cut for each energy infeasible route. Notice that, this is stronger than excluding
he current integer solution just by adding a single no-good cut.

The valid cut (𝜋) corresponding to route 𝜋 is defined as follows

(𝜋) =
∑

(𝑖, 𝑗)∈𝜋

∑

𝑟∈𝐿
(1 − 𝑦𝑟𝑖𝑗 ) ≥ 1. (43)

This globally valid cut ensures that, for each violated route, at least one customer/FC is removed. Since the feasible region of
he original problem is bounded and there is a finite number of feasible solutions, the number of such ‘‘no-good’’ cuts is also limited
uaranteeing the algorithm convergence. If all the nodes are explored and none of them passes the feasibility check in terms of
nergy consumption, we can conclude that the problem is infeasible.

In the following, we present a small example to clarify how the B&Ck algorithm works.

.1. Illustrative example

Consider a small example with four customers, two drones, and two potential FCs, each with a capacity of two. Table 3 shows the
oordinates of the customers 𝐶1, 𝐶2, 𝐶3, 𝐶4 and the potential FCs in the two-dimensional space, and the customers’ demands (in
erms of parcel weight). Let us consider an ellipsoidal uncertainty set with correlated flight times (Appendix reports the covariance
atrix). A drone with a battery of 0.30 kWh is considered.1 Fig. 5 displays different solutions obtained in each iteration of the
&Ck algorithm. The objective value of the solution and the amount of energy consumed in each route are indicated by 𝑂𝑏𝑗 and
, respectively.

In the first solution (Fig. 5(a)) the red route is not feasible with respect to the battery capacity (called energy infeasible) and
he cut 𝑦2𝐹𝐶2 𝐶1 + 𝑦

1
𝐶1 𝐶4

+ 𝑦0𝐶4 𝐹𝐶2 ≤ 2 is added. The solutions in Iteration 1 and Iteration 2 are energy feasible and the incumbent is

pdated (see Figs. 5(b) and 5(c)). Again, at Iteration 3, an energy infeasible solution is obtained (Fig. 5(d)) that is cut off in the next
teration by adding cut 𝑦2𝐹𝐶2 𝐶3 + 𝑦

1
𝐶3 𝐶4

+ 𝑦0𝐶4 𝐹𝐶2 ≤ 2. At Iteration 4, a different solution is found which is, again, energy infeasible;
therefore, the corresponding no-good cut 𝑦2𝐹𝐶2 𝐶2 +𝑦

1
𝐶2 𝐶4

+𝑦0𝐶4 𝐹𝐶2 ≤ 2 is added to the master problem. By adding this cut at Iteration

5, an energy-feasible solution is obtained and the incumbent is also updated; since at this step, all the tree nodes are traversed, the
current solution is the optimal one and the search ends.

5. Computational experiments

In this Section, we report the computational results carried out to assess the efficiency of the exact method. We validated our
algorithm on a set of instances introduced by Cheng et al. (2020a). The A1 and A2 instances, were originally proposed for the
single-depot deterministic drone routing problem (for A2 instances, the customers’ coordinates were divided by 2 to make the
problem feasible). We considered up to five FCs and two spatial configurations for the FCs: for type Centered instances, the FCs are
located in the center of the delivery area, while for type Marginal instances, the FCs are located in the outskirts of the area. Table 4
shows the coordinates of the FCs under each configuration, where

�̄� = 1
𝑛
∑

𝑖∈𝐶
𝑋𝑖, 𝑋𝑚𝑖𝑛 = min

𝑖∈𝐶
𝑋𝑖, 𝑋𝑚𝑎𝑥 = max

𝑖∈𝐶
𝑋𝑖, 𝑅𝑋 = 𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛

1 The other parameters are equal to those reported in Section 5.
11
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a

Fig. 5. Illustrative example: Iterations of the B&Ck algorithm.

Table 4
FC coordinates.

FC Centered Marginal

X Y X Y

𝐹𝐶1 �̄� 𝑌 𝑋𝑚𝑖𝑛 𝑌𝑚𝑖𝑛
𝐹𝐶2 �̄� 𝑌 − 𝛿𝑅𝑌 𝑋𝑚𝑎𝑥 𝑌𝑚𝑖𝑛
𝐹𝐶3 �̄� 𝑌 + 𝛿𝑅𝑌 𝑋𝑚𝑖𝑛 𝑌𝑚𝑎𝑥
𝐹𝐶4 �̄� − 𝛿𝑅𝑋 𝑌 𝑋𝑚𝑎𝑥 𝑌𝑚𝑎𝑥
𝐹𝐶5 �̄� + 𝛿𝑅𝑋 𝑌 𝑋𝑚𝑖𝑛+𝑋𝑚𝑎𝑥

2
𝑌𝑚𝑖𝑛

𝑌 = 1
𝑛
∑

𝑖∈𝐶
𝑌𝑖, 𝑌𝑚𝑖𝑛 = min

𝑖∈𝐶
𝑌𝑖, 𝑌𝑚𝑎𝑥 = max

𝑖∈𝐶
𝑌𝑖, 𝑅𝑌 = 𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛 (44)

nd 𝑋𝑖, 𝑌𝑖 represent the coordinates of customer 𝑖 ∈ 𝐶. The input parameter 𝛿 ∈ (0, 1), is a dispersion factor, set to 0.2 in all the
experiments.

We considered Alta 8 drones with the following characteristics: 𝐵 = 0.355 kWh, 𝑊 = 6.2 kg, 𝑀 = 2.8 kg, 𝑄 = 9.1 kg, 𝐻 = 8,
P = 1.204 kg/m3. In (29), 𝜅 = 0.1256 m2 and 𝑔 = 9.81, N/kg.
12
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Table 5
Results for A1 instances: box uncertainty set.

Instance 𝑛 𝑚 𝑘 𝜙 Centered Marginal

AOAa B&Ck AOAa B&Ck

𝑂𝑏𝑗 𝐶𝑃𝑈 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝛥𝑂𝐹% 𝛥𝑇% 𝑂𝑏𝑗 𝐶𝑃𝑈 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝛥𝑂𝐹% 𝛥𝑇% 𝐺𝑎𝑝%

Set_A_1_cust_10_1 10 5 2 2 2.016 7.09 2.016 1.14 39 0 83.92 1.635 2.85 1.635 1.02 40 0 64.21
Set_A_1_cust_10_2 1.796 2.02 1.796 0.79 7 0 60.89 1.557 2.68 1.557 0.70 12 0 73.88
Set_A_1_cust_10_3 1.838 4.11 1.838 3.21 84 0 21.90 1.400 3.02 1.400 1.50 5 0 50.33
Set_A_1_cust_10_4 1.568 2.77 1.568 1.50 16 0 45.85 1.130 2.26 1.130 1.00 14 0 55.75
Set_A_1_cust_10_5 1.956 2.75 1.956 1.32 11 0 52.00 1.860 3.31 1.860 1.24 21 0 62.54

Set_A_1_cust_15_1 15 5 3 2 2.090 33.38 2.090 5.42 7 0 83.76 2.050 35.10 2.050 4.30 1 0 87.75
Set_A_1_cust_15_2 2.524 48.49 2.524 5.53 6 0 88.60 2.252 30.17 2.252 5.33 3 0 82.33
Set_A_1_cust_15_3 1.999 37.94 1.999 5.50 9 0 85.50 2.127 32.12 2.127 5.74 7 0 82.13
Set_A_1_cust_15_4 2.241 42.86 2.241 4.68 8 0 89.08 2.346 41.78 2.346 4.50 8 0 89.23
Set_A_1_cust_15_5 2.350 47.55 2.350 5.40 9 0 88.64 1.873 51.74 1.873 4.04 5 0 92.19

Set_A_1_cust_20_1 20 5 4 3 2.602 336.83 2.602 12.83 12 0 96.19 2.591 305.37 2.591 15.46 8 0 94.94
Set_A_1_cust_20_2 2.667 442.88 2.667 10.62 7 0 97.60 2.559 440.93 2.559 13.53 15 0 96.93
Set_A_1_cust_20_3 2.680 496.25 2.680 10.32 5 0 97.92 2.684 425.31 2.684 11.35 7 0 97.33
Set_A_1_cust_20_4 – 500 2.383 9.16 4 – 98.17 – 500 2.492 13.43 13 – 97.31
Set_A_1_cust_20_5 – 500 2.707 11.81 10 – 97.64 – 500 2.828 10.87 6 – 97.83

Set_A_1_cust_25_1 25 5 7 5 – 500 2.558 3.05 7 – 99.39 – 500 2.729 4.84 2 – 99.03
Set_A_1_cust_25_2 – 500 3.055 3.45 14 – 99.31 – 500 3.156 6.36 4 – 98.73
Set_A_1_cust_25_3 – 500 2.637 3.16 5 – 99.37 – 500 2.858 4.88 5 – 99.02
Set_A_1_cust_25_4 – 500 2.831 4.17 10 – 99.17 – 500 2.776 3.23 6 – 99.35
Set_A_1_cust_25_5 – 500 2.941 5.54 4 – 98.89 – 500 2.859 3.35 4 – 99.33

Set_A_1_cust_30_1 30 5 8 6 – 500 3.602 4.85 4 – 99.03 – 500 3.546 8.04 9 – 98.39
Set_A_1_cust_30_2 – 500 2.973 7.32 4 – 98.54 – 500 3.485 5.39 3 – 98.92
Set_A_1_cust_30_3 – 500 3.070 5.77 4 – 98.85 – 500 3.921 6.49 6 – 98.70
Set_A_1_cust_30_4 – 500 3.188 5.76 7 – 98.85 – 500 3.654 5.70 7 – 98.86
Set_A_1_cust_30_5 – 500 3.087 5.76 2 – 98.85 – 500 4.029 6.55 7 – 98.69

Avg. 300.20 5.52 12 87.12 354.72 47.71 88.55

a These AOA results already appeared in Bruni and Khodaparasti (2022).

Let us denote with 𝑑 = 1
𝑘
∑𝑛
𝑖=1 𝑑𝑖 the average load carried by each drone upon departing from the FC; with 𝛶 = ⌈

𝑛
𝑘 ⌉ an estimate

of the average number of customers served by each drone, with 𝜁 = 𝑑
𝛶 the average demand. Let also 𝑡𝑖𝑗 be the nominal value for

he flight time (set equal to the flight distance as in Cheng et al. (2020a)) and 𝑡𝑖𝑗 be the peak value. Then,

�̄� = 𝛽
[

𝑘′(𝑊 +𝑀 + 𝑑)
3
2

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑡𝑖𝑗

𝑚𝑛
+

𝛶
∑

𝑝=2
𝑘′(𝑊 +𝑀 + 𝑑 − (𝑝 − 1)𝜁 )

3
2

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑡𝑖𝑗

𝑛(𝑛 − 1)
+

𝑘′(𝑊 +𝑀)
3
2

∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑡𝑖𝑗

𝑚𝑛

]

(45)

is the average energy consumption and

�̂� = 𝛽
[

𝑘′(𝑊 +𝑀 + 𝑑)
3
2

∑𝑚
𝑖=1

∑𝑛
𝑗=1 𝑡𝑖𝑗

𝑚𝑛
+

𝛶
∑

𝑝=2
𝑘′(𝑊 +𝑀 + 𝑑 − (𝑝 − 1)𝜁 )

3
2

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑡𝑖𝑗

𝑛(𝑛 − 1)
+

𝑘′(𝑊 +𝑀)
3
2

∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑡𝑖𝑗

𝑚𝑛

]

(46)

the peak value.
We set the radius of the uncertainty set to 𝜌 = ⌈�̄�⌉, where �̄� is the largest 𝜌 that satisfies

�̄� + 𝜌 �̂�
𝐵

≤ 𝛷. (47)

The parameter 𝛽 ∈ (0, 1) and 𝛷 ∈ [0, 1] were empirically set to 𝛽 = 0.45 and 𝛷 = 0.92, to make the problem challenging.
The number of levels 𝑁 was determined by ordering the demands of customers in ascending order. Then, starting from the first

element, the customers’ demands were added one by one until the drone capacity was reached. Then, 𝑁 was set equal to the number
of orders added, which is clearly an upper bound for the number of customers visited in a route.

5.1. Performance of the B&Ck approach

All the experiments were executed on an Intel Core i7-10750H, with 2.60 GHz CPU and 16 GB RAM working under Windows 10.
13

We compared the performance of the B&Ck algorithm (implemented using the algebraic modeling language AIMMS 4.79.2.5. and
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Table 6
Results for A2 instances: box uncertainty set.

Instance 𝑛 𝑚 𝑘 𝜙 Centered Marginal

AOA B&Ck AOA B&Ck

𝑂𝑏𝑗 𝐶𝑃𝑈 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝛥𝑂𝐹% 𝛥𝑇% 𝑂𝑏𝑗 𝐶𝑃𝑈 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝛥𝑂𝐹% 𝛥𝑇% 𝐺𝑎𝑝%

Set_A2_cust_10_1 10 5 2 2 1.901 2.51 1.901 0.45 9 0 82.07 1.759 2.16 1.759 1.37 20 0 36.57
Set_A2_cust_10_2 1.712 2.68 1.712 0.63 8 0 76.49 – 500 2.270 500 3179 – – 2.19
Set_A2_cust_10_3 1.787 2.05 1.787 1.21 20 0 40.98 – 500 2.313 500 3545 – – 1.77
Set_A2_cust_10_4 1.808 2.13 1.808 1.17 17 0 45.07 – 500 3.413 500 3600 – – 60.12
Set_A2_cust_10_5 1.795 2.57 1.795 1.29 24 0 49.81 – 500 6.583 500 3109 – – 66.33

Set_A2_cust_15_1 15 5 3 2 2.11 37.94 2.110 3.87 7 0 89.80 2.165 30.95 2.165 2.29 8 0 92.60
Set_A2_cust_15_2 2.035 34.72 2.035 2.31 7 0 93.35 2.032 30.43 2.032 1.97 6 0 93.53
Set_A2_cust_15_3 1.934 22.27 1.934 2.37 8 0 89.36 1.795 26.58 1.795 2.89 9 0 89.13
Set_A2_cust_15_4 2.313 47.91 2.313 2.17 8 0 95.47 2.247 41.05 2.247 1.93 5 0 95.30
Set_A2_cust_15_5 2.108 20.58 2.108 2.55 7 0 87.61 2.342 20.6 2.342 2.19 14 0 89.37

Set_A2_cust_20_1 20 5 4 3 2.312 302.21 2.312 4.70 9 0 98.44 2.791 273.28 2.791 4.92 10 0 98.20
Set_A2_cust_20_2 2.625 452.68 2.625 7.53 59 0 98.34 2.163 434.08 2.163 5.42 8 0 98.75
Set_A2_cust_20_3 2.425 451.64 2.425 4.05 6 0 99.10 2.561 403.01 2.561 4.24 2 0 98.95
Set_A2_cust_20_4 – 500 2.866 4.12 3 – 99.18 – 500 3.098 4.88 12 – 99.02
Set_A2_cust_20_5 – 500 2.101 4.61 8 – 99.08 – 500 3.470 5.54 93 – 98.89

Set_A2_cust_25_1 25 5 7 5 – 500 2.957 1.13 3 – 99.77 – 500 2.920 2.00 11 – 99.60
Set_A2_cust_25_2 – 500 2.957 1.20 7 – 99.76 – 500 2.920 1.23 2 – 99.75
Set_A2_cust_25_3 – 500 2.605 1.34 2 – 99.73 – 500 2.822 1.51 1 – 99.70
Set_A2_cust_25_4 – 500 2.811 1.14 4 – 99.77 – 500 2.944 1.29 2 – 99.74
Set_A2_cust_25_5 – 500 2.584 1.19 10 – 99.76 – 500 3.658 1.31 2 – 99.74

Set_A2_cust_30_1 30 5 8 6 – 500 3.095 2.12 6 – 99.58 – 500 3.532 2.12 4 – 99.58
Set_A2_cust_30_2 – 500 3.370 1.88 5 – 99.62 – 500 3.502 3.09 19 – 99.38
Set_A2_cust_30_3 – 500 3.452 2.29 8 – 99.54 – 500 3.140 4.15 12 – 99.17
Set_A2_cust_30_4 – 500 3.590 4.25 17 – 99.15 – 500 3.928 2.17 5 – 99.57
Set_A2_cust_30_5 – 500 3.408 2.81 12 – 99.44 – 500 3.477 2.10 13 – 99.58

Avg. 295.28 2.50 89.61 365.09 64.94 94.58 32.60

using Gurobi 9.1. as the solver), with the AIMMS Outer Approximation (AOA) algorithm. The time limit for both algorithms was set to
500 s. The basic idea of the AOA method is to solve a sequence of nonlinear programming sub-problems and a relaxed mixed-integer
linear master problem, where the nonlinear constraints are approximated by linear approximation. This solver has been proved to
be the fastest (Kronqvist et al., 2019), also because it can benefit from different techniques integrated within mixed-integer linear
solvers, such as Gurobi.

Tables 5 and 6 report the results under different FCs configurations for the box uncertainty case.
Columns 1–5 in Tables 5 and 6 show the characteristics of instances in terms of the number of customers, potential FCs, fleet

ize, and capacity of FCs. The best objective function found (if any, we report ‘‘-’’) is shown in columns with header 𝑂𝑏𝑗 and the
solution time in seconds in columns with header 𝐶𝑃𝑈 and the number of callbacks in columns with header #𝐶𝑏. The performance
f the B&Ck versus AOA is reported in terms of relative percentage gap (𝛥𝑂𝐹 = 𝑂𝑏𝑗𝐵&𝐶𝑘−𝑂𝑏𝑗𝐴𝑂𝐴

𝑂𝑏𝑗𝐴𝑂𝐴
100) and percentage speed up rate

𝛥(𝑇 = |𝐶𝑃𝑈𝐵&𝐶𝑘−𝐶𝑃𝑈𝐴𝑂𝐴|
𝐶𝑃𝑈𝐴𝑂𝐴

100). When the B&Ck is not able to optimally solve the instance within the time limit, the relative percentage
gap 𝐺𝑎𝑝% with respect to the best LP bound of the MP is reported.

Starting from the Centered case for A1 instances, we observe that in half of the instances, the AOA fails to find any feasible
solution within the time limit. Moreover, its solution time increases drastically with the increase in the problem size; the average
CPU time for the instances solved to optimality with 10, 15, and 20 customers are respectively, 3.75, 42.04, and 425.32 s.

On the other hand, the B&Ck finds the optimal solution for all the instances, and, on average, is 13 times faster than AOA. For
the Marginal setting, the AOA fails to find a feasible solution in 42% of cases. The average 𝐶𝑃𝑈 time is 2.82 s for the 10-customers
A1 instances, but rises to 390.54 s for the 20-customers instances. On the contrary, the B&Ck finds the optimal solution for all
the A1 instances. In terms of solution time, the B&Ck outperforms the AOA with an average 𝛥𝑇 of 88.55%. In conclusion, AOA
ompletely fails to provide any feasible solution for A1 instances with more than 25 customers. Regardless of the instance type and
C setting, the B&Ck algorithm outperforms AOA. Similar conclusions are drawn for the A2 instances: again, AOA fails to find any
easible solution for instances with more than 20 customers. In addition, the solution time for the 20-customers instances solved to
ptimality is quite high.

When we consider the more involved case of the ellipsoidal uncertainty set, also the objective function becomes nonlinear and
he AOA fails in all the instances, hence the results are not reported in Tables 7 and 8.

The B&Ck finds the optimal solution for all A1 instances but one for the Centered configuration and the average CPU time is
less than 134 s. For the Marginal configuration, in 20% of the cases, the B&Ck fails to find the optimal solution within the time
limit but in 80% of such cases, the 𝐺𝑎𝑝% is limited to 3.29%. For the A2 instances with Centered FC configuration, the average CPU
time is below 225 s; the B&Ck fails to solve to optimality six instances. For three of them, the 𝐺𝑎𝑝% is below 1%. For the Marginal
14

configuration, the CPU time decreases to 164 s and the 𝐺𝑎𝑝%, for the two instances not solved to optimality, is below 2.24%.
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Table 7
Results for A1 instances: Ellipsoidal uncertainty set.

Instance 𝑛 𝑚 𝑘 𝜙 Centered Marginal

𝐵&𝐶𝑘 𝐵&𝐶𝑘

𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝐺𝑎𝑝% 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝐺𝑎𝑝%

Set_A_1_cust_10_1 10 5 2 2 1.029 48.77 10 0.984 22.20 10
Set_A_1_cust_10_2 1.116 36.68 9 1.090 12.87 14
Set_A_1_cust_10_3 1.044 52.66 10 1.111 15.26 3
Set_A_1_cust_10_4 0.926 20.59 3 1.042 8.17 8
Set_A_1_cust_10_5 1.333 32.19 8 1.431 12.25 5

Set_A_1_cust_15_1 15 5 3 2 1.201 87.68 4 1.172 58.40 5
Set_A_1_cust_15_2 1.514 364.37 9 1.488 167.09 7
Set_A_1_cust_15_3 1.161 154.85 3 1.425 161.71 6
Set_A_1_cust_15_4 1.179 304.87 5 1.352 57.41 6
Set_A_1_cust_15_5 1.354 376.50 6 1.220 61.17 5

Set_A_1_cust_20_1 20 5 4 3 1.442 147.34 2 1.635 330.86 3
Set_A_1_cust_20_2 1.507 500 3 15.71 1.653 500 3 1.67
Set_A_1_cust_20_3 1.483 141.32 7 1.773 500 1 43.98
Set_A_1_cust_20_4 1.511 75.89 6 1.619 500 8 1.36
Set_A_1_cust_20_5 1.512 197.13 10 1.874 500 6 3.29

Set_A_1_cust_25_1 25 5 7 5 1.410 54.62 18 1.716 118.78 34
Set_A_1_cust_25_2 1.636 74.24 10 1.974 30.71 20
Set_A_1_cust_25_3 1.428 41.66 16 1.833 500 23 0.81
Set_A_1_cust_25_4 1.578 60.35 16 1.724 62.13 21
Set_A_1_cust_25_5 1.596 79.10 16 1.778 101.56 29

Set_A_1_cust_30_1 30 5 8 6 1.921 49.32 14 2.172 59.02 15
Set_A_1_cust_30_2 1.586 62.40 18 2.140 159.71 27
Set_A_1_cust_30_3 1.646 78.77 16 2.411 386.58 22
Set_A_1_cust_30_4 1.681 68.02 18 2.259 73.68 11
Set_A_1_cust_30_5 1.646 239.13 17 2.490 114.69 17

Avg. 133.94 15.71 180.57 10.22

Table 8
Results for A2 instances: Ellipsoidal uncertainty set.

Instance 𝑛 𝑚 𝑘 𝜙 Centered Marginal

𝐵&𝐶𝑘 𝐵&𝐶𝑘

𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝐺𝑎𝑝% 𝑂𝑏𝑗 𝐶𝑃𝑈 #𝐶𝑏 𝐺𝑎𝑝%

Set_A2_cust_10_1 10 5 2 2 1.168 17.29 10 1.205 2.63 3
Set_A2_cust_10_2 1.153 2.51 7 1.213 9.58 8
Set_A2_cust_10_3 1.299 13.16 4 1.213 1.76 4
Set_A2_cust_10_4 1.175 2.76 7 1.203 8.16 6
Set_A2_cust_10_5 1.232 16.04 5 1.376 17.92 5

Set_A2_cust_15_1 15 5 3 2 1.239 153.83 4 1.424 117.6 20
Set_A2_cust_15_2 1.313 64.21 2 1.320 59.40 3
Set_A2_cust_15_3 1.106 47.63 6 1.192 28.77 5
Set_A2_cust_15_4 1.733 500 1 34.55 1.477 54.36 1
Set_A2_cust_15_5 1.382 62.78 4 1.558 171.64 8

Set_A2_cust_20_1 20 5 4 3 1.467 202.46 6 1.794 341.28 9
Set_A2_cust_20_2 1.438 500 3 45.58 1.362 132.37 6
Set_A2_cust_20_3 1.530 149.19 4 1.622 170.23 4
Set_A2_cust_20_4 1.583 302.81 8 1.995 500 3 1.67
Set_A2_cust_20_5 1.182 335.58 5 2.011 500 13 2.24

Set_A2_cust_25_1 25 5 7 5 1.661 74.41 8 1.845 197.68 15
Set_A2_cust_25_2 1.661 160.56 11 1.845 222.78 30
Set_A2_cust_25_3 1.438 91.47 9 1.767 113.82 25
Set_A2_cust_25_4 1.526 389.49 25 1.840 172.13 10
Set_A2_cust_25_5 1.746 500 11 42.51 2.034 289.41 27

Set_A2_cust_30_1 30 5 8 6 1.918 500 14 0.76 2.174 448.43 28
Set_A2_cust_30_2 1.785 237.41 9 2.142 172.32 31
Set_A2_cust_30_3 1.837 500 18 0.92 1.941 89.48 11
Set_A2_cust_30_4 1.910 500 14 0.33 2.405 94.39 11
Set_A2_cust_30_5 1.851 295.5 21 2.155 161.78 20

Avg. 224.88 20.78 163.14 1.96
15
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Fig. 6. Case study: location of customers and FCs.

6. Case study and managerial insights

In this Section, we present a case study on last-mile parcel delivery in Turin, Italy. Real sensitive data are anonymized and
normalized by means of the data-fusion tool provided in Perboli et al. (2018a). The area considered (2.805 × 2.447 km2) includes
both the center of the city and a semi-central zone. The case study concerns the delivery of 50 orders with known delivery locations.
Each order is a single parcel package that weighs between 0.2 and 1 kg (the average parcel weight is 0.6 kg). The orders are
transferred from a distribution center in the outskirt of the city to four existing FCs, where the packages are loaded into a fleet of
vehicles to perform the deliveries. Each FC can host up to two vehicles. Fig. 6 displays the spatial configuration of the customers
and the FCs plotted in Google Maps.2

We considered three different fleet configurations: a homogeneous fleet of six drones, a homogeneous fleet of five Fuel-based
Cargo Bikes (F-CB)s, and a homogeneous fleet of five Electric Cargo Bikes (E-CB)s. The drone maximum payload is five kilograms
with a battery of 0.30 kWh. Cargo bikes have a payload capacity of seven kilograms. Real travel times are calculated by the Google
Earth API and a georeference module (Wei, 2022), considering an average speed for a cargo bike of 20 km/h. In the case of drone
delivery, the flight time is calculated as the Euclidean distance divided by the average drone speed of 40 km/h. The travel times
can fluctuate up to 50%. We considered a service time of one minute for the drones. For the cargo bikes, the service time is longer
(three minutes) because, upon arrival at the customer’s location, the driver should park and secure the vehicle.

To investigate the effect of travel time uncertainty on the energy feasibility of the drone routes and the validity of the proposed
model against a deterministic model, we have carried out a Monte Carlo simulation experiment. In particular, to assess the reliability
of the solutions of both the robust and the deterministic model, we have generated 1000 different travel time scenario realizations
lying in the uncertainty set 𝑈 . For each scenario, and once fixed the values of the variables to the optimal solutions provided by
the deterministic and the robust model, and the travel time values to the realizations associated to the given scenario, the energy
consumption has been calculated according to the formula (31). For each scenario, this value has been then compared with the
battery capacity to detect possible violations of the energy constrains. We have observed that the solution of the deterministic case
is highly unreliable, since the energy consumed exceeds the battery capacity in the majority (76%) of the scenarios. On average, the
deviation is around 3% but in the worst case it is around 14%. Unexpected battery depletion can cause the drone to prematurely
return to the nearest FC for the battery replenishment, significantly disrupting the logistic process. It may also result in poor or lost
connection and it can even lead to a drone crash. In this case, beside the safety issue, which is clearly the critical aspect, it should
be considered the cost of the drone and its integrated equipment along with the incident recovery costs.

In order to provide managerial insights on environmental and economic aspects of drone-aided delivery, in comparison with
more conventional delivery options, we have focused our analysis on customers’ waiting time, annual costs, and CO2-eq emissions.

2 https://maps.google.com/.
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Fig. 7. Optimal drone routes.

The waiting time and the total cost are, respectively, customer-oriented and server-oriented KPIs measuring the efficiency of the
delivery system from the service user’s and service provider’s viewpoint. The level of CO2-eq emissions assesses the environmental
impact of the delivery. To obtain the results for the F-CB and the E-CB fleet, we solved the DLLRP without energy constraints.
Figs. 7–8 display the optimal vehicle routes for different fleet configurations visualized by Google Earth Pro.3

Fig. 9 displays the customers’ waiting time for each fleet configuration. As we can see, the use of drones allows a drastic reduction
(by 70%) of the waiting time for the customers, compared to the CB configuration. This is due to the fact that terrestrial vehicles,
such as CBs, travel on the road network which is affected by traffic congestion and it is also related to the shorter drone service
time. The CBs route duration (related to drivers’ work balance and vehicle depreciation cost Geromel Dotto and Thor Magnusson
(2022), Huang et al. (2017) and Matl et al. (2018)) is around 50 min, but in the case of drones it drops to 13 min (see Fig. 10).

Fig. 11 displays the CO2-eq emissions for each fleet type. In the case of F-CB, the total CO2-eq emission is calculated by multiplying
the amount of CO2-eq emission per kilometer (in kg/km)4 by the total traveled distance (in km). For the drones, we have multiplied
the total energy consumption (in kWh) by the amount of carbon dioxide generated during the electricity production (in kg/kWh)5

Finally, for the E-CBs, the total CO2-eq emission is obtained as the product of the traveled distance, the amount of carbon dioxide
generated during the electricity production, and the E-CB energy consumption per kilometer (in kWh/km).6

The results show that E-CBs are the most eco-friendly vehicles. In fact, drones and F-CBs generate 0.19 and 3.04 kg of CO2-eq
emissions more than the E-CBs (about 1.72 and 7.23 times more than E-CBs). These results are also consistent with the findings
of Rodrigues et al. (2022) who showed the E-CBs contribution to the CO2-eq emission is considerably lower than other vehicle types,
including drones.

Last but not least, we have compared different fleet settings in terms of annual vehicle cost. Following the work of Fraselle et al.
(2021), we express the annual cost in terms of a kilometer term, an hourly term, and a daily term (data adopted from Fraselle et al.
(2021)). The kilometer term (in e/km) includes all the expenses related to the fuel/electricity usage, tyres and the maintenance and
repair. The kilometer term is multiplied by the annual average distance traveled by the vehicle. The hourly term (in e/h) expresses

3 https://earth.google.com.
4 https://www.co2everything.com/co2e-of/motorbike.
5 For Italy, in 2022, the amount of carbon dioxide due to electricity production is 0.389 kg/kWh https://www.nowtricity.com/country/italy.
6 https://www.velove.se/news/armadillo-cargo-bike-use-6-electricity-small-electric-van.
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Fig. 8. Optimal CB routes.

Fig. 9. Customers’ waiting time for different fleet setting.

the salary of drivers per hour and should be multiplied by the number of working days and the daily shift duration (in hours) to
obtain the contribution in the total cost. The daily term (in e/d) represents the fixed costs, including acquisition cost, insurance, and
vehicle tax. They are multiplied by the number of working days to obtain the contribution in a year. The annual cost is calculated
as the sum of total costs corresponding to the three terms as discussed above. Table 9 reports the total fleet cost under different
fleet settings. We notice that the annual costs for drones are lower even if the fleet size is larger than that of the CBs.
18
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Fig. 10. Route duration under different fleet configurations.

Fig. 11. Total CO2-eq emissions under different fleet configurations.

Table 9
Total annual cost under different fleet settings.

Drone E-CB F-CB

Kilometer term (e/km) 0.159 0.172 0.095
Hourly term (e/h) 11.03 19.85 22.06
Daily term (e/d) 25 2.75 4
Annual vehicle cost (e/vehicle) 23 602 34 480 34 090

Annual (fleet) cost (e) 141 612 172 400 170 450

To summarize (see Table 10), the drone-based delivery fleet shows the best performance in terms of customers’ waiting time,
drivers’ workload, and annual cost, although E-CBs are characterized by lower CO -eq emissions.
19

2



Transportation Research Part C 156 (2023) 104322M.E. Bruni et al.

o
m
w
a

m
f

a
t
v
d

C

M

A

A

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Table 10
Summary of results.

Drone E-CB F-CB

Waiting time (min) 6 21 21
Co2-eq emission (kg) 0.46 0.26 3.30
Annual cost (e) 141 612 172 400 170 450

7. Conclusions

In this study, we introduced the DLLRP. This problem assumes that drones can use a set of FCs to streamline the delivery
perations to a set of customers. The selection decisions and the routing plans are simultaneously optimized with the aim of
inimizing the customers’ waiting time. In this problem, realistic drone energy consumption functions and payload constraints
ere considered for drones. The uncertainty in flight times was tackled in the realm of a nonlinear robust optimization approach
nd deterministic counterparts were derived for two different uncertainty sets.

To cope with flight time uncertainty, which affects both the latency and energy consumption, we developed a tailored solution
ethod, and then tested it on several instances. We also presented a real case study comparing drone-based delivery with other

leet configuration scenarios in terms of customers’ waiting time, CO2-equivalent emissions, and annual costs.
There are several fruitful directions for further research. An interesting extension of the problem considered involves the solution

drone repositioning problem. In fact, drones can be retrieved in an optimized way, to be prepared to service other customers in
he next period. If the demands are known in advance for the next periods, the problem can be eventually modeled as a multi-period
ariant of the proposed model. In practice, the demand can only be estimated for the next period (especially considering that using
rones is relevant for time-sensitive deliveries like perishable food), but it should be considered dynamic and stochastic.
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ppendix

The elements in the covariance matrix 𝐶𝑂𝑉 have been rounded to six digits. 𝐶𝑂𝑉 =

0.001285 0.000719 0.001507 0.00098 0.000266 0.002212 0.00148 0.000189 0.001524 0.001091 0.000796 0.002755 0.000963 0.002149 0.001026 0.000597 0.000799 0.000425 0.00014 0.000603

0.000719 0.000682 0.001239 0.000723 0.000158 0.001936 0.001233 0.000208 0.001462 0.001047 0.001227 0.002433 0.00104 0.001592 0.00135 0.000411 0.000767 0.000212 9.28𝐸−05 0.001105

0.001507 0.001239 0.002772 0.001667 0.000415 0.003221 0.002628 0.00041 0.003222 0.00229 0.002247 0.005034 0.002354 0.003103 0.002296 0.000886 0.001803 0.000509 0.000187 0.002191

0.00098 0.000723 0.001667 0.001021 0.000263 0.001902 0.001576 0.000235 0.001891 0.001344 0.001222 0.002988 0.001361 0.001901 0.001264 0.00055 0.001061 0.000337 0.000117 0.001181

0.000266 0.000158 0.000415 0.000263 7.38𝐸−05 0.000406 0.000384 5.13𝐸−05 0.000451 0.000319 0.000231 0.000708 0.00032 0.000463 0.000235 0.000142 0.00026 9.67𝐸−05 2.98𝐸−05 0.00023

0.002212 0.001936 0.003221 0.001902 0.000406 0.005845 0.003297 0.000544 0.00368 0.00265 0.003155 0.006529 0.002492 0.004646 0.003711 0.001158 0.001838 0.000629 0.000276 0.002635

0.00148 0.001233 0.002628 0.001576 0.000384 0.003297 0.00252 0.000397 0.003049 0.002171 0.002198 0.004853 0.002205 0.003061 0.002301 0.000854 0.001681 0.000486 0.000184 0.002092

0.000189 0.000208 0.00041 0.000235 5.13𝐸−05 0.000544 0.000397 6.92𝐸−05 0.000503 0.000358 0.000422 0.000784 0.000375 0.000461 0.000433 0.000123 0.000275 5.8𝐸−05 2.61𝐸−05 0.000407

0.001524 0.001462 0.003222 0.001891 0.000451 0.00368 0.003049 0.000503 0.003872 0.002751 0.002915 0.005907 0.002897 0.003437 0.002901 0.000974 0.002177 0.000509 0.0002 0.0029

0.001091 0.001047 0.00229 0.001344 0.000319 0.00265 0.002171 0.000358 0.002751 0.001955 0.002081 0.004209 0.002055 0.00246 0.002079 0.000694 0.001543 0.000363 0.000143 0.002062

0.000796 0.001227 0.002247 0.001222 0.000231 0.003155 0.002198 0.000422 0.002915 0.002081 0.002777 0.004453 0.002239 0.002434 0.002805 0.00062 0.001582 0.000214 0.000128 0.002708

0.002755 0.002433 0.005034 0.002988 0.000708 0.006529 0.004853 0.000784 0.005907 0.004209 0.004453 0.009409 0.00429 0.005887 0.004668 0.001619 0.003236 0.000887 0.000349 0.004225

0.000963 0.00104 0.002354 0.001361 0.00032 0.002492 0.002205 0.000375 0.002897 0.002055 0.002239 0.00429 0.002216 0.002345 0.002155 0.000674 0.001651 0.000328 0.000133 0.002289

0.002149 0.001592 0.003103 0.001901 0.000463 0.004646 0.003061 0.000461 0.003437 0.00246 0.002434 0.005887 0.002345 0.004139 0.002796 0.001112 0.00181 0.000679 0.000255 0.002105

0.001026 0.00135 0.002296 0.001264 0.000235 0.003711 0.002301 0.000433 0.002901 0.002079 0.002805 0.004668 0.002155 0.002796 0.002976 0.000689 0.00152 0.000268 0.000152 0.00261

0.000597 0.000411 0.000886 0.00055 0.000142 0.001158 0.000854 0.000123 0.000974 0.000694 0.00062 0.001619 0.000674 0.001112 0.000689 0.000312 0.00053 0.000199 6.94𝐸−05 0.000559

0.000799 0.000767 0.001803 0.001061 0.00026 0.001838 0.001681 0.000275 0.002177 0.001543 0.001582 0.003236 0.001651 0.00181 0.00152 0.00053 0.001247 0.000279 0.000105 0.001622

0.000425 0.000212 0.000509 0.000337 9.67𝐸−05 0.000629 0.000486 5.8𝐸−05 0.000509 0.000363 0.000214 0.000887 0.000328 0.000679 0.000268 0.000199 0.000279 0.000148 4.52𝐸−05 0.000172

0.00014 9.28𝐸−05 0.000187 0.000117 2.98𝐸−05 0.000276 0.000184 2.61𝐸−05 0.0002 0.000143 0.000128 0.000349 0.000133 0.000255 0.000152 6.94𝐸−05 0.000105 4.52𝐸−05 1.6𝐸−05 0.000107

0.000603 0.001105 0.002191 0.001181 0.00023 0.002635 0.002092 0.000407 0.0029 0.002062 0.002708 0.004225 0.002289 0.002105 0.00261 0.000559 0.001622 0.000172 0.000107 0.002749
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