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A B S T R A C T

This work provides an assessment of Equivalent Single Layer (ESL) and Layerwise finite element models, aimed
for panel flutter and buckling analysis of supersonic variable stiffness composites, exploring variable-order
shear deformation theories and Lagrange z-expansions. Numerical applications focus on simply supported
panels with curvilinear fibre composite layers, including a cross-ply configuration for comparison purposes,
and various side-to-thickness ratios. The accurate prediction of transverse shear and bending–twisting coupling
is highlighted, as rather necessary for proper tailoring and analysis of supersonic curvilinear composites,
especially when including in-plane loads. This is attainable through high-order ESL descriptions, in thin panels,
even without thickness stretching.
1. Introduction

The ever-growing research on variable stiffness composite (VSC)
laminates, involving curvilinear fibres technology, has consistently
highlighted the exceptional tailor-ability and consequent superior struc-
tural efficiency in both strength and mass that can be attained by
resorting to composite layers having carefully tailored curvilinear fibre
paths [1]. In fact, among various cutting-edge engineering applications,
the variable stiffness technology emerges quite suitable to be explored
in the design optimization of advanced aerospace structures, either for
improved buckling response [2–4], enhanced aeroelastic behaviour of
wings [5–7] or increased supersonic panel flutter resistance [8–10].
Nonetheless, the accurate modelling of such highly anisotropic compos-
ite structures in terms of in-plane and transverse responses, including
elastic coupling effects such as bending–twisting, is considered of the
utmost importance for proper tailoring and analysis of curvilinear fibre
composite laminates, especially when dealing with the combined effect
of in-plane mechanical loads and transverse aerodynamic loads. In light
of the challenging demands posed to the modelling of multilayered
composite structures with curvilinear fibre paths, for which there is
still a limited number of available literature discussing the role of
structural theories on aeroelastic and buckling stability analysis, this
work presents an assessment of kinematically refined finite element
(FE) models, with either Equivalent Single Layer (ESL) or Layerwise
(LW) descriptions, for panel flutter and buckling analysis of curvilinear
fibre laminates under supersonic airflow and in-plane loading, pushing
forward the structural modelling predictive capabilities to properly
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capture intricate effects that may be exhibited, with high numerical
accuracy, all along ensuring computational efficient techniques.

The accurate analysis of multilayered composite structures, per se,
relies mostly on the assumed structural theory and its capability to fully
describe the displacements and stresses at the layer level, even if there
is a high inhomogeneity of material properties between layers [11,12].
By adopting displacement based LW formulations, the necessary inter-
laminar continuity of displacements, shown by three-dimensional (3D)
elasticity [13], can be fulfilled a priori, while allowing the prediction
of zig-zag distributions along the thickness, as opposed to ESL descrip-
tions. Further structural refinements are addressed, as appropriate, by
high-order kinematic theories capable of rendering quasi-3D predictive
capabilities in terms of in-plane response, transverse shear deforma-
tions and thickness stretching, especially when dealing with moderately
thick and thick plates, as well as pronounced elastic coupling effects. It
is relevant to point out that shear deformation plate theories, namely
the First-order Shear Deformation Theory (FSDT) and Third-order Shear
Deformation Theory (TSDT), focus solely on the kinematic enrichment
of the in-plane displacements (maintaining a constant transverse dis-
placement) and usually assume plane stress constitutive equations.
General high-order thickness-expansions, in contrast, can act on all
displacement components and, therefore, account for both transverse
shear deformations and thickness stretching, while making use of the
complete 3D constitutive equations.

As far as the analysis of curvilinear fibre composites is considered,
some recent works on the application of refined structural models are
indeed worth of mentioning. Actually, most of these investigations
https://doi.org/10.1016/j.tws.2023.111012
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on the accuracy assessment of different models predictive capabili-
ties are usually carried out resorting to unified formulations, such
as the Carrera Unified Formulation (CUF) or the Generalized Unified
Formulation (GUF), due to the sole purpose of encompassing various
structural theories in a systematic and hierarchical fashion. In terms
of static analysis of plates, Demasi et al. [14] applied the GUF to
investigate ESL and LW descriptions, with various thickness-expansion
orders of displacements. Likewise, Sánchez-Majano et al. [15] focused
on the assessment of ESL and LW bi-dimensional (2D) CUF models for
stress analysis of both plates and shells. Regarding the free vibration
analysis of beams and plates, Viglietti et al. [16] provides an assessment
of one-dimensional (1D) CUF models, which is further extended by
Yan et al. [17] considering hierarchical differential quadrature finite
elements with improved Legendre type expansions. Moreover, the ap-
plication of variable-kinematic Ritz models, within the CUF framework,
for free vibration and buckling analysis of variable stiffness composites
are discussed by Vescovini and Dozio [18]. Additionally, the sensitivity
analysis of the buckling and failure responses to manufacturing defects
and fibre misalignments is also quite relevant in the design of curvilin-
ear fibre composites, as highlighted in recent works by Sánchez-Majano
et al. [19] as well as by Pagani and Sánchez-Majano [20,21], for
which refined CUF models can ensure accurate global–local predictive
capabilities. Aside from the widely used CUF, but still on the basis of
the high-order LW modelling, Moreira et al. [22] implemented user-
defined elements in the commercial software Abaqus for static and free
vibration analysis of curvilinear fibre composite laminates, making use
of the FSDT and TSDT displacement fields for each discrete layer. It
is also worth mentioning other recent works on multi-walled carbon
nanotube reinforced sandwich panels [23], delamination of composite
plates and soft core sandwich shells [24,25] and functionally graded
nanoshells [26].

However, in the supersonic panel flutter analysis of either straight
or curvilinear fibre composites, the structural models tend to be simpler
in order to achieve computationally bearable dynamic systems with
reduced dimensions. As a matter of fact, the computational efficiency
in general aeroelastic models is mostly demanded by the iterative
nature of the flutter analyses, which require multiple eigenvalue ex-
tractions. Hence, the Rayleigh–Ritz method combining the Classical
Laminated Plate Theory (CLPT) or the FSDT, and the First-order Pis-
ton Theory, as structural and fluid models, respectively, has been
extensively used for panel flutter analysis [27], including aero-thermo-
elastic stability and even active flutter and buckling control [28–31].
Further extensions to variable stiffness configurations are presented
in the design optimization work by Guimarães et al. [8], highlight-
ing remarkable improvements in flutter and buckling resistance via
tailored curvilinear fibres, and by Moreira et al. [32] focusing on
panel flutter of purely elastic laminates and active aeroelastic control
in smart piezoelectric composites. Despite the assumption of no shear
deformation in classical plate theories, it is relevant to note that since
the most commonly used expansion functions in these Rayleigh–Ritz
models are sinusoidal, which limits the analysis to simply supported
plates, there is an additional overestimation of the stiffness in highly
anisotropic composite laminates, involving elastic coupling effects such
as bending–twisting coupling in the case of flexural anisotropy, as
shown by Stone and Chandler [33] and Vescovini et al. [34]. In recent
works by Sciascia et al. [35,36] on the vibration response and dynamic
stability of pre-stressed variable stiffness composite shells, it is consid-
ered Legendre polynomials as Ritz expansion functions, showing a good
agreement with standard FE models, including multi-part modelling of
aerospace structures. Overcoming the underlying limitations of global
Rayleigh–Ritz formulations, FE analyses of supersonic curvilinear fibre
composites are reported by Akhavan and Ribeiro [37,38] through a
𝑝-version element which adopts Reddy’s TSDT. In addition, Rasool and
Singha [39] focused on the panel flutter response behaviour of pre-
stressed curvilinear fibre composites using the FSDT. Still, these works

just make use of ESL descriptions and shear deformation theories –
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which are not capable of predicting through-thickness zig-zag displace-
ments and transverse normal strains nor use 3D constitutive equations
– and do not present any comparative assessment between different
structural models. Furthermore, it is worth remarking that Carrera and
Zappino [40] and Zappino et al. [41] performed panel flutter analysis of
supersonic pinched shells – representing the thermal insulation panels
used in launcher structures – applying various structural models within
CUF framework, as well as 1D and 2D type finite elements, respectively,
though not including any variable stiffness configuration. Just recently,
Yan and Zhang [42] extended 1D CUF models for aero-thermo-elastic
stability analysis of curvilinear fibre composite laminates, assuming
improved Legendre type expansion for the cross-section, which are
able to predict, at most, quadratic through-thickness distributions of
displacements in a LW sense. It is thus clear the limited number of avail-
able literature on the assessment of refined structural models for panel
flutter and buckling analysis of supersonic composite laminates under
in-plane loads, especially when the emerging and highly promising
curvilinear fibre composites are considered.

To further extend the current knowledge on the role of struc-
tural theories in panel flutter and buckling stability analysis of su-
personic composite laminates with curvilinear fibre paths, this work
presents a comprehensive evaluation of various ESL and LW descrip-
tions, considering either variable order shear deformation theories
(i.e. Taylor 𝑧-expansions with null thickness stretching) or full Lagrange
𝑧-expansions, making progress on the application of high-order 2D
plate models for analysis and design of advanced composite panels for
aerospace applications. Therefore, it is possible to discuss and select
the most suitable structural theories, capable of rendering numerically
accurate and computationally efficient predictions, for supersonic panel
flutter analysis of curvilinear fibre composites and its aeroelastic design
optimization. To the best of the authors’ knowledge, this is the first
time that various ESL and LW 2D type finite elements, involving either
the FSDT or TSDT displacement fields as well as full 3D displacements
with Lagrange type 𝑧-expansions up to the third order, are compared
specifically for panel flutter and buckling analysis of curvilinear fibre
composite panels under supersonic airflow and uniaxial loads, pro-
viding a comparison with Rayleigh–Ritz CLPT solutions by Moreira
et al. [32] whenever thin plates are considered. Hence, the present
work allows the accuracy assessment of the FE models predictive
capabilities as well as of the simpler and widely used Rayleigh–Ritz
formulation with CLPT, in both flutter and buckling responses. The
main novelties brought to light by this work regard the application of
progressively refined multilayered plate models for the study of flutter
and buckling characteristics in variable stiffness composite panels un-
der supersonic airflow and uniaxial compressive loads, pushing forward
the modelling predictive capabilities to quasi-3D descriptions, which
have not yet been explored to such extent in the literature concerning
the aeroelastic stability of the emerging and promising curvilinear fibre
composites. Furthermore, the full non-linear Green–Lagrange strains
and the von Kármán approximations are both investigated, whereas
the First-order Piston Theory is assumed as aerodynamic model. Note
that even though the proposed structural models correspond to par-
ticular cases that can be derived using the aforementioned unified
formulations, a more conventional approach was adopted in the present
formulation, but still in a fairly systematic manner. In line with the
benchmark cases considered in static and free vibration analysis by
Moreira et al. [22], as also followed in the Rayleigh–Ritz flutter analysis
by Moreira et al. [32], numerical applications address not only three
distinct curvilinear fibre composite laminates, but also a quite stan-
dard cross-ply configuration for comparison purposes. The assessment
of the models predictive capabilities is focused on simply supported
panels, providing a benchmark of flutter and buckling solutions for
thin and moderately thick plates with various side-to-thickness ratios.
Ultimately, the aeroelastic stability analysis of pre-stressed supersonic
panels is presented, assuming solely the case of thin plates, which
are indeed the ones of primary interest for aerospace applications,
focusing on the evaluation of the combined flutter–buckling stability

diagrams/maps.
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Fig. 1. Illustrative representation of a laminated composite panel with spatially varying fibre orientations, divided in three discrete layers: geometry and adopted structural models.
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. Structural models

In this work, both ESL and LW descriptions are considered for the
evelopment of the multilayered structural models, while assuming
ifferent displacement type axiomatic theories. On one hand, the ESL
odels are based on shear deformation theories, namely the FSDT

nd TSDT. On the other, the LW models include not only shear defor-
ation theories, but also further refined theories involving Lagrange

-expansions of all displacement components, with a variable 𝑝-order,
which can provide quasi-3D predictive capabilities in the sense that
transverse normal deformations can be captured due to the non con-
stant through-thickness distribution of transverse displacements, as
illustrated in Fig. 1.

In agreement with linear elasticity, the models which account for
transverse normal strains make use of 3D constitutive equations, given
in the global coordinate system (𝑥, 𝑦, 𝑧) as follows:
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here 𝜎𝑖𝑗 represents the stresses, 𝜀𝑖𝑖 the infinitesimal normal strains, 𝛾𝑖𝑗
he engineering shear strains and �̄�𝑖𝑗 the 3D elastic constants for layers
nvolving pointwise orthotropic materials. In a more compact and
onvenient form, one has 𝝈 = �̄�𝜺, where 𝝈 and 𝜺 are the stresses and
trains structured as vectors (in line with Voigt notation), respectively.

However, in the typical approach to develop models that neglect
ransverse normal strains, as the ones that make use of shear deforma-
ion theories, it is assumed reduced plane stress constitutive equations
𝜎𝑧𝑧 = 0), given as shown:
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where �̄�𝑖𝑗 are the reduced elastic constants (see Reddy [43] for further
details on 3D and reduced constants). In compact form, one has 𝝈 = �̄�𝜺.

In the particular case of curvilinear fibre composite layers, the
fibre angle distribution is dependent on the in-plane coordinates in
the general form of 𝜃 = 𝜃(𝑥, 𝑦), which means that the elastic con-
stants in the global coordinate system are continuously graded as well,
i.e. �̄� = �̄�(𝑥, 𝑦), due to the necessary in-plane rotation between the

layer material coordinate system and the global one [43]. In the present
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ork, it is assumed that each composite layer has just a linear fibre
ngle variation along the 𝑥-axis, expressed as follows:

(𝑥) = 𝑇0 +
2(𝑇1 − 𝑇0)

𝑎
|

|

|

|

𝑥 − 𝑎
2
|

|

|

|

, 0 ≤ 𝑥 ≤ 𝑎 (3)

where 𝑇0 = 𝜃(𝑎∕2) and 𝑇1 = 𝜃(0) = 𝜃(𝑎) are the orientations at the
centre and edges of the plate and 𝑎 is the side along the 𝑥-axis (Fig. 1),
respectively.

Under the assumption of infinitesimal strains, the geometrical
strain–displacement relations correspond to the linear terms of the
Green–Lagrange strain tensor, which are given by:

𝜀𝑥𝑥 = 𝑢,𝑥 (4a)

𝜀𝑦𝑦 = 𝑣,𝑦 (4b)

𝜀𝑧𝑧 = 𝑤,𝑧 (4c)

𝛾𝑦𝑧 = 𝑣,𝑧 +𝑤,𝑦 (4d)

𝛾𝑥𝑧 = 𝑢,𝑧 +𝑤,𝑥 (4e)

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 (4f)

where 𝑢, 𝑣 and 𝑤 are the displacement components in the 𝑥-, 𝑦- and
𝑧-axis, respectively, such that the displacement vector is 𝒖 = {𝑢 𝑣 𝑤}𝑇 .
The comma-derivative notation is adopted from now on.

Regarding the computation of the virtual work done by the applied
in-plane loads in linear stability analysis, the non-linear terms of the
Green–Lagrange in-plane strains are considered, as shown:

̃𝑥𝑥 = 1
2

[(

𝑢2,𝑥 + 𝑣2,𝑥
)

𝜛 +𝑤2
,𝑥

]

(5a)
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1
2

[(

𝑢2,𝑦 + 𝑣2,𝑦
)

𝜛 +𝑤2
,𝑦

]

(5b)

�̃�𝑥𝑦 =
(

𝑢,𝑥𝑢,𝑦 + 𝑣,𝑥𝑣,𝑦
)

𝜛 +𝑤,𝑥𝑤,𝑦 (5c)

here 𝜛 is a scalar variable taking the value one or zero, thus
llowing to adopt either the full non-linear in-plane strains or the
ell-known von Kármán strains, respectively. The generalized non-

inear strain vector is conveniently written for later derivations as
̃ = {𝑢,𝑥 𝑢,𝑦 𝑣,𝑥 𝑣,𝑦 𝑤,𝑥 𝑤,𝑦}𝑇 .

2.1. ESL descriptions with no thickness stretching

In ESL descriptions, the independent variables of the kinematic
model are introduced for the whole laminate, without depending on
the number of material layers. Even though different kinematic models
can be explored in ESL descriptions, as in the CUF [11], this work only
considers shear deformation theories with no thickness stretching. In
particular, the FSDT and TSDT make use of Taylor 𝑧-expansions of the
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displacements around the mid-plane of the laminate, whose coefficients
correspond to the independent variables of the theory. Assuming a
constant through-thickness distribution of transverse displacements,
sustained by the transverse inextensibility hypothesis, the FSDT and
TSDT assume linear and cubic 𝑧-expansions of in-plane displacements,
respectively. Specifically, the TSDT displacement field is given by:

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧𝜃𝑥(𝑥, 𝑦) + 𝑧2𝛽𝑥(𝑥, 𝑦) + 𝑧3𝜆𝑥(𝑥, 𝑦) (6a)

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧𝜃𝑦(𝑥, 𝑦) + 𝑧2𝛽𝑦(𝑥, 𝑦) + 𝑧3𝜆𝑦(𝑥, 𝑦) (6b)

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (6c)

where the subscript 0 stands for the mid-plane location, 𝜃𝑥 and 𝜃𝑦
denote the rotations of the normals to the mid-plane about the 𝑦-
and 𝑥-axes, respectively, whereas 𝛽𝑥, 𝛽𝑦, 𝜆𝑥 and 𝜆𝑦 are the higher-
order generalized displacements. The displacement field of the FSDT
is recovered by neglecting the high-order terms in the expansion of the
in-plane displacements. In general, the nine degrees of freedom (DOFs)
involved in the ESL TSDT are 𝒅 = {𝑢0 𝑣0 𝑤0 𝜃𝑥 𝜃𝑦 𝛽𝑥 𝛽𝑦 𝜆𝑥 𝜆𝑦}𝑇 , whereas
for the ESL FSDT, only the first five DOFs remain.

Since the FSDT predicts a just constant through-thickness distribu-
tion of shear strains, a shear correction factor 𝐾𝑠 is applied for the
evaluation of transverse shear stresses [43]. On the other hand, the
TSDT predicts a more realist distribution of shear strains and, there-
fore, it does not require the introduction of a correction factor as the
FSDT.

2.2. LW descriptions

Dividing a laminate into a set of discrete layers, which may corre-
spond to the physical layers or to a given combination of layers (sub-
laminates), LW descriptions treat each of them as an unique plate/shell,
while imposing a priori the necessary continuity of displacements (and
transverse stresses in mixed models) at the interfaces between adjacent
layers [11]. As a result, LW descriptions are capable to predict through-
thickness distributions of displacements with zig-zag behaviour, being
especially suited for multilayered structures with high inhomogeneity
of material properties through-thickness as well as thick panels. More-
over, various structural theories can be considered in view of the LW
modelling, assuming either a prescribed or variable number of discrete
layers a priori, as necessary. In the present work, both Lagrange 𝑧-
expansions (of all displacement components) and shear deformation
theories are included to obtain the LW displacements of a panel divided
in three discrete layers, as presented in Fig. 1. The through-thickness
continuity of transverse stresses is not enforced in the proposed dis-
placement based formulations, as a common procedure in this type of
approach [12], since it would lead to cumbersome manipulations of
the displacement field (then depending on the elastic coefficients of the
material layers), with no significant improvement as far as the global
response accuracy is considered, as regards to the case of vibration
and flutter characteristics. In fact, this is corroborated further by the
assessment of LW mixed models for free vibration analysis of thin and
moderately thick composite plates [44].

Assuming the same 𝑝-order Lagrange expansion for each displace-
ment component and for all discrete layers, the displacement field of
the 𝑘-layer can be written as follows:

𝑢𝑘(𝑥, 𝑦, 𝑧) =
𝑛𝑢
∑

𝑗=1
𝜑𝑘
𝑗 (𝑧)𝑢

𝑘
𝑗 (𝑥, 𝑦) (7a)

𝑣𝑘(𝑥, 𝑦, 𝑧) =
𝑛𝑢
∑

𝑗=1
𝜑𝑘
𝑗 (𝑧)𝑣

𝑘
𝑗 (𝑥, 𝑦) (7b)

𝑤𝑘(𝑥, 𝑦, 𝑧) =
𝑛𝑢
∑

𝑗=1
𝜑𝑘
𝑗 (𝑧)𝑤

𝑘
𝑗 (𝑥, 𝑦) (7c)

where 𝑛𝑢 = 𝑝 + 1 is the number of points, 𝜑𝑘
𝑗 are the Lagrange

functions of the 𝑘-discrete layer and 𝑢𝑘𝑗 , 𝑣𝑘𝑗 and 𝑤𝑘
𝑗 are the associated

through-thickness displacement variables at the 𝑗-point.
4

The Lagrange functions, through each layer thickness, in terms of
the natural coordinate 𝜁𝑘 ∈ [−1, 1], are defined as shown:

𝜑𝑘
𝑗
(

𝜁𝑘
)

=
𝑛𝑢
∏

𝑠=1
𝑠≠𝑗

𝜁𝑘 − 𝜁𝑘𝑠

𝜁𝑘𝑗 − 𝜁𝑘𝑠
(8)

where 𝜁𝑘 = 2(𝑧 − 𝑧𝑘0)∕ℎ
𝑘, denoting 𝑧𝑘0 and ℎ𝑘 as the mid-plane

𝑧-coordinate and thickness of the 𝑘-discrete layer, respectively.
Since Lagrange 𝑧-expansions allow the independent variables to

correspond to displacements at prescribed locations, equidistant across
each layer thickness, the interlaminar continuity of displacements can
be easily achieved by assembling of the displacement variables at
adjacent layers. Thus, for a LW description which makes use of 𝑝-order
Lagrange thickness-expansions, the total number of DOFs depends on
the number of discrete layers (𝑁𝐿), which corresponds to (𝑁𝐿 − 1)
interfaces, each with three displacement components to be assembled,
leading to (𝑁𝐿 × (𝑝 + 1) − 3 × (𝑁𝐿 − 1)) independent variables.

Considering a set of three discrete layers, denoted by bottom
(b), core (c) and top (t), as represented in Fig. 1, the through-thickness
continuity of displacements implies that 𝒖𝑏𝑛𝑢 = 𝒖𝑐1 (bottom-core inter-
face) and 𝒖𝑐𝑛𝑢 = 𝒖𝑡1 (core-top interface), where 𝒖𝑘𝑗 = {𝑢𝑘𝑗 𝑣𝑘𝑗 𝑤𝑘

𝑗 }
𝑇 is

the displacement vector of the 𝑘-layer at the 𝑗-node. The assembled
DOFs for a generic 𝑝-order expansion, with 𝑛𝑢 = 𝑝 + 1 points, are
𝒅 = {𝒖𝑏𝑇1 𝒖𝑏𝑇2 ... 𝒖𝑏𝑇𝑛𝑢 𝒖𝑐𝑇2 ... 𝒖𝑐𝑇𝑛𝑢 𝒖𝑡𝑇2 ... 𝒖𝑡𝑇𝑛𝑢}

𝑇 .
On the other hand, it is also possible to obtain LW descriptions

making use of the FSDT and TSDT displacements, for each discrete
layer, as well as the through-thickness displacement continuity. For
three-discrete layers, the LW FSDT and LW TSDT displacement fields
can both be explicitly found in Moreira et al. [22] (or in Moreira
et al. [45] in the case of the former model), being here omitted for
brevity. Nonetheless, it is worth remarking that the total number of in-
dependent variables for three discrete layers is reduced to 3𝑁−6, where
𝑁 = 5 and 9 for the piecewise FSDT and TSDT, respectively, when
imposing the continuity of displacements at the interfaces between
the mid-layer and the outer ones. Since the transverse displacement
is constant in the thickness direction of each layer, it is also constant
throughout the entire thickness of the laminate (thus no thickness
stretching can be captured). As presented by Moreira et al. [32], the
twenty one DOFs associated to LW TSDT for three discrete layers are
𝒅 = {𝑢𝑐0 𝑣𝑐0 𝑤𝑐

0 𝜃𝑐𝑥 𝜃𝑐𝑦 𝛽𝑐𝑥 𝛽𝑐𝑦 𝜆𝑐𝑥 𝜆𝑐𝑦 𝜃𝑡𝑥 𝜃𝑡𝑦 𝛽𝑡𝑥 𝛽𝑡𝑦 𝜆𝑡𝑥 𝜆𝑡𝑦 𝜃𝑏𝑥 𝜃𝑏𝑦 𝛽𝑏𝑥 𝛽𝑏𝑦 𝜆𝑏𝑥 𝜆𝑏𝑦}
𝑇 ,

whereas for the LW FSDT, only nine DOFs remain, since the high-order
generalized displacements are not included.

3. Aeroelastic FE equations

For briefness and conciseness, the FE formulation is presented re-
sorting to a general notation involving matrices and vectors, whose
components are dependent on the adopted structural theory. Hence,
for a general 𝑘-discrete layer, the combined 1D thickness-expansions
and 2D FE approximations of the displacement vector 𝒖𝑘 and the
strain vectors 𝜺𝑘 and �̃�𝑘 (i.e., linear and generalized non-linear strain
components, respectively) are defined by:

𝒖𝑘 = 𝒁𝑘𝑵𝑘𝒅 (9a)

𝜺𝑘 = 𝑺𝑘𝑩𝑘𝒅 (9b)

�̃�𝑘 = �̃�𝑘�̃�𝑘𝒅 (9c)

where 𝒁𝑘, 𝑺𝑘 and �̃�𝑘 contain the expansion functions in the thickness
direction, while 𝑵𝑘, 𝑩𝑘 and �̃�𝑘 establish the necessary FE approxi-
mations in-plane via 2D shape functions. To be more precise, for ESL
models involving a unique discrete layer, the dependency on the index
𝑘 does not apply. Additionally, the applied 2D shape functions are,
in fact, quadratic Lagrange functions – which form the basis of the
nine-node quadrilateral element [43], usually denoted by Q9 – such
that the element DOFs associated to the intended structural model
are 𝒅 = {𝒅𝑇 ... 𝒅𝑇 }𝑇 , where 𝒅 stands for the element nodal DOFs.
1 9 𝑖
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The 𝐶0-interpolation in-plane, required by the adopted structural FE
models, is then verified by the 2D Lagrange polynomials [43], for
both shear deformation theories and Lagrange 𝑧-expansion models,
thus ensuring the interelement continuity of primary variables (as in a
conforming element). The same 2D shape functions are also considered
for the approximation of the geometry, resulting in an isoparametric FE
formulation [43].

In line with the Principle of Hamilton, the dynamic equilibrium of
the composite panel divided in 𝑘 discrete layers of in-plane surface
 = [0, 𝑎] × [0, 𝑏] and thickness domain ℎ𝑘, under supersonic airflow
– which exerts a transverse pressure 𝛥𝑝 on the upper surface of the top
layer (𝑧 = ℎ∕2 and 𝑘 = 𝑡) – and applied in-plane stresses on the edges,
can be expressed in the following form:

∑

𝑘
∫ ∫ℎ𝑘

𝛿𝜺𝑘𝑇 𝝈𝑘 + 𝛿�̃�𝑘𝑇 �̂�𝑘
𝟎 �̃�

𝑘𝑇 + 𝜌𝑘𝛿𝒖𝑘𝑇 �̈�𝑘 𝑑𝑧𝑑 = ∫
𝛿𝒖𝑡𝑇 | ℎ

2
𝒆𝒛𝛥𝑝 𝑑

(10)

here 𝛿 stands for the variational operator and the double-dot for
he second time derivative, while 𝜌𝑘 is the 𝑘-layer density and 𝒆𝒛 =
0 0 1}𝑇 . To include the von Kármán approximations along with the
ull non-linear strains on the models formulation, in line with Eq. (5),
he initial stresses acting on the 𝑘-layer are expressed as shown:

̂ 𝑘𝟎 =
⎡

⎢

⎢

⎣

𝜛𝝈𝑘
𝟎 0 0

0 𝜛𝝈𝑘
𝟎 0

0 0 𝝈𝑘
𝟎

⎤

⎥

⎥

⎦

(11)

ith

𝑘
𝟎 =

[

𝜎𝑘𝑥𝑥0 𝜎𝑘𝑥𝑦0
𝜎𝑘𝑥𝑦0 𝜎𝑘𝑦𝑦0

]

(12)

Depending on the intended problem, the initial stress state in
q. (12) is prescribed using zeros or ones, followed by a pre-multiplier
, which means, for instance, in the case of uniaxial loads along the
-axis, that 𝜎𝑘𝑥𝑥0 = 𝛼 and 𝜎𝑘𝑦𝑦0 = 𝜎𝑘𝑥𝑦0 = 0. The most significant stress
esultants along the thickness, i.e the in-plane loads per unit length
cting on the boundaries, are given by:
{

𝑁𝑥 𝑁𝑦 𝑁𝑥𝑦
}𝑇 =

∑

𝑘
∫ℎ𝑘

{

𝜎𝑘𝑥𝑥0 𝜎𝑘𝑦𝑦0 𝜎𝑘𝑥𝑦0

}𝑇
𝑑𝑧 (13)

Additionally, the effect of the supersonic airflow is described mak-
ng use of the well-established First-order Piston Theory [27,40,46],
hich describes the pressure distribution acting on the upper surface
f the panel as follows:

𝑝 = −𝜆
(

𝑤,𝑥 cos𝛬 +𝑤,𝑦 sin𝛬
)

| ℎ
2
− 𝜇�̇�| ℎ

2
(14)

where the dynamic pressure parameter and aerodynamic damping are
given by 𝜆 = 2𝑞∞∕(𝑀2

∞ − 1)1∕2 and 𝜇 = 𝜆[(𝑀2
∞ − 2)∕(𝑀2

∞ − 1)]∕𝑈∞,
espectively, denoting 𝑞∞ = 𝜌∞𝑈2

∞∕2, 𝜌∞, 𝑈∞ and 𝑀∞ as the dy-
amic pressure, density, speed and Mach number of the free airflow.
oreover, 𝛬 represents the yaw angle of the airflow. In particular,

he contribution of the aerodynamic damping is neglected since its
nclusion leads to slightly higher critical flutter speeds [37]. Hence,
ore conservative flutter analyses can be ensured when imposing
= 0 in Eq. (14), as also followed by Moreira et al. [32].

Introducing the FE approximations stated in Eq. (9), the constitu-
ive relations in Eqs. (1) or (2) as well as the aerodynamic pressure
istribution in Eq. (14), all together, into in Eq. (10), one can derive
he equilibrium equations of the element (for different kinematic mod-
ls). In the end, the aeroelastic equilibrium equations accounting for
n-plane loads are written as follows:

�̈� + (𝑲 + 𝜆𝑲𝒂 + 𝛼𝑲𝒈)𝒅 = 𝟎 (15)

here 𝑴 is the mass matrix, 𝑲 the (purely elastic) stiffness matrix, 𝜆𝑲𝒂
the aerodynamic stiffness matrix and 𝛼𝑲𝒈 the geometric stiffness ma-
rix. As derived from the variational formulation, the element matrices
5

are given by:

𝑴 =
∑

𝑘
∫𝛺

𝑵𝑘𝑇
(

∫ℎ𝑘
𝜌𝑘𝒁𝑘𝑇 𝒁𝑘𝑑𝑧

)

𝑵𝑘𝑑𝛺 (16a)

=
∑

𝑘
∫𝛺

𝑩𝑘𝑇
(

∫ℎ𝑘
𝑺𝑘𝑇 �̄�𝑘𝑺𝑘𝑑𝑧

)

𝑩𝑘𝑑𝛺 (16b)

𝒈 =
∑

𝑘
∫𝛺

�̃�𝑘𝑇
(

∫ℎ𝑘
�̃�𝑘𝑇 �̂�𝑘

𝟎�̃�
𝑘𝑑𝑧

)

�̃�𝑘𝑑𝛺 (16c)

𝒂 = ∫𝛺
𝑵 𝑡𝑇 𝒁 𝑡𝑇

| ℎ
2
𝒆𝒛𝒆𝑇𝒛𝒁

𝑡
| ℎ
2

(

𝑵 𝑡
,𝑥 cos𝛬 +𝑵 𝑡

,𝑦 sin𝛬
)

𝑑𝛺 (16d)

where the �̄�𝑘 tensor is replaced by �̄�𝑘 whenever shear deformation
odels are considered (since they make use of reduced constitutive

quations). In addition, the integrals in the thickness direction are
btained using analytical integration, whereas the integration on the in-
lane FE domain 𝛺 is carried out numerically, using Gauss quadrature,
ith reduced integration for the shear terms of the stiffness matrix

Eq. (16b)) in order to avoid shear locking in thin plates [43]. It is
orth remarking that: (i) for curvilinear fibre composite layers, the

ibre angle is evaluated at each integration point within an element
nd (ii) if a discrete layer represents more than one physical layer,
his sublaminate is then treated as an ESL and, therefore, the integrals
n the thickness direction must account for the sum of the different
ayers. Also noteworthy is that even when neglecting both structural
nd aerodynamic dissipative terms in the aeroelastic equilibrium equa-
ions, one needs to account for complex eigenvalue solutions since the
erodynamic stiffness matrix is non-symmetric (thus adding aeroelastic
oupling between the vibration modes).

After proceeding with the FE assemblage and the application of
oundary conditions, the global eigenvalue problem associated to
q. (15) is written as shown:
|

|

|

(

𝑲 + 𝜆𝑲𝒂 + 𝛼𝑲𝒈
)

− 𝑠𝑛𝑴
|

|

|

= 𝟎 (17)

where the complex eigenvalue of the 𝑛-mode is defined by 𝑠𝑛 = 𝜔2
𝑛(1 +

𝑔𝑛), with 𝑖 =
√

−1. For aeroelastic flutter analysis without in-plane
loads, the pre-load multiplier is 𝛼 = 0 and, in contrast, for a pure
buckling analysis in vacuum, the dynamic pressure parameter is 𝜆 = 0
and the inertial terms are also neglected. The particular case of free
vibration in vacuum is obtained with 𝜆 = 𝛼 = 0 and 𝑠𝑛 = 𝜔2

𝑛. Thus, the
solution of the eigenvalue problem yields the natural frequencies (𝜔𝑛)
and damping loss factors (𝑔𝑛) in flutter analysis (for a given load level
and dynamic pressure parameter), as well as the critical load parameter
(𝛼𝑐𝑟) in buckling analysis. In short, as the dynamic pressure parameter
increases, flutter occurs when the damping factor of one mode turns
from positive to negative and, therefore, the system becomes dynami-
cally unstable above the critical flutter dynamic pressure parameter 𝜆𝐹 .
Actually, in the absence of any dissipative terms, all modes show a zero
damping factor before flutter and mode coalescence flutter occurs [32],
i.e. the eigenvalues of the modes involved in flutter emerge as complex
conjugated pairs after the flutter bound and the associated natural
frequencies coalesce to the same value, as carefully illustrated in the
numerical applications.

4. Numerical applications

As intended in this work, the accuracy assessment of the developed
FE models in supersonic panel flutter and buckling analysis is presented
for both straight and curvilinear fibre composites, considering simply
supported square panels with various side-to-thickness ratios. In more
detail, the test cases are based on previous studies on static and free
vibration analysis of variable stiffness composite laminates by Moreira
et al. [22]. As a result, this work extends the previous FE benchmark
solutions for the case of panel flutter and buckling analysis by consid-
ering the same three-layer composite laminates, with linear fibre angle
variations ⟨𝑇0, 𝑇1⟩ along the 𝑥-axis as given in Eq. (3). Additionally, the

flutter and buckling FE solutions of thin panels are also compared with
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Rayleigh–Ritz solutions reported, in part, by Moreira et al. [32], which
makes use of the CLPT, assuming solely bending deformations and
sinusoidal type expansions of the mid-plane transverse displacement to
fulfil the essential boundary conditions.

The complete stacking sequences of the symmetric laminates are as
follows:

• Constant stiffness composite (CSC): (0∕90∕0)
• Variable stiffness composite 1 (VSC1): (⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩)
• Variable stiffness composite 2 (VSC2): (⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩)
• Variable stiffness composite 3 (VSC3): (⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩)

In terms of geometry, the square panels have side 𝑎 = 𝑏 = 1
and a total thickness ℎ depending on the side-to-thickness ratio

∕ℎ = 250, 100, 50 and 20, i.e. from thin to moderately thick plates. The
omposite layers have equal thickness (ℎ∕3) and are made of graphite–
poxy material with the following mechanical properties: 𝐸1 = 173 GPa,
2 = 𝐸3 = 7.20 GPa, 𝐺12 = 𝐺13 = 𝐺23 = 3.76 GPa, 𝜈12 = 𝜈13 = 𝜈23 = 0.29

and 𝜌 = 1540 kg∕m3. It is worth noting that even though moderately
thick panels may not be of primary interest for most aeronautical
and aerospace applications, especially when considering conventional
metallic structures, they are also included for two reasons: (i) consider-
ing that composite panels can be more thick without compromising as
much the structural weight and (ii) to further analyse the effect of shear
deformation and transverse normal deformations on the aeroelastic
response behaviour, which can only be predicted by refined structural
models.

The aeroelastic analyses are carried out for airflow along the
𝑥-axis, i.e. normal flow with 𝛬 = 0◦, which is the same direction of
the fibre angle variations. Likewise, the buckling analyses are solely
presented for in-plane loads along the 𝑥-axis. The associated flutter
dynamic pressure parameters and buckling loads are provided in the
following nondimensionalized form:

�̃�𝐹 =
𝜆𝐹 𝑎3

ℎ3𝐺12
(18a)

̃ 𝑐𝑟 =
𝑁𝑐𝑟𝑏2

ℎ3𝐸2
(18b)

All nondimensionalized flutter dynamic pressure parameters are
stimated with a tolerance of 𝛥�̃� = 0.01, which means that for �̃� = �̃�𝐹 −
�̃�, the frequencies of the modes involved in flutter have not already
erged and all modes are dynamically stable, whereas for �̃� = �̃�𝐹 , mode

oalescence is present and the system becomes dynamically unstable
ue to the negative damping exhibited by one of the coalesced modes.

Furthermore, aeroelastic panel flutter analyses of pre-stressed thin
anels are also presented, assuming uniaxial compressive loads along
he airflow direction (i.e., the 𝑥-axis) as well as simply supported
oundary conditions. The combined flutter–buckling stability
iagrams/maps (flutter dynamic pressure parameter vs. in-plane load)
re illustrated, comparing FE solutions with Rayleigh–Ritz CLPT so-
utions, while highlighting the operational regions where the panels
emain both aeroelastically and statically stable.

To be clear, the simply supported boundary conditions are described
y the following constraints:
𝑘 = 𝑤𝑘 = 0 at 𝑦 = 0, 𝑏 (19a)
𝑘 = 𝑤𝑘 = 0 at 𝑥 = 0, 𝑎 (19b)

here 𝑘 stands for the different discrete layers. Depending on the
tructural theory of the FE model, different DOFs must be restrained
o fulfil Eq. (19).

An additional remark may be relevant, at this point, concerning the
act that the Rayleigh–Ritz flutter solutions here presented are based
n the work by Moreira et al. [32], which includes explicitly the case
f panels with 𝑎∕ℎ = 250, although for 𝑎∕ℎ = 100, further Rayleigh–

Ritz solutions are provided in the interest of the present work (thus
here made available for the first-time). Likewise, buckling and flutter
6

solutions of thin panels under uniaxial loads are made available for
the first-time as well. Since in-plane loads are not contemplated in the
original formulation presented by Moreira et al. [32], it is mentioned
herein that the modal aeroelastic equilibrium equations for pre-stressed
panels present a similar form to Eq. (15), however, the FE DOFs are
replaced by the modal coordinates 𝒒. The only matrix that is not
presented explicitly in [32] is the modal geometric stiffness matrix,
which is obtained in light of the von Kármán non-linear strains as
shown:

𝑲𝒈 = ∫

𝑎

0 ∫

𝑏

0

{

𝜳 ,𝑥
𝜳 ,𝑦

}𝑇 [

𝑁0
𝑥 𝑁0

𝑥𝑦
𝑁0

𝑥𝑦 𝑁0
𝑦

]

{

𝜳 ,𝑥
𝜳 ,𝑦

}

𝑑𝑦𝑑𝑥 (20)

where 𝜳 is the vector of sinusoidal trial functions, such that 𝑤0(𝑥, 𝑦, 𝑡) =
𝜳 𝑇 (𝑥, 𝑦)𝒒(𝑡). In line with [32], six sinusoidal terms are applied in each
n-plane direction for the expansion of the transverse displacement. The
n-plane loads per unit length are given as stated in Eq. (13).

Regarding the adopted nomenclature for the structural models,
henever the LW reference does not appear on the name, it is assumed
n ESL description. Besides, the models that make use of Lagrange 𝑧-
xpansions are denoted by LW Lag𝑝, assuming expansions up to the

third order (𝑝 = 3). To provide a complete assessment of the ESL
FSDT predictive capabilities, two values of shear correction factor are
considered: (i) an unitary value, i.e. 𝐾𝑠 = 1, which means no shear
correction (FSDT(1)) and (ii) the usual 𝐾𝑠 = 5∕6 commonly found
in the literature [43] (FSDT(5∕6)). In contrast, no shear correction is
introduced in the LW FSDT and LW Lag1 formulations (as also followed
in [22,45]). Furthermore, the Rayleigh–Ritz CLPT solutions are denoted
by RR CLPT.

4.1. Convergence analysis: mesh refinement and non-linear strains

To ensure a proper selection of the FE mesh, Table 1 presents the
convergence analysis results of the LW Lag3 model, considering the first
three natural frequencies 𝜔𝑛 in vacuum, the nondimensionalized flutter
dynamic pressure parameters �̃�𝐹 and flutter frequencies 𝜔𝐹 , as well as
the nondimensionalized buckling loads �̃�𝑐𝑟 (along the 𝑥-axis) of the
CSC and VSC1 laminated panels with 𝑎∕ℎ = 250. The flutter frequency
is defined as the value for which the natural frequencies involved in
flutter coalesce together, namely the second and third modes for the
CSC and the first and second modes for the VSC1. In addition, the FE
buckling solutions given in Table 1 are obtained using the full non-
linear Green–Lagrange strains, whereas the von Kármán strains are
considered in the Rayleigh–Ritz solutions.

It is clearly perceived from Table 1 that the convergence of the free
vibration, panel flutter and buckling solutions is much slower in the
case of curvilinear fibre composites than for conventional straight fibre
composites. As a result, the use of refined meshes appears necessary to
accurately describe the in-plane stiffness distribution present in curvi-
linear fibre composites, even when accounting for fibre angle variations
at each integration point (which, per se, is more advantageous for the
convergence rate than assuming a just constant fibre orientation within
each element). Since refined meshes require the use of more nodes and,
consequently, more DOFs, it is quite crucial that the structural theory
inherent to the FE ensures the best compromise between numerical
accuracy and computational efficiency.

The discrepancy between Rayleigh–Ritz and FE solutions is also
greater for the of case curvilinear fibre composites as discussed later
on. Increasing the number of elements, both natural frequencies and
buckling loads tend to decrease, whereas flutter dynamic pressures
may increase or decrease. For the (0/90/0) composite laminate, one
observes increasing flutter dynamic pressures, while the opposite oc-
curs for the VSC1. Although not shown, for brevity, the remaining
structural models show a similar convergence behaviour. Therefore,
to ensure converged free vibration, buckling and flutter solutions, all
together, either for straight or curvilinear fibre composites, a mesh
with 14 × 14 Q9 elements is used in the models accuracy assessment

presented hereafter.
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Table 1
Convergence analysis results of the LW Lag3 model considering free vibration, flutter and buckling of thin panels with 𝑎∕ℎ = 250: CSC and VSC1 laminates (𝜔 in Hz).

Mesh Q9 DOFs CSC (0∕90∕0) VSC1 (⟨0, 45⟩/⟨-45, -60⟩/⟨0, 45⟩)

𝜔1 𝜔2 𝜔3 �̃�𝐹 𝜔𝐹 �̃�𝑐𝑟 𝜔1 𝜔2 𝜔3 �̃�𝐹 𝜔𝐹 �̃�𝑐𝑟

4 × 4 2430 20.682 31.492 57.551 1301.42 63.191 22.8605 23.155 38.252 63.656 551.73 39.176 27.3061
6 × 6 5070 20.670 31.331 55.662 1304.63 63.376 22.8425 22.982 37.831 61.818 547.33 39.141 26.7894
8 × 8 8670 20.667 31.303 55.316 1305.75 63.426 22.8394 22.907 37.707 61.463 546.34 39.106 26.5704
10 × 10 13230 20.667 31.295 55.217 1306.10 63.442 22.8385 22.862 37.647 61.354 545.93 39.077 26.4432
12 × 12 18750 20.667 31.292 55.181 1306.24 63.447 22.8382 22.832 37.610 61.310 545.69 39.055 26.3579
14 × 14 25230 20.667 31.291 55.165 1306.31 63.450 22.8380 22.809 37.584 61.288 545.55 39.039 26.2959
RR CLPT 36 20.673 31.298 55.169 1307.48 63.461 22.8536 24.030 39.783 63.694 619.98 41.910 29.6340
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Table 2
Nondimensionalized buckling loads �̃�𝑐𝑟 of the CSC and VSC1 laminates, with 𝑎∕ℎ = 250
nd 20: comparison of von Kármán (vK) and Green–Lagrange (GL) non-linear strains.
Case Model 𝑎∕ℎ = 250 𝑎∕ℎ = 20

vK GL vK GL

CSC FSDT(1) 22.8410 22.8404 21.0316 20.9537
FSDT(5∕6) 22.8384 22.8378 20.7037 20.6285
TSDT 22.8386 22.8380 20.7292 20.6539
LW FSDT 22.8399 22.8393 20.8969 20.8202
LW TSDT 22.8386 22.8380 20.7228 20.6474
LW Lag1 22.8850 22.8844 20.9299 20.8532
LW Lag2 22.8387 22.8381 20.7308 20.6554
LW Lag3 22.8386 22.8380 20.7303 20.6540

VSC1 FSDT(1) 26.3131 26.3120 23.7990 23.6557
FSDT(5∕6) 26.3084 26.3073 23.3760 23.2377
TSDT 26.3028 26.3017 23.2864 23.1486
LW FSDT 26.2972 26.2961 23.3951 23.2551
LW TSDT 26.2855 26.2844 23.1140 22.9761
LW Lag1 26.3724 26.3713 23.4664 23.3269
LW Lag2 26.3037 26.3025 23.2085 23.0711
LW Lag3 26.2970 26.2959 23.1438 23.0063

Furthermore, Table 2 presents a comparison of the von Kármán
trains to the full non-linear strains on the evaluation of buckling loads,
onsidering various structural theories as well as both straight and
urvilinear fibre composite panels, with either 𝑎∕ℎ = 250 or 20. The

use of full Green–Lagrange strains provides lower buckling loads than
the von Kármán approximation, especially for moderately thick plates.
Nonetheless, it is worth noting that the discrepancy between the two
approaches is higher for the variable stiffness configuration, when com-
paring panels with the same side-to-thickness ratio. Therefore, the full
non-linear strains are applied whenever in-plane loads are considered
in further FE analyses, ensuring the most accurate solutions for both
curvilinear fibre configurations and moderately thick panels.

4.2. Panel flutter and buckling analysis

The accuracy assessment of the proposed FE models in panel flutter
and uniaxial buckling analysis is presented in Table 3, considering thin
and moderately thick panels, as well as the four distinct composite
laminates previously described, under supersonic airflow or applied
in-plane loads along the 𝑥-axis. For each test case and each model,
the presented aeroelastic results include the nondimensionalized flutter
dynamic pressure parameter and the associated flutter frequency of the
panel without in-plane loads applied.

It is firstly pointed out that regardless of the side-to-thickness ratio,
flutter occurs with the coalescence of the second and third modes for
the CSC cross-ply laminate, as well as the first and second modes for the
VSC1 and VSC3 laminates. In contrast, for the VSC2 laminate, flutters
occurs due to the coupling of high-order modes, namely the fifth and
sixth modes if 𝑎∕ℎ = 250, 100 and 50, as well as the sixth and seventh

odes if 𝑎∕ℎ = 20. Actually, for the VSC1 and VSC2 laminates, with
∕ℎ = 100, the evolution of the natural frequencies and damping factors
ith the dynamic pressure parameter, predicted by the LW FSDT and

W Lag3 models, is provided in Fig. 2. A close examination of Fig. 2

7

reveals that as the natural frequencies coalesce, the eigenvalues of the
modes involved in flutter emerge as complex conjugated pairs, with
one of the modes exhibiting negative damping. As a result, the system
becomes dynamically unstable and flutter appears. For the VSC1, it is
learly perceived that flutter occurs indeed due to the coalescence of
he lowest two natural frequencies, while the remaining frequencies are
ot much influenced by the airflow. On the other hand, for the VSC2,
lutter occurs on the fifth and sixth natural frequencies, even though a
ater coalescence of the first two can be identified for higher values of
ynamic pressure. Fig. 2 also shows that for both laminates, the trends
redicted by the two models are in good agreement.

To provide a more complete understanding and comparison of the
esponse behaviour of the different laminates, Fig. 3 shows the buckling
nd flutter modes of thin panels with 𝑎∕ℎ = 100. Noticeable differences
an be found in terms of both buckling and flutter in-plane mode shapes
hen comparing the straight fibre composite to the curvilinear fibre

onfigurations, which came to light due to the distinct stiffness distri-
utions in-plane, induced by the curvilinear fibres, as well as due to
he different modes involved in the occurrence of flutter. Regarding the
uckling response, the VSC3 laminate is the only test case that shows
buckling mode with two peaks, whereas the remaining laminates

eature a buckling mode with just a single peak. The flutter modes are
llustrated for 𝜆 = 𝜆𝐹 , neglecting in-plane external loads. It is worth
emarking that the flutter absolute maximum transverse displacement
f the cross-ply composite laminate occurs at 𝑥∕𝑎 = 0.75, whereas for

the variable stiffness configurations, it can move either slightly forward
or backward. Additionally, in the case of curvilinear fibre composites,
the flutter modes are not symmetric with respect to 𝑦∕𝑏 = 0.5. The
flutter in-plane mode shape of the VSC2 laminate, represented in Fig. 3,
has indeed the most complicated spatial distribution since it occurs
with the coalescence of high-order modes, as shown in Fig. 2.

For the cross-ply thin panels, one concludes from Table 3 that
the Rayleigh–Ritz CLPT solutions are in good agreement with the FE
predictions, having a discrepancy to the most refined model (LW Lag3)
of 0.01% and 0.1% in terms of flutter pressure parameter when consid-
ering 𝑎∕ℎ = 250 and 100, respectively. However, for composite panels

ith curvilinear fibres, the discrepancies between the Rayleigh–Ritz
nd the FE flutter solutions increase significantly, assuming values from
% to 16% depending on the fibre orientations and side-to-thickness
atio of the panel. Likewise, the Rayleigh–Ritz and FE buckling solu-
ions are in good agreement with each other for the cross-ply laminate
discrepancy less than 1% when considering the LW Lag3 model as ref-
rence), but for the variable stiffness configurations, the discrepancies
ary from 1% to 13% depending on the laminate. Taking the VSC2
aminate as an example, the Rayleigh–Ritz model estimates buckling
oads 1% and 1.5% higher than the LW Lag3 solutions for panels
ith 𝑎∕ℎ = 250 and 100, respectively. However, for the VSC1 and

VSC3, the discrepancy goes up to 13% and 11%, respectively, either
for 𝑎∕ℎ = 250 or 100. Despite the fact that the CLPT neglects shear
eformations, leading to higher flutter dynamic pressures and buckling
oads, one must note that the accuracy of the Rayleigh–Ritz solutions
s also influenced by the chosen trial functions. In line with the con-
lusions outlined by Stone and Chandler [33], the in-plane expansion
f the transverse displacement in terms of sinusoidal functions tends
o overpredict the stiffness of composite laminates with high flexural
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Fig. 2. Variation of the first eight natural frequencies 𝜔𝑛 and damping factors 𝑔𝑛 with the nondimensionalized dynamic pressure parameter �̃� of the VSC1 and VSC2 laminate
anels, with 𝑎∕ℎ = 100, predicted by the LW Lag3 model (solid lines) and by the LW FSDT model (dashed lines).
Fig. 3. Buckling and flutter in-plane mode shapes 𝑤(𝑥, 𝑦, 0) – first and second lines, respectively – of thin panels with 𝑎∕ℎ = 100, predicted by the LW Lag3 model.
anisotropy, involving bending–twisting coupling, such as the curvilin-
ear fibre composites investigated herein. Ergo, as far as curvilinear
fibre composite laminates are considered, it is concluded that even
for thin panels, the Rayleigh–Ritz CLPT formulation using sinusoidal
expansions provides a rather deficient estimation for panel flutter and
buckling analysis, leading to higher flutter pressure parameters, flutter
frequencies and buckling loads.

As the side-to-thickness ratio decreases, differences between the
first- and high-order models begin to appear, both in terms of flutter
dynamic pressure parameters and buckling loads. Regarding the FE
models that make use of ESL descriptions, one can perceive from
Table 3 that the shear correction has a significant impact on the
accuracy of the FSDT in comparison to the TSDT. In particular, the
FSDT solutions with 𝐾𝑠 = 5∕6 are in good agreement with the TSDT
solutions, being slightly lower or higher depending on the laminate
(e.g., for the CSC and VSC2, the FSDT with 𝐾𝑠 = 5∕6 underestimates the
flutter dynamic pressures in comparison to the TSDT model, whereas
for the VSC1 and VSC3 they are overestimated). On the other hand,
the FSDT model with 𝐾 = 1 yields overestimated predictions when
𝑠

8

compared to the application of 𝐾𝑠 = 5∕6 or a high-order theory. Since
the accuracy of the (ESL) FSDT depends strongly on the proper selection
of the shear correction factor – which is influenced not only by the
geometry and boundary conditions, but also by the in-plane distribution
of fibre orientations – higher-order modelling may be preferable within
ESL descriptions to obtain accurate panel flutter and buckling solutions
in variable stiffness composite laminates, without the introduction of
problem-dependent shear correction factors.

Between the two LW approaches without thickness stretching, the
piecewise cubic model predicts lower flutter dynamic pressure parame-
ters and buckling loads for all laminates and side-to-thickness ratios due
to the higher flexibility that the LW TSDT allows, in each layer thick-
ness, namely in terms of transverse shear deformations. Nevertheless,
both models are in good agreement with the ESL TSDT model, which
has the same number of DOFs as the LW FSDT, but less than half of
the LW TSDT. Hence, it is highlighted that as far as first-order models
are considered, the LW modelling is preferable to the ESL modelling
due to a lower impact of the non-introduction of a shear correction

factor on the accuracy of the flutter and buckling solutions. In other
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Table 3
Nondimensionalized flutter pressure parameters �̃�𝐹 , flutter frequencies 𝜔𝐹 (Hz) and nondimensionalized buckling loads �̃�𝑐𝑟 of simply supported composite panels, with various
ide-to-thickness ratios.
Case Model 𝑎∕ℎ = 250 𝑎∕ℎ = 100 𝑎∕ℎ = 50 𝑎∕ℎ = 20

�̃�𝐹 𝜔𝐹 �̃�𝑐𝑟 �̃�𝐹 𝜔𝐹 �̃�𝑐𝑟 �̃�𝐹 𝜔𝐹 �̃�𝑐𝑟 �̃�𝐹 𝜔𝐹 �̃�𝑐𝑟

CSC RR CLPT 1307.48 63.461 22.854 1307.25 158.622 22.854 – – – – – –
FSDT(1) 1306.64 63.457 22.840 1296.40 158.185 22.771 1261.52 313.255 22.525 1072.39 740.720 20.954
FSDT(5∕6) 1306.26 63.450 22.838 1294.05 158.085 22.755 1252.83 312.516 22.464 1038.26 733.392 20.629
TSDT 1306.29 63.451 22.838 1294.26 158.093 22.756 1253.60 312.574 22.468 1040.40 733.321 20.654
LW FSDT 1306.49 63.453 22.839 1295.51 158.146 22.764 1258.20 312.968 22.500 1058.73 737.537 20.820
LW TSDT 1306.29 63.451 22.838 1294.24 158.092 22.756 1253.52 312.568 22.467 1040.17 733.311 20.647
LW Lag1 1307.68 63.486 22.884 1296.76 158.217 22.809 1259.90 313.092 22.544 1071.35 741.386 20.853
LW Lag2 1306.31 63.450 22.838 1294.39 158.084 22.756 1254.32 312.540 22.470 1052.90 737.002 20.655
LW Lag3 1306.31 63.450 22.838 1294.37 158.083 22.756 1254.25 312.534 22.468 1052.73 737.028 20.654

VSC1 RR CLPT 619.98 41.910 29.634 619.72 104.743 29.634 – – – – – –
FSDT(1) 545.55 39.042 26.312 543.28 97.489 26.193 535.44 194.195 25.817 488.46 473.240 23.656
FSDT(5∕6) 545.47 39.041 26.307 542.80 97.469 26.168 533.62 194.044 25.728 479.84 471.293 23.238
TSDT 545.45 39.039 26.302 542.51 97.436 26.154 532.84 193.884 25.697 477.18 469.896 23.149
LW FSDT 545.38 39.033 26.296 542.38 97.401 26.146 532.89 193.768 25.701 478.85 469.530 23.255
LW TSDT 545.34 39.030 26.284 541.92 97.356 26.112 531.41 193.539 25.617 473.45 467.730 22.976
LW Lag1 548.42 39.142 26.371 545.44 97.669 26.223 535.99 194.267 25.779 482.91 470.617 23.327
LW Lag2 545.58 39.042 26.303 542.36 97.400 26.142 532.31 193.654 25.666 476.71 468.288 23.071
LW Lag3 545.55 39.039 26.296 542.17 97.373 26.125 531.77 193.527 25.634 475.21 467.470 23.006

VSC2 RR CLPT 302.21 83.665 19.821 304.52 209.078 19.821 – – – – – –
FSDT(1) 289.20 82.889 19.599 265.23 206.205 19.539 180.64 405.440 19.330 358.08 927.646 18.011
FSDT(5∕6) 288.20 82.875 19.597 259.02 205.984 19.526 156.12 403.802 19.278 454.66 425.183 17.746
TSDT 288.46 82.874 19.597 260.65 205.975 19.526 162.75 403.730 19.280 443.90 916.593 17.757
LW FSDT 289.11 82.881 19.598 264.72 206.077 19.533 178.77 404.481 19.306 362.15 918.018 17.890
LW TSDT 288.60 82.873 19.597 261.55 205.962 19.526 166.32 403.630 19.279 421.98 913.996 17.753
LW Lag1 269.20 83.057 19.658 244.36 206.520 19.592 156.38 405.404 19.365 402.79 922.837 17.943
LW Lag2 288.60 82.879 19.599 261.19 205.992 19.528 164.18 403.807 19.283 443.49 917.051 17.766
LW Lag3 288.65 82.879 19.599 261.54 205.985 19.528 165.56 403.748 19.283 435.77 915.879 17.765

VSC3 RR CLPT 182.34 33.314 15.564 182.26 83.266 15.564 – – – – – –
FSDT(1) 169.88 31.592 14.033 169.20 78.805 13.972 166.98 156.501 13.775 153.97 374.878 12.641
FSDT(5∕6) 169.86 31.557 14.031 169.06 78.770 13.959 166.47 156.251 13.732 151.65 371.874 12.443
TSDT 169.85 31.589 14.030 169.03 78.766 13.958 166.38 156.232 13.726 151.22 371.661 12.418
LW FSDT 169.85 31.589 14.031 169.06 78.778 13.961 166.54 156.329 13.742 152.04 372.919 12.497
LW TSDT 169.82 31.586 14.028 168.95 78.752 13.953 166.20 156.172 13.716 150.75 371.256 12.392
LW Lag1 171.15 31.673 14.125 170.36 78.982 14.056 167.83 156.706 13.837 153.48 373.533 12.592
LW Lag2 169.88 31.593 14.034 169.05 78.770 13.961 166.36 156.190 13.731 151.39 371.141 12.432
LW Lag3 169.87 31.592 14.034 169.01 78.763 13.959 166.28 156.163 13.726 151.14 370.929 12.419
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words, the LW FSDT does not rely upon the careful selection of shear
corrections factors as much as the ESL FSDT. For TSDT models, the ESL
modelling ensures a better compromise between numerical accuracy
and computational efficiency than the LW modelling as far as composite
laminates are considered (i.e. excluding sandwich panels with high
through-thickness inhomogeneity of material properties).

As regards to the LW models which account for thickness stretching,
it is firstly remarked that the LW Lag1 solutions are highly impacted
by thickness locking and, therefore, this model provides higher flutter
dynamic pressures, frequencies and buckling loads than the remain-
ing FE models (the only exception is in the flutter dynamic pressure
parameters of the VSC2, which are severely underpredicted). More
pecifically, the thickness locking effect, also known as Poisson locking,
rises by the application of simplified kinematic assumptions in the
nalysis of plates/shells (namely constant transverse normal strains in
he layers thickness direction) and is significantly dependent in the in-
erent coupling between out-of-plane and in-plane normal strains in the
D constitutive law presented in Eq. (1). Even though some techniques
an be found in the literature to avoid thickness locking in first-order
odels with either linear or constant through-thickness distributions

f the transverse displacement, as discussed in detail by Carrera and
rischetto [47], they are not considered in this work because ESL
nd LW models making use of shear deformation theories and plane
tress constitutive equations are presented instead. To be precise, apart
rom assuming a high-order kinematic description for the transverse
isplacement, the use of reduced plane stress constitutive equations is
ndeed one of the suggested techniques to mitigate thickness locking in
heories with constant transverse normal strains [47].
9

As one increases the Lagrange 𝑧-expansion order above two, the
lutter and buckling predictions begin to converge and it is pointed
ut that thickness locking does vanish when considering high-order
odelling, as expected. Hence, the LW Lag2 is already capable of
roperly capturing most of the in-plane and transverse deformations
nvolved in both mechanical phenomena, as compared to the further
efined LW Lag3. Nonetheless, the major discrepancies between the
W Lag2 and LW Lag3 models appear for moderately thick plates,
specially when the flutter analysis of curvilinear fibre composites is
onsidered due to both transverse shear deformations and bending–
wisting coupling being strongly intrinsic to such panel configurations
eaturing aeroelastic coupling. Actually, the highest discrepancy be-
ween the two high-order Lagrange models in the prediction of buckling
oads is just 0.3% (found for the VSC2 laminate, with 𝑎∕ℎ = 20).

Comparing the LW Lag3 model to the LW TSDT model, i.e. the
layerwise cubic models with and without thickness stretching, respec-
tively, it is concluded that the latter tends to predict slightly lower
flutter pressure parameters and buckling loads for most of the laminates
and side-to-thickness ratios. The exception is the VSC2 laminate when
considering panels with 𝑎∕ℎ = 100 and 50, where the LW TSDT predicts
higher flutter dynamic pressures than the LW Lag3, however, the
discrepancy is lower than 0.5%. Additionally, when analysing the VSC2
laminate in the form of a moderately thick panel with 𝑎∕ℎ = 20, the LW

SDT underestimates the flutter pressure in 3.2% with respect to the
W Lag3, which is noted as the highest discrepancy between the LW
SDT and LW Lag3 models, and the only case where the discrepancy
etween these models is higher than 1%. These discrepancies can be
ustified by the fact the LW TSDT makes use of plane stress constitutive
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Fig. 4. Variation of the nondimensionalized flutter dynamic pressure parameter �̃�𝐹 with the uniaxial compressive load �̃� , considering thin panels with 𝑎∕ℎ = 100 and various
tructural models: CSC (on the left) and VSC1 (on the right).
quations and neglects transverse normal deformations, so that the
transverse) aerodynamic pressure and the in-plane compressive loads
re both applied with respect to the mid-plane transverse displacement,
hich is assumed to have constant through-thickness distribution. On

he contrary, the Lagrange 𝑧-expansion theories allow the aerodynamic
oad to be applied at the very top surface of the panel, while accounting
or transverse normal strains and stresses along the thickness.

In fact, among the presented test cases, the highest discrepancies
etween the different structural theories in terms of the predicted
lutter pressure parameters are found for the VSC2 laminate, in which
lutter occurs with the coalescence of high-order modes, as opposed to
he remaining laminates where flutter appears among the first three
odes. Considering the VSC2 laminate, the (absolute) discrepancies in

lutter dynamic pressure between the FSDT based models and the LW
ag3 model are around 1% for panels with 𝑎∕ℎ = 100, whereas high-

order models (either ESL or LW) are much closer. As one moves to
panels with 𝑎∕ℎ = 50, the mean discrepancy between the first-order
models and the most refined model (LW Lag3) is around 8%, while for
the ESL TSDT, the discrepancy is just 2%. Actually, for 𝑎∕ℎ = 50, only
the LW TSDT and the LW Lag2 predict flutter dynamic pressures with
a discrepancy less than 1% to the LW Lag3. To conclude the detailed
analysis of the VSC2 laminate, it is worth noting that for 𝑎∕ℎ = 20, the
accuracy of the ESL FSDT model is compromised by the two adopted
values of shear correction factor. Specifically, for 𝐾𝑠 = 1, the flutter
dynamic pressure is 18% lower than the one predicted by the LW Lag3
model, while for 𝐾𝑠 = 5∕6 it is 4% higher. However, in the latter,
lutter emerges from the coalescence of the first two modes as opposed
o the sixth and seventh modes, which results in a completely distinct
lutter frequency. Similarly, the LW FSDT with 𝐾𝑠 = 1 is not very
ccurate for panels with 𝑎∕ℎ = 20, having an absolute discrepancy
f 17% to the LW Lag3 model, since for moderately thick plates, the
ontributions of both transverse shear deformations and transverse
ormal stretching to the overall strain energy increase significantly
ith respect to the case of thin panels. Hence, in the case of 𝑎∕ℎ =

20, the high-order models are indeed the ones that provide solutions
with a discrepancy lower than 4%, where the closest model to the LW
Lag3 is the LW Lag2, with 1.8% of discrepancy, because this model
retains both through-thickness linear transverse shear deformations and
transverse normal strains. Nonetheless, there is still quite a noticeable
improvement when considering the case of transverse strains with
through-thickness quadratic distributions, which are attainable through
cubic expansions of the displacements, as in the LW Lag3.

4.3. Panel flutter analysis under uniaxial loads

The final assessment consists on the aeroelastic flutter analysis of
pre-stressed panels, under supersonic airflow and in-plane compressive
loads parallel to the 𝑥-axis. For brevity, only thin panels with 𝑎∕ℎ = 100
are considered in this final assessment and the VSC3 is not investigated.
10
Table 4
Nondimensionalized flutter dynamic pressure parameters �̃�𝐹 of thin panels with 𝑎∕ℎ =
100, under supersonic airflow and uniaxial compressive loads �̃� along the 𝑥-axis.

Case Model �̃� = 0 𝛿(%)a �̃� = 1 𝛿(%)a �̃� = 10 𝛿(%)a

CSC RR CLPT 1307.25 1.00 1291.58 1.02 1152.44 1.30
FSDT(1) 1296.40 0.16 1280.55 0.16 1139.93 0.20
FSDT(5∕6) 1294.05 −0.02 1278.17 −0.03 1137.31 −0.03
TSDT 1294.26 −0.01 1278.39 −0.01 1137.55 −0.01
LW FSDT 1295.51 0.09 1279.65 0.09 1138.94 0.11
LW TSDT 1294.24 −0.01 1278.37 −0.01 1137.53 −0.01
LW Lag2 1294.39 0.002 1278.52 0.002 1137.69 0.002
LW Lag3 1294.37 – 1278.50 – 1137.67 –

VSC1 RR CLPT 619.72 14.30 608.82 14.47 511.79 16.31
FSDT(1) 543.28 0.20 532.96 0.21 441.19 0.26
FSDT(5∕6) 542.80 0.12 532.46 0.11 440.60 0.13
TSDT 542.51 0.06 532.18 0.06 440.32 0.06
LW FSDT 542.38 0.04 532.05 0.04 440.27 0.05
LW TSDT 541.92 −0.05 531.59 −0.05 439.78 −0.06
LW Lag2 542.36 0.04 532.04 0.04 440.22 0.04
LW Lag3 542.17 – 531.85 – 440.04 –

VSC2 RR CLPT 304.52 16.43 289.95 17.22 174.29 26.24
FSDT(1) 265.23 1.41 251.15 1.54 142.79 3.43
FSDT(5∕6) 259.02 −0.96 244.87 −1.00 135.99 −1.50
TSDT 260.65 −0.34 246.49 −0.35 137.45 −0.44
LW FSDT 264.72 1.22 250.58 1.31 141.71 2.64
LW TSDT 261.55 0.004 247.38 0.01 138.24 0.13
LW Lag2 261.19 −0.13 247.01 −0.14 137.76 −0.22
LW Lag3 261.54 – 247.35 – 138.06 –

a𝛿(%)=
(

�̃�𝐹 − �̃�LW Lag3
𝐹

)

× 100∕�̃�LW Lag3
𝐹 .

In fact, thin panels are the ones of primary interest for most aeronau-
tical and aerospace applications and the ratio 𝑎∕ℎ = 100 defines, in
particular, the assumed limit of validity of the CLPT [43]. Likewise,
the LW Lag1 model is not considered since it consistently leads to
overestimated predictions when compared to the remaining models.

Table 4 presents the nondimensionalized dynamic pressure param-
eters obtained with the different models for various load levels, which
are nondimensionalized according to �̃� = 𝑁0

𝑥𝑏
2∕(𝐸2ℎ3), where 𝑁0

𝑥 is
the applied compressive load per unit length. It is worth remarking
that all load levels considered in the numerical assessment shown in
Table 4, viz. �̃� = 1 and 10, are below the critical buckling load (see
Table 3) and do not influence the modes involved in flutter, which are
identified in the previous subsection for �̃� = 0. For higher load levels,
the aeroelastic flutter results are illustrated in Fig. 4, which shows the
predicted stability diagrams of the CSC and VSC1 laminates.

According to Table 4 and Fig. 4, for the (0/90/0) CSC laminate,
the Rayleigh–Ritz CLPT model predicts slightly higher flutter dynamic
pressures than the FE models. To be precise, for low load levels (say
�̃� ≤ 10), the discrepancy is around 1%, while for higher loads it can
go up to 4%. Therefore, the Rayleigh–Ritz and FE solutions can be
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considered in good agreement with each other from a purely practical
point of view, as also perceived by the quasi-superposed lines shown in
Fig. 4.

As consistently demonstrated thus far, the Rayleigh–Ritz CLPT so-
lutions overestimate the overall stiffness of composite panels with
high flexural anisotropy, involving bending–twisting coupling, leading
to higher buckling loads and flutter dynamic pressures than those
obtained using the developed FE models. However, the discrepancies
increase considerably when comparing unloaded to pre-stressed curvi-
linear fibre composite panels, as concluded from Table 4, reaching
values between 14% and 34% depending on the load level (Fig. 4). This
is mainly explained by the fact that when the panels are under com-
bined aerodynamic transverse loads and in-plane compressive stresses,
the 3D mechanical response turns out to be more complicated, featuring
bending, membrane and shear deformations, all together, which are
even more challenging to be captured in highly anisotropic variable
stiffness composites with spatially varying fibre orientations. Thus, the
present Rayleigh–Ritz CLPT solutions, which assume a sinusoidal type
expansion of the transverse displacement, are not considered suffi-
ciently accurate in the case of pre-stressed curvilinear fibre composites,
as opposed to the previous case concerning the cross-ply laminate.
Carefully tailored structural modelling emerges quite crucial to prop-
erly evaluate the coupled aeroelastic-buckling response behaviour of
such complex multilayered composites, accounting for transverse shear
deformation as well as an accurate description of intricate in-plane
stiffness distributions and elastic coupling effects.

For the VSC1 laminate, the LW FSDT model predicts lower flutter
dynamic pressures than the ESL FSDT model, when using 𝐾𝑠 = 1 (as
in the other test cases), but also for 𝐾𝑠 = 5∕6. Moreover, the LW
FSDT model also predicts lower flutter dynamic pressures than the ESL
TSDT model, as opposed to the remaining laminates. Resorting to LW
modelling and increasing the 𝑧-expansion order of the displacements
above two, especially in terms of in-plane components, one starts to
obtain converged flutter solutions.

Additionally, the VSC2 laminate shows the higher discrepancies
between the Rayleigh–Ritz and FE solutions, as well as among the
present set of FE models, since flutter occurs due to the coupling of
high-order modes, namely the fifth and sixth ones. Taking the LW
Lag3 solutions as reference, both the FSDT (𝐾𝑠 = 1) and LW FSDT
overestimate the flutter dynamic pressure by more than 1%, whereas
the FSDT (𝐾𝑠 = 5∕6) underestimates it by 1% (thus highlighting an
accurate prediction, which is particularly influence in FSDT models by
the adopted shear correction factor). Additionally, the ESL TSDT model
also underestimates the flutter resistance in comparison to LW Lag3
model, however, the discrepancy is just around 0.3%. The LW TSDT and
LW Lag3 solutions are in good agreement, being slightly higher than the
LW Lag2 solutions. As concluded by comparing the different composite
laminates, the accuracy of the kinematic models is influenced by the
fibre orientations and the resulting stiffness distribution (which is al-
ways characterized by flexural anisotropy, involving bending–twisting
coupling, whenever curvilinear fibre composites are considered).

Comparing the models with and without transverse normal defor-
mations, it is concluded that the inclusion of thickness stretching does
not affect the aeroelastic flutter solutions of pre-stressed thin panels in
the same magnitude as the refined modelling of the transverse shear
deformation does. To be clear, this is indeed due to the fact that in
the response of thin plates, the contribution of the transverse normal
strain energy is relatively small when compared to other contributions
regarding membrane and transverse shear deformations and, most
especially, bending deformations. This is corroborated further by noting
that there are no discrepancies in the transverse normal compressibility
of the layers across the thickness of the panels, as opposed to what
is usually found in soft core sandwich panels reinforced by stiff face
layers (which possess a rather significant face-to-core stiffness ratio).
Ultimately, high-order shear deformation models, even when based on
ESL descriptions, can match the purpose of accurately predicting both
in-plane deformations as well as transverse shear, without depending
on the introduction of a shear correction factor as first-order models
do.
11
5. Conclusions

In light of the increasing interest in exploring the exceptional tailor-
ability of curvilinear fibre composites for design optimization of ad-
vanced aerospace structures, in which numerically accurate and com-
putationally efficient aeroelastic models are crucial, this work pro-
vides an assessment of structural theories for aeroelastic flutter and
buckling stability analysis of supersonic multilayered panels with spa-
tially varying fibre orientations. The main novelties addressed by the
present work regard the exploration of 2D type multilayered FE models
involving both ESL and LW descriptions – with variable order and
different type of through-thickness 𝑧-expansions of the displacements,
either including or neglecting transverse normal deformations – for the
evaluation of flutter and buckling characteristics in variable stiffness
composite panels under supersonic airflow and uniaxial compressive
loads. In fact, the proposed kinematic models are progressively refined
to render quasi-3D predictive capabilities, which have not yet been
explored to such extent in the literature, thus making progress on the
study and application of the proper structural modelling for aeroelastic
stability analysis of curvilinear fibre composites.

The models accuracy assessment is carried out for simply supported
panels, assuming both thin and moderately thick plates. As far as thin
panels are considered, the FE predictions are compared with Rayleigh–
Ritz CLPT solutions, which is one of the most classical and widely used
approaches for supersonic panel flutter analysis. All things considered,
the numerical results lead to the following concluding remarks:

• For thin cross-ply laminates, the Rayleigh–Ritz CLPT solutions
with sinusoidal type expansion, are in good agreement with the
present FE predictions, showing a maximum discrepancy around
1% and 0.5% in terms of flutter bounds and buckling loads,
respectively, despite the fact that all FE models account for trans-
verse shear deformations, as opposed to the CLPT. However,
for curvilinear fibre composites, the Rayleigh–Ritz solutions are
rather deficient on account of the fibres orientations. Overall,
it is highlighted that this Rayleigh–Ritz approach overestimates
the bending stiffness of curvilinear fibre composite laminates,
predicting flutter pressure parameters and buckling loads which
can be 10% (or more) higher than those obtained using the
proposed FE models.

• The introduction of curvilinear fibres adds not only challenges
from the point of view of modelling the in-plane stiffness dis-
tribution and the inherent elastic coupling effects (e.g. bending–
twisting), but also in the evaluation of transverse shear defor-
mations. In fact, transverse shear plays a significant role on the
flutter behaviour of moderately thick panels, which is even more
pronounced when dealing with curvilinear fibres composites.

• As far as the flutter and buckling analysis of thin panels is con-
sidered, the use of LW descriptions does not improve significantly
the ESL modelling when high-order shear deformation theories
are applied or, instead, a first-order theory accompanied by a
carefully selected shear correction factor;

• Thickness stretching can be neglected in thin panels, either with
straight or curvilinear fibres, but its inclusion may be relevant as
one considers moderately thick plates.

• The aeroelastic flutter response of pre-stressed panels is more in-
fluenced by the modelling of in-plane and transverse shear defor-
mations than the case without external loading, especially when
considering curvilinear fibre composites. Therefore, high-order
theories, even when based on ESL descriptions, can match this
purpose without depending on the introduction of a shear correc-
tion factor. In addition, Rayleigh–Ritz CLPT solutions involving
sinusoidal type expansions may be suitable for the combined
aeroelastic flutter–buckling stability analysis of thin cross-ply
laminates, but not for curvilinear fibre configurations, since such
estimations are rather deficient when compared to the presented
FE predictions.
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Ultimately, the accurate prediction of both elastic coupling effects
and transverse shear deformations is highlighted as an important aspect
to consider for proper tailoring and analysis of supersonic curvilinear
fibre composite laminates under in-plane loads, underlying the need
for refined structural models. Nevertheless, it is worth remarking that
for soft core sandwich panels and smart laminates with surface-bonded
piezoelectric patches/layers – which show a higher inhomogeneity of
material properties through-thickness than the composite laminates
investigated herein – some of the reported conclusions may not hold
(equally true), namely when comparing the ESL and LW descriptions.
Therefore, further ensuing research is focused on supersonic flutter
and buckling analysis of advanced sandwich panels to ensure the
selection of numerically accurate and computationally efficient struc-
tural models, suitable for aeroelastic control and design optimization
applications. The assessment and comparison of ESL and LW models in
the evaluation of the dynamic response of stresses is also an important
aspect to consider in ensuing works, especially with focus on fatigue
and failure predictions in the non-linear post-flutter regime.
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