
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting the DICE specification to ensure strong identity and integrity of IoT devices / Bravi, Enrico; Sisinni, Silvia; Lioy,
Antonio. - STAMPA. - (2023), pp. 1-6. (Intervento presentato al convegno SpliTech-2023: 8th International Conference
on Smart and Sustainable Technologies tenutosi a Split-Bol (Croatia) nel 20-23 June 2023)
[10.23919/SpliTech58164.2023.10193517].

Original

Exploiting the DICE specification to ensure strong identity and integrity of IoT devices

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/SpliTech58164.2023.10193517

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982173 since: 2023-09-15T07:29:26Z

IEEE

Exploiting the DICE specification to ensure strong
identity and integrity of IoT devices

Enrico Bravi
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

enrico.bravi@polito.it

Silvia Sisinni
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

silvia.sisinni@polito.it

Antonio Lioy
Politecnico di Torino

Dip. Automatica e Informatica
Torino, Italy

antonio.lioy@polito.it

Abstract—IoT devices are becoming widely used in several
contexts, and nowadays billions of devices are deployed in
different scenarios, some of which are very critical to people’s
privacy and safety. For these reasons, it is very important to
provide capabilities for guaranteeing the correct behaviour of
the devices. Remote attestation is a technique traditionally used
to monitor the integrity status of nodes and to determine if
they are behaving as expected. This technique requires that
the device is equipped with Roots of Trust, that are the set of
hardware and software features that make the platform capable
of providing reliable integrity reports even when it has been
compromised. This paper proposes a solution that permits to
identify and attest devices in a dynamic context, such as Smart
Cities or Smart Homes, where unknown devices can connect to
the network and perform several actions. The proposed security
schema is based on the Device Identity Composition Engine
(DICE), which represents a set of specifications designed by
the Trusted Computing Group (TCG) to enhance security and
privacy of devices with minimal silicon requirements.

Index Terms—IoT, DICE, MUD, Remote Attestation, Implicit
Attestation, Authentication, Authorization, Trusted Computing

I. INTRODUCTION

IoT technology is rapidly and continuously expanding, with
countless service providers, different platforms, and millions
of new devices becoming available yearly. This is because
IoT devices have the potential to improve our lives in every
field, enabling more effective monitoring of production (Smart
Manufacturing), and logistics (Smart Logistics) systems, new
generation healthcare (Smart Health), urban services that im-
prove the quality of life (Smart City), safer streets thanks to
autonomous vehicles, greener and more comfortable houses
(Smart Home), and more. On the other hand, the advent of
the IoT has broadened the horizon of threats, that concern not
only risks for data and IT systems, but also attacks to physical
infrastructures that may put people’s safety at risk. Cybersecu-
rity related to IoT ecosystems is a fundamental aspect to avoid
data loss and/or compromise, secure the business from huge
economic losses, guarantee the safety of individuals. However,
most IoT devices have little or no security mechanisms at all,

This work has received funding from the SPIRS (Secure Platform for ICT
Systems Rooted at the Silicon Manufacturing Process) project with Grant
Agreement No. 952622 under the European Union’s Horizon 2020 research
and innovation programme. This work was also partially supported by the
project SERICS (PE00000014) under the NRRP MUR program funded by
the European Union - NextGenerationEU.

so that, on average, they are attacked within 5 minutes of being
connected to the network [1].

The seriousness of the situation emerged in October 2016
with the Mirai botnet attack [2], when hundreds of thousands
of low-cost devices were used to perform a Distributed Denial
of Service (DDoS) against the dynDNS provider. For eight
hours the clients of Amazon, Twitter, Netflix, Wall Street
Journal, and more were unable to use their services.

There are various reasons that make IoT ecosystems vulner-
able. The number of connected devices inevitably increases the
attack surface of IT systems, making them more exposed to
breaches by adversaries. The ubiquity of IoT devices, often
deployed in uncontrolled environments, makes it difficult to
protect them from physical attacks. The great heterogeneity of
IoT devices creates difficulties in designing security solutions
suitable to protect different device categories. The software
deployed on IoT devices often remains unpatched for long
periods of time, so any discovered vulnerability is easily
exploited by attackers for the creation of botnets. Finally, to
reduce production costs and/or to have very small devices (e.g.
wearable devices), IoT devices often have a limited amount
of resources, with stringent constraints on memory, power,
and computational capacity. This challenges the creation and
maintenance of an optimal security posture over time.

In a scenario where IoT devices become increasingly in-
tertwined with our lives, we must be confident that they
are trustworthy. Remote Attestation (RA) techniques were
developed to allow an external entity (the Verifier) to check
that a remote device (the Attester or Prover) has not been
compromised by an attacker. The RA relies on the presence, in
the attesting system, of a trust anchor which allows to measure
the integrity status of the device and sign reports containing
the integrity evidence, reliable even when the platform has
been compromised.

In this paper, we propose the design of a security mecha-
nism capable of guaranteeing authenticity and integrity to the
hardware and software deployed in low-end IoT devices. This
category of devices is challenging to treat for several reasons:
it has too limited resources to run traditional OSes such as
Linux or Windows 10 IoT Core; it may use a single CPU
protection mode; it may lack a Memory Management Unit
(MMU); it can not rely on fully-fledged TEE environments

or dedicated security co-processors, like the Trusted Platform
Module (TPM). The proposed scheme targets constrained
RISC-V devices and aims to build a trusted anchor for them
with minimal silicon requirements, by relying only on Read
Only Memory (ROM) and the Physical Memory Protection
(PMP) primitive, a security extension that allows the creation
of memory barriers by restricting access to certain physical
memory regions defined in PMP entries. Moreover, we im-
plement the trusted anchor following Device Identifier Com-
position Engine (DICE) [3], a specification proposed by the
Trusted Computing Group (TCG) for providing a strong device
identity even to platforms without the TPM. Our proposal
also integrates the Manufacturer Usage Description (MUD)
[4] specification within the protocol that allows the IoT device
to access the public network, providing the overall IoT system
with a high level of protection from co-optation into botnets.

The rest of the paper is organized as follows. Section II
describes the technologies used in the solution. Section III
presents our proposed security solution. Section IV reviews
some related works. Finally, Section V concludes the paper
and proposes the work that needs to be done in the future.

II. BACKGROUND

A. Device Identifier Composition Engine (DICE)

The Device Identity Composition Engine [5] specification
has been proposed by the Trusted Computing Group (TCG) in
the context of IoT devices, which typically have very limited
resources and no presence of special hardware for attestation.

The idea is based on a Unique Device Secret (UDS), which
is a statistically unique value that identifies the platform and
permits to derive all other values used during the process.
This secret must be kept in secure storage, where it cannot be
rewritten, and it should be at least of 256 bits.

At the reset of the platform, the Device Identity Composition
Engine (DICE), which is the only component that can access
the UDS, uses it, in combination with the measurement of
the first mutable code running on the platform, to generate
the Compound Device Identifier (CDI), as depicted in figure
1. The CDI can also include measurements of configuration
data that influence the execution of the first mutable code,
and/or hardware information, and must be calculated in a way
that makes it infeasible to derive back the UDS; this can be
accomplished using a secure hash algorithm (H) [6], or using a
Hash-based Message Authentication code (HMAC). The first
value needed is the first mutable code measurement:

M = H(first mutable code)

that will be used to compute the CDI. Using a secure hash
algorithm, the CDI can be computed by hashing the concate-
nation of the UDS and the first mutable code measurement:

CDI = H(UDS || M)

Using HMAC, accordingly to [7], which is a more sophisti-
cated alternative, the CDI can be computed as follow:

CDI = H((UDS ⊕ opad) || H((UDS ⊕ ipad) || M))

First mutable code

UDS

CDI

DICE Firmware

Fig. 1. CDI derivation

where opad is a data block composed by the repetition of the
5ch character as many times as it is necessary to reach the
block size of the chosen hash function, and ipad is built in
the same way using the 36h character. This process permits
to obtain a different CDI if the first mutable code is in any
way modified or compromised, and the malicious code cannot
have available the precedent CDI.

The DICE can be a one-time programmed component or
can support the possibility to be securely upgradable by the
DICE manufacturer.

Once the CDI has been calculated, it is passed to the
mutable code, which also takes control of the platform, and
can use this value to derive keys, for example using a Key
Derivation Function (KDF).

B. DICE Layering Architecture

The DICE specification can be extended to the case of
a multi-layered Trusted Computing Base (TCB). This archi-
tecture [3] allows a lower TCB layer to provision trusted
functionality to a higher TCB level. The process starts from
the DICE hardware Root of Trust, which in this architecture
is implemented in the base hardware layer, which is assumed
to be in a trustworthy state. By convention, the layer above
the DICE implementation is layer 0, and it receives the CDI
from DICE. Once a layer is assumed as trusted, it is possible
to pass the execution to the next layer.

In order to build a chain of trust, each TCB layer must
have trusted access to a set of TCB capabilities, which have
to be protected in terms of the execution environment. These
capabilities have the purpose to produce some values that are
used as the identity of each TCB layer. At each step, there is
the need to compute:

• TCB Component Identifier (TCI): This value permits to
describe a specific TCB component, performing a hash
on the code that will be executed by the component and
could include some other information, such as vendor
name, version, etc;

• Compound Device Identifier (CDI): This is the value
received from the previous layer, computer combining,
using a one-way function (OWF), the CDI of the previous
layer and the measurement (TCI) of the current layer
(figure 2). The only exception is for the DICE, which
uses the UDS, instead of a CDI, because in that case
there is no previous context;

UDS CDI0

OWF

DICE

OWF CDI1

Layer 0 Layer 1

Fig. 2. CDI derivation in the case of architecture composed by three layers.

• One-Way Function (OWF): This is a pseudo-random
function, according to [8], which accepts seed and data
values, that in this case are respectively the CDI of the
layer and the TCI of the next layer.

C. Certification and Key Types

Using a DICE layered architecture, it is possible to link a
TCB layer with the next one, issuing a certificate or a token
for the keys of the next layer. The certification can be obtained
in two different ways:

1) a TCB layer generates keys for the next layer, then issues
the certificates for these keys, and finally passes the keys
and the certificates to the next layer;

2) another possibility is that a TCB layer generates its own
keys and then sends a certificate request to the TCB layer
below. This layer will create the certificate and will send
it to the upper layer that requested it.

The generated keys can be different, based on their specific
purpose: they can be symmetric or asymmetric.

Asymmetric Keys
• Attestation keys: These are the keys used, during the pro-

cess of remote attestation, to sign integrity measurements.
They are used to sign only data known by the TCB, and
they cannot sign opaque data from outside the TCB layer;

• Identity Keys: These are keys used to sign authentication
challenges, in this case, they may sign opaque data;

• Embedded Certificate Authorities (ECA) Keys: An ECA
key is used by a TCB component to issue certificates for
keys belonging to the current layer or higher TCB layer.
Also in this case the key can sign only data known by
the TCB layer;

• DeviceID Key: This asymmetric key is a long-lived key
certified by the manufacturer, computed by the DICE,
and it depends on the UDS and measurement of layer
0. It can be used to sign certificates of keys belonging
to a higher TCB layer, so it behaves as an ECA Key,
in addition, it can be used to sign certificates containing
some attestation evidence, so it can also behaves as an
Attestation Key;

• Alias Key: This key is derived at the last TCB layer using
its CDI. It is an Attestation Key because is used to sign
integrity measurements of the top-level device firmware.

Root CA

Sub CA1

Layer N

Embedded
CA

...

Layer N+1

Device

Leaf
certificate

Fig. 3. Certificate hierarchy with embedded CA

D. Credential Types

These credentials are conformed with the IEEE802.1AR
standard [9]:

• Initial Device Identifier (IDevID): This credential con-
tains a DeviceID and is typically generated by layer 0,
which has the constraint to be immutable or upgradable
following a process controlled by the device manufac-
turer.

• Local Device Identifier (LDevID): This credential is typi-
cally created at deployment time on the owner’s network,
by a layer after layer 0.

E. Layered Certification

On a DICE layered architecture is possible to expand a CA
hierarchy starting from the Device Manufacturer certificate of
the DICE Hardware Root of Trust (HRoT). It is possible to
associate an Embedded Certificate Authority (ECA) to a TCB
layer (figure 3), which is able to issue certificates for a higher
layer’s keys.

In the layered certification architecture, each layer has com-
puted its identity key, and each key will require a certificate
that can assert the trustworthiness of the key. The certificate
related to layer 0 is issued by the device manufacturer. Each
TCB layer contains an ECA, which can issue certificates for
higher layer’s key, for this reason, a consumer of an ECA-
issued certificate, to verify it, will have to trace the trust
dependencies through TCB layers to the device manufacturer.

F. RISC-V Physical Memory Protection (PMP)

RISC-V [10] is an open-source Instruction Set Architecture
(ISA) that provides a set of features to enhance the security and
reliability of several kinds of devices. One of these features
is the Physical Memory Protection (PMP) [11]. The PMP
provides a hardware mechanism to protect memory regions
(up to 16 regions) from unauthorized access to read or write
data. It is implemented using a set of hardware registers where
is possible to define the boundaries of the memory regions to
protect and it can be exploited only in Machine mode (M-
mode). Each region is identified specifying the start address
and the size. For each region is possible to specify the access
privileges (read, write, execute) to grant permission to the
other execution modes: Supervisor mode (S-mode) and User
mode (U-mode), and in case of a PMP violation, there will
be a CPU exception. It is possible to define memory regions

PMP Register 15 w,r

PMP Register 1

PMP Register 0

...
Lo

w
er

 P
rio

rit
y

Memory

Region
1 Region 2

r

Region 3

w,r,x

PMP Registers

Fig. 4. Example of PMP registers’ priority

that overlap with each other because each PMP register has
a priority where the highest priority is owned by the register
0, so it will be applied the permissions related to the highest
priority PMP register that refers to that specific memory region
(figure 4). It is possible to enable an execute-only option, for
a specific memory region, in order that even when running
in M-mode, is not possible to modify that particular region,
which can be useful to prevent some possible modifications
that can cause runtime errors.

G. Manufacturer Usage Description (MUD)

Manufacturer Usage Description (MUD) [4] is a recently
developed standard that provides a framework for describing
and classifying the network behavior of Internet of Things
(IoT) devices. It was developed by the Internet Engineer-
ing Task Force (IETF) to address the security and privacy
concerns associated with IoT devices. MUD enables network
administrators to enforce security policies by identifying and
controlling the network behavior of IoT devices.

MUD is a JSON file that provides information about the
type of device, the ports it uses, the protocols it supports, and
the services it provides. The MUD file is generated by the
manufacturer and is digitally signed to ensure its authenticity.
The MUD file is then distributed to network administrators
who can use it to configure their network security policies.

MUD enables network administrators to create policies
that allow or deny specific types of traffic to and from IoT
devices based on their behavior. This is particularly useful
in situations where the network administrator may not have
complete knowledge of the devices on their network. By using
MUD, network administrators can ensure that IoT devices are
only able to access the resources they require and that they
are unable to perform any malicious actions. The component
which performs these actions is the MUD Controller, which
analyzes the MUD file related to an IoT device and manages
access policies for it.

One of the main advantages of MUD is its simplicity. The
MUD file is a standardized format that can be easily generated
by manufacturers and read by network administrators. This
simplicity enables widespread adoption of the standard, which
is essential for ensuring the security and privacy of IoT
devices.

III. DESIGN OF THE SOLUTION

This work contributes to the IoT security area by proposing
a solution that combines the verification of the hardware and
firmware identity of an IoT device and the enforcement of
network security through MUD specification. The following
sections describe the threat model and the design of the
proposed solution in detail.

A. Threat Model

We consider a privileged software attacker who has the
goal to gain persistent control of the IoT device by exploiting
vulnerabilities present in the code. The attacker thus manages
to arbitrarily compromise portions of the memory not pro-
tected by hardware-assisted mechanisms, i.e. ROM and PMP
primitive. Moreover, the attacker may operate in M mode,
which is the only execution mode supported by some low-
end IoT devices. We rely on the correct implementation of
RISC-V PMP primitive and ROM unit to ensure the integrity
and confidentiality of the device’s DICE trust anchor, con-
taining the Unique Device Secret (UDS), the Device Root Key
(DRK) certificate and the Core Root of Trust for Measurement
(CRTM) of the device. In this context, we do not consider
hardware attacks aimed at altering the execution flow and
bypassing PMP protection, such as physically altering system
conditions through fault injection.

B. Proposed architecture for the IoT device

The internal architecture of the IoT device requires the
implementation of a DICE-based trust anchor, residing in the
ROM of the device, while the user function, which represents
Layer 0 first mutable code, is mapped in RAM or resides in
Flash memory, as shown in the figure 5. At power-on, code
in ROM executes basic hardware configuration routines, after
which it sets a PMP entry to assign execute-only permissions
to the physical memory area in ROM containing the DICE
code. Furthermore, this entry is configured so that it can
no longer be modified after being initialized. In this way,
the integrity of the functions contained in the root of trust
(RoT) (i.e. CRTM, IDevID key generation, Authentication) are
guaranteed by the ROM, while the confidentiality of the UDS,
present in the RoT, is guaranteed by the PMP entry which

Init functions
PMP config

CRTM

Auth function

User program

Auth lib BLE

𝐶𝑒𝑟𝑡𝐷𝑅𝐾

𝐶𝐷𝐼𝐿0

gen func

UDS

DRK
gen func

IDevID key
gen func

𝐶𝑒𝑟𝑡𝐼𝐷𝑒𝑣𝐼𝐷
gen func

R
O
M

R
A
M

Trust
anchor

Untrusted
part

Fig. 5. ROM and RAM/Flash configuration of the IoT device.

does not allow to read the memory area of the RoT. Upon
initialization of the PMP entry, DICE, using a Key Generation
Function (KGF), generates an asymmetric key pair from the
UDS, which is a statistically unique value configured by the
device manufacturer or derived from a Physical Unclonable
Function (PUF). The generated key is hardware unique and
is called Device Root Key (DRK) in this work. A trusted
manufacturer certificate authority (CA) can sign a certificate
for the DRK (e.g. an X.509 certificate), thus ensuring the
reliability of the RoT in the DICE architecture.

The DICE Core maps the user function into RAM and
calculates the IDevID key, which represents the hardware
and firmware identity of the device and can be used to
sign authentication challenges during network authentication
protocols, e.g. TLS extension. To generate the IDevID key, it
performs the following steps:

• the CRTM calculates a digest on the physical memory
region containing the user program;

• the measurement obtained from the CRTM is combined,
via an OWF, with the UDS to obtain the CDIL0 relating
to the user program;

• the CDIL0 is used as the seed of a key generation
function to derive the IDevID key.

Then, DICE generates a certificate, behaving as an ECA, (e.g.,
via X.509) for the IDevID public key (IDevID.pk), signed
with the private part of the DRK (DRK.sk), inserting in the
certificate:

• the measure calculated by the CRTM;
• the URL of the IoT device manufacturer server from

which to download the trusted reference measurements;
• the URL of the IoT device manufacturer server from

which to download the MUD file.
Finally, DICE copies the certificate for the created IDevID key
into the user function’s memory, before passing the control
over to it. Figure 6 represents at a high level the steps
performed by DICE when booting the IoT device.

𝑓𝑘𝑒𝑦_𝑔𝑒𝑛()

DRK

CRTM

DICE Core

Layer 0

UDS 𝐶𝑒𝑟𝑡𝐷𝑅𝐾

IDevID 𝐶𝑒𝑟𝑡𝐼𝐷𝑒𝑣𝐼𝐷

Auth
function

OWF 𝐶𝐷𝐼𝐿0

Auth
LibraryBLE

𝐶𝑒𝑟𝑡𝐼𝐷𝑒𝑣𝐼𝐷
User
Program

Fig. 6. IoT device internal architecture. DICE Core represents the Trust
Anchor, and Layer 0 represents untrusted components.

The authentication library, embedded in the user program,
will now be able to rely on the IDevID key certificate,
generated by the RoT, to provide its identity to the end-
points with which it has to exchange data. However, since

MUD
Controller

DICE
Controller

Internet

BLE

Cloud
server

HTTPS

Gateway

IoT
manufacturer

server

IoT
devices

Fig. 7. Network architecture of an IoT system.

the user program does not know the IDevID.sk, it will invoke
an Authentication Function embedded in the device’s RoT
to decrypt opaque challenges from remote-peers and prove
that the device has a trusted identity. Once invoked, the
authentication function regenerates the current IDevID key,
using a new measurement of the user program performed
by the CRTM: in this way, if an adversary has managed to
compromise the user program mapped in RAM, the generated
IDevID key will be different from the one certified at boot-
time and the remote-peer automatically knows that it cannot
trust the device it is communicating with.

C. Network architecture of the IoT system

IoT ecosystems are composed of a large variety of ele-
ments, including embedded devices and sensors, which are
responsible for acquiring data, gateways, which aggregate the
data acquired by the sensors to transmit them to other devices
over the network, network communication protocols, which
deal with connecting the various devices present in the IT
infrastructure, cloud infrastructures, which deal with cleaning
up data and carrying out analysis processes, made available
in the form of reports to end users. IoT platforms can assume
various configurations, ranging from managing a few devices
at a household level to an incredibly large number, such as in
a smart city or smart factory.

Figure 7 shows a typical IoT architecture, made up of
a set of devices connected via low-power radio technology
to a gateway or access point, which provides them with
connectivity to the public network. Radio technology includes
short-range protocols (e.g., Bluetooth Low Energy (BLE), Z-
Wave), suitable for systems with a limited number of devices,
such as smart homes, medium-range protocols (e.g., ZigBee),
used in industrial environments, and long-range protocols
(e.g., LoRaWAN, Sigfox), which guarantee the connectivity
of millions of low-power devices, as happens in Smart Cities.
The gateway then communicates with the IoT server in the
cloud, typically using REST APIs. Typically, IoT platform
components trust each other, creating a large attack surface
within the system.

The architecture proposed in this work allows the gateway
to perform a trusted identity verification of the IoT device,

both before granting it access to the public network and
subsequently, during its operation. Furthermore, thanks to the
integration with the MUD specification, the gateway has the
possibility of configuring a firewall that allows only the traffic
permitted by the device manufacturer to pass through.

The steps involving the proposed solution are described
in detail below. Once started, the IoT device communicates
with the gateway, providing it with its identity defined by the
IDevID certificate. The gateway passes this certificate to the
DICE Controller, a sub-component responsible for carrying
out checks regarding the trustworthiness of the IoT device.
The DICE Controller verifies the validity of the certificate,
checking that it has been signed with a DRK key certified
by a trusted device manufacturer. The DICE Controller then
extracts the measurement of the user program and the URL of
the IoT manufacturer server from the certificate, downloads the
trusted reference measurements from the server and verifies
that the measurement of the user program running on the
IoT device matches one of the golden reference measures.
If this check fails, the DICE Controller denies the IoT device
access to the public network, keeping it isolated and without
the possibility of causing damage to the outside; otherwise,
the DICE Controller extracts the URL corresponding to the
MUD file from the certificate and passes it to the MUD
Controller. The MUD Controller downloads the MUD file
from the IoT manufacturer server, interprets its policies, and
configures a firewall that only allows traffic authorized by the
device manufacturer to cross the gateway and access the public
network.

An IoT device that has gained network connectivity from
the gateway is able to establish trusted channels with the cloud
server based on the IDevID key. In particular, the server is
able to carry out the same checks on the trustworthiness of
the IoT device performed by the gateway. Moreover, since the
IoT device regenerates the IDevID key when it is to be used
to decrypt authentication challenges, the cloud server is able
to verify that the device it is communicating with is really
trusted since it has not been compromised by an attacker.

Furthermore, the gateway can periodically challenge the
device to prove its identity and, if this is modified with
respect to the one established in the IDevID certificate, the
gateway revokes the device’s permissions and isolates it from
the network so that, if it has been co-opted into a botnet, it
is no longer able to participate in a DDoS attack. In this way,
we use the authentication response as an implicit statement of
the integrity status of the device.

The proposed scheme is able to verify the trustworthiness
level of unknown devices, since it is not based on the a
priori knowledge of trusted information, such as a whitelist
of reference measures or public keys of IoT devices allowed
in the platform, but obtains this information by extracting
it from certificates, relying on a Public Key Infrastructure
(PKI). The proposed architecture is therefore suitable for use
in dynamic environments such as smart homes or smart cities,
where unknown devices can enter the IoT network and need
to be authorized before gaining access to platform resources.

IV. RELATED WORK

C. Shepherd et al. propose LIRA-V [12], an explicit re-
mote attestation scheme between constrained RISC-V devices,
based on the PMP security primitive. Differently from this
work, our scheme allows to realize implicit remote attestation
between unknown nodes, without needing to know a-priori the
trusted status of a node.

Regarding DICE specification, some implementations have
already been proposed in literature. Jäger et al. [13] propose a
symmetric attestation protocol based on DICE, and evaluate its
applicability to secure commercial off-the-shelf (COTS) IoT
devices. Choi et al. [13] propose a method based on DICE to
detect and identify faulty IoT devices through the extraction of
their context, known as the sensor correlation and the transition
probability between sensor states.

V. CONCLUSION

This paper proposed an architecture to secure IoT platforms
containing RISC-V constrained devices. Our proposal defines
a trust anchor for the IoT device, based on PMP and ROM
hardware mechanisms, without requiring the presence of TEEs
or other secure elements in the device. We describe a protocol
that allows the creation of trusted channels between IoT
devices and cloud servers, relying on an implicit attestation
mechanism of the trust state of the IoT device. The device
attests its trustworthiness by demonstrating that the IDevID
key, which represents its hardware and firmware identity, has
not been changed since boot.

Future work concerns the in-field evaluation of the per-
formance of the proposed solution, the implementation of
the presented schema using lightweight cryptography, and the
evaluation of post-quantum cryptosystems that can be adopted
in constrained devices.

REFERENCES

[1] Netscout, “Down of the terrorbit era.”
https://www.netscout.com/sites/default/files/2019-02/SECR 001 EN-
1901 - NETSCOUT Threat Intelligence Report 2H 2018.pdf.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] TCG, “DICE Layering Architecture, version 1.0,” July 2020.
[4] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage Descrip-

tion specification.” RFC-8520, May 2019.
[5] TCG, “Hardware requirements for a device identifier composition en-

gine,” 2018.
[6] Q. Dang, “Secure Hash Standard (SHS).” NIST FIPS.180-4, 2012.
[7] Q. Dang, “The keyed-hash message authentication code (hmac).” NIST

FIPS.198-1, 2008.
[8] R. D. Elaine Barker, Lily Chen, “Recommendation for key-derivation

methods in key-establishment schemes.” NIST SP-800-56, 2020.
[9] IEEE 802.1 working group, “IEEE Standard for Local and Metropolitan

Area Networks - Secure Device Identity,” IEEE Std 802.1AR-2018
(Revision of IEEE Std 802.1AR-2009), pp. 1–73, 2018.

[10] A. Waterman, Design of the RISC-V Instruction Set Architecture. PhD
thesis, EECS Department, University of California, Berkeley, Jan 2016.

[11] A. Waterman, K. Asanovic, and J. Hauser, “The RISC-V instruction set
manual,” Volume II: Privileged Architecture, 2021.

[12] C. Shepherd, K. Markantonakis, and G.-A. Jaloyan, “LIRA-V:
Lightweight Remote Attestation for Constrained RISC-V Devices,” in
2021 IEEE Security and Privacy Workshops, pp. 221–227, may 2021.

[13] L. Jäger, R. Petri, and A. Fuchs, “Rolling dice: Lightweight remote
attestation for cots iot hardware,” in 12th International Conference on
Availability, Reliability and Security (ARES’17), August 2017.

