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RT-DLO: Real-Time Deformable Linear Objects
Instance Segmentation

Alessio Caporali , Kevin Galassi , Bare Luka Žagar , Riccardo Zanella ,
Gianluca Palli , Senior Member, IEEE, and Alois C Knoll , Senior Member, IEEE

Abstract—Deformable linear objects (DLOs), such as
cables, wires, ropes, and elastic tubes, are numerously
present both in domestic and industrial environments.
Unfortunately, robotic systems handling DLOs are rare and
have limited capabilities due to the challenging nature of
perceiving them. Hence, we propose a novel approach
named RT-DLO for real-time instance segmentation
of DLOs. First, the DLOs are semantically segmented
from the background. Afterward, a novel method to
separate the DLO instances is applied. It employs the
generation of a graph representation of the scene given
the semantic mask where the graph nodes are sampled
from the DLOs center-lines whereas the graph edges
are selected based on topological reasoning. RT-DLO is
experimentally evaluated against both DLO-specific and
general-purpose instance segmentation deep learning
approaches, achieving overall better performances in
terms of accuracy and inference time.

Index Terms—Computer vision, deformable linear ob-
jects (DLO), industrial manufacturing, instance segmenta-
tion.

I. INTRODUCTION

D EFORMABLE linear objects (DLOs) belong to the
generic class of deformable objects and consist of wires,

cables, strings, ropes, and elastic tubes, as the main relevant
examples according to [1]. Although vastly present in every
domestic and industrial environment, DLOs still represent a
problematic task for automated robotic systems, both at percep-
tion and manipulation levels [1]. From the perception side, this is
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Fig. 1. FPS versus accuracy of RT-DLO versus baselines methods.

a result of the lack of any specific shape, color, texture, or feature
making them easily distinguishable with respect to other objects.
In addition, DLOs are characterized by small dimensions in
terms of diameters, posing an additional challenge concerning
their 3-D perception capabilities with most sensors [2]. From
the manipulation side, the DLOs intrinsic deformability results
in a high-dimensional state space with complex and nonlinear
dynamics. Thus, modeling and predicting their behavior during
a manipulation task is challenging [3], [4].

The problem of DLOs segmentation is usually addressed
in simple settings, like color threshold with a single DLO in-
stance [5] or markers [6]. In the last years, several DLO-specific
approaches tried to address the instance segmentation problem
more steadily, e.g., [7], [8], [9] with remarkable improvements
at the introduction of every novel approach. Although the very
recent method named FASTDLO [9] reaches good accuracy
results with reasonable computation time, i.e., above 20 frames
per second (FPS), it is still far from being real-time capable.
From the domain of general-purpose deep convolutional neural
networks (DCNN) tackling the instance segmentation task, there
exist several approaches real-time capable, e.g., YOLACT [10]
and YOLACT++ [11], however applying these methods directly
to DLO-like objects usually does not guarantee satisfactory
accuracy results [9].

To mitigate the aforementioned drawbacks and challenges,
we propose an algorithm real-time capable and highly accurate,
for instance, segmentation of DLOs, named real-time instance
segmentation of deformable linear objects (RT-DLO). In Fig. 1,
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the plot of FPS versus accuracy shows how RT-DLO stands
against the competition, being the fastest DLO-specific approach
and the most accurate overall on the test-set of [9].

RT-DLO does not require any assumption about the back-
ground and the number of DLOs present in the scene. As input,
it acquires the RGB image and provides as output a pixel-mapped
colored mask where each DLO is represented by a unique color
identifying its ID. In addition, being the DLO instances modeled
as a sequence of key-points, a representation of the scene with
spline curves can be easily obtained, e.g., for manipulation tasks
employing a state-space representation different from the image
space [3].

First, as a preprocessing step, the input RGB image is propa-
gated through a DCNN trained on synthetically generated data
aiming at segmenting the background, i.e., pixels not represent-
ing a DLO, and providing as output a binary mask. Then, a graph
representation of the scene is constructed by efficiently sampling
the vertices from the segmentation mask. The edges connecting
the graph’s vertices are instead computed by reasoning about
the topology expressed by the mask, with an approach that
considers both the proximity and orientations constraints among
the vertices. Ideally, only a maximum of two edges per vertex
should be sampled. In the case of intersections of DLOs resulting
in the presence of high-degree vertices in the graph, subgraphs
around the target vertices are extracted and further processed to
disentangle the DLOs in the graph. Finally, the single DLOs are
extracted from the graph based on an analysis of its connectivity.
RT-DLO achieves a processing rate higher than 30 FPS with
an input image of 640 × 360 pixels. To summarize, the main
contributions of this article are as follows.

1) First instance segmentation approach concerning DLOs
able to reach a processing rate higher than 30 FPS, i.e.,
real-time capable.

2) Robust graph-based enhanced representation of the DLOs
configuration in the scene given the segmentation mask.

3) Improved an overall performance compared to several
baselines, i.e., +2.9% intersection over union (IoU) with
+7 FPS compared to [9] and +3.4% IoU with +32 FPS
compared to [8].

The source code implementing RT-DLO and the associated
data are available at https://github.com/lar-unibo/RT-DLO.

II. RELATED WORKS

A. Real-Time Instance Segmentation

The instance segmentation task consists in predicting objects-
wise segmentation masks. Remarkable results in this challeng-
ing task were achieved by mask region-based convolutional neu-
ral network (R-CNN) [12] with its detect-and-segment approach.
However, due to this two-phase method, mask R-CNN is not real
time. Recent approaches, for instance, segmentation of general
objects are [10], [11], [13], [14], [15]. Among those, only the
authors in [10], [11], and [15] are capable of real-time perfor-
mances. However, their applicability to DLOs requires attention
due to the challenges highlighted in Section I. Also considering
the dataset supply problem, satisfactory results were obtained
only concerning the semantic segmentation task [16] and not for

the instance segmentation one. Indeed, the performances of these
methods are affected by the DLO instances lacking distinctive
embeddings. On the contrary, due to the high-level abstraction by
using a graph representation of the DLOs, RT-DLO can achieve
better performances and robustness.

B. Segmentation of DLOs

The limited adoption of automatic or robotic solutions in the
manufacturing and assembly tasks having to deal with DLOs
has made the perception of such objects an important research
topic of the last decade. In the past, simplifying assumptions
were usually made, e.g., knowledge of the background [3], [5],
[17], number of DLOs in the scene [5], markers [6].

Specific to DLOs, the first approach tackling complex back-
grounds is represented by Ariadne [7], which employs a convolu-
tional neural network (CNN) for DLO endpoints detection and a
walking algorithm along the superpixels originated from the im-
age. Ariadne+ [8] improves Ariadne in accuracy by employing a
DCNN for the background semantic segmentation, removing the
need for endpoint detection, and thus, also significantly speeding
up the processing time. In Ariadne+, a graph representation of
the scene is obtained by exploiting a superpixel-based approach
where the graph nodes are selected based on the superpixels cen-
troids and the edges based on superpixels contours overlapping.

Recently, FASTDLO [9] was introduced employing a
skeleton-based approach on the segmentation mask and a sim-
ilarity network for the correct interconnection of DLOs seg-
ments. FASTDLO is currently the state-of-the-art approach, for
instance, segmentation of DLOs, achieving an inference time of
more than 20 FPS.

RT-DLO employs an efficient and informative graph repre-
sentation of the scene as opposed to the skeleton originated
segments-based approach of FASTDLO and superpixel-based
one of Ariadne+, resulting in faster processing times and im-
proved accuracy, especially at the DLOs intersection. Indeed,
RT-DLO can handle degraded masks more effectively since the
continuity of the segmentation mask foreground along a DLO
is not required.

III. METHOD

The idea exploited in RT-DLO is to model the current config-
uration of the DLOs present in the image with a graph structure
G = (V, E) and then to extract the DLO instances from the
obtained graph. The approach, schematized in Fig. 2, can be
subdivided into six main steps, as follows.

A) Mask generation: Obtaining a binary mask Mb from the
input color image via a DCNN.

B) Vertices sampling: Processing Mb, with vertices orienta-
tion characterization employing a CNN.

C) Edges sampling: Exploiting the proximity among the
vertices and the orientation between vertices and edges.

D) Intersections processing: Disentangling the DLOs in the
graph representation via subgraphs analysis.

E) DLOs instances extraction: Computing pixel-wise DLOs
instances masks in the image plane.

https://github.com/lar-unibo/RT-DLO
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Fig. 2. Schematic representation of the RT-DLO algorithm.

F) Intersections layout: Assessing the correct instances lo-
cally at the intersections.

In the rest of this section, the procedures for obtaining the
graph representation and extracting coherently DLOs instances
from it are presented. First, the binary mask Mb generation is
discussed in Section III-A. Then, concerning the graph forma-
tion process, the vertices are examined in Section III-B while the
edges are in Section III-C. Thereafter, the algorithm employed
for processing problematic regions of the graph is provided in
Section III-D. Finally, the extraction of the DLO instances, given
the graph representation, is presented in Section III-E while the
approach for analyzing their layout is in Section III-F.

A. Mask Generation

The mask generation step can be considered a preprocessing
phase of RT-DLO since the graph representation of the DLOs
is obtained employing only the binary mask Mb of the scene
and not the RGB image. In this article, we assume to use a
DCNN, specifically DeepLabV3+ [18], trained on synthetically
generated data [9]. This choice is convenient since 1) good
performances are shown in [9] concerning the semantic seg-
mentation capabilities of this method; 2) a simplification on
the comparison of RT-DLO against the baseline methods is
achieved. Therefore, a binary mask Mb is obtained by setting
the pixels predicted to belong to a DLO to 1 and the remaining
ones to 0.

It is worth mentioning that RT-DLO is independent of the
method used to obtain the semantic segmentation mask. Dif-
ferent approaches can be employed depending on application
requirements.

B. Vertices

First, vertices of the graph G are cleverly sampled from
the binary mask Mb and then characterized in terms of local
orientation by a CNN.

1) Vertices Sampling: The set V = {vi}ni=1 contains the n
vertices of the graph efficiently sampled from the binary mask
Mb. First, the distance transform operator is executed on Mb

obtaining Mdist. This operator computes the Euclidean distances
between the nonzero values of Mb and the nearest boundaries
(zero/black values) [19], thus assigning an intensity value to
each pixel based on the computed distance. In Fig. 3(b), Mdist

Fig. 3. Vertices sampling key elements: the mask (a) Mb, (b) Mdist,
and (c) Mmax, (d) obtained vertices. The bright regions in (b) denote
high intensity values.

originated fromMb [see Fig. 3(a)] is shown whereMdist is color-
mapped on the grayscale level from dark (zero distance) to bright
(maximum distance).

Then, Mdist is dilated with a small square kernel (i.e., 3 × 3).
The dilation operation is a maximum locating morphology op-
eration. Indeed, as the kernel is convolved over the target image,
the maximal pixel value overlapped by the kernel is computed
and the corresponding image pixel at the anchor position is
replaced. Dilation is usually applied on binary masks to en-
large the foreground (white) portion. Instead, in this article, the
dilation operation is applied to the mask Mdist, which contains
intensities values, i.e., Mdist is not binary, obtaining Mdil. The
local maximums of Mdist are retrieved by comparing pixel-wise
Mdist and Mdil masked using Mb, as follows:

Mmax(i, j) =

{
1 if Mdil(i, j) = Mdist(i, j) and Mb(i, j) = 1
0 otherwise.

Indeed, if the value of pixel (i, j) in Mdist and Mdil is the
same, this means that the considered pixel is a local maximum.
By assigning the pixel value of 1 to the maximums and 0 to
the rest of the pixels, a new mask is obtained, denoted with
Mmax, and illustrated in Fig. 3(c). It is worth mentioning that, by
construction, Mmax approximates the center lines of the DLOs
in the mask.
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The set of maximum pixels ofMmax, i.e., pixels whose value is
equal to 1, is denoted asVmax. The cardinality ofVmax is relatively
large and not really tractable in case real-time applications are
sought. Thus, the farthest point sampling algorithm [20] is em-
ployed for down-samplingVmax. A sampling ratio ofα ∈ [0, 1] is
used to specify the amount of down-sampling. The set of vertices
V of the graph G is obtained as αVmax. In Fig. 3(d), the vertices
extracted from the sample mask of Fig. 3(a) with α = 0.15 are
depicted.

2) Vertices Orientations: In the context of linear objects and
linear shapes representation, for each given vertex of the graph,
an orientation characterization can be performed. The objective
is to describe locally the section of the linear object in the vicinity
of the vertex as an orientation attribute of the vertex itself. Thus,
the local orientation θ of a given vertex at pixel coordinates
(x, y) is derived from a local patch of size δ × δ pixels, centered
at (x, y) and with intensity values extracted from the distance
transform image Mdist.

A CNN is used to estimate an angular value from a given
patch. Predicting an angular value via a learning-based method
can become quite a complex task due to the periodicity of
the angular data resulting in inaccurate distance representations
when computing the loss function. Indeed, an angle of 2◦ de-
scribes an orientation quite close both to 5◦ and 179◦, although
the corresponding loss values when applying common losses,
e.g., L1-loss or mean square error loss (MSE-loss), are quite
different. An approach pioneered in [21] is, thus, employed
to address the angular periodicity and ambiguity in the loss
computation. A given angular value θ in the range [0◦, 180◦]
is encoded as a 180-D vector with entries defined by applying
a Gaussian function centered at θ and with variance σ. In
this way, the angle θ is propagated smoothly in its proximity
enabling benefits during the loss computation. The network
structure is composed of two convolutional layers followed by a
fully connected linear layer. Each convolution layer comprises
a 2-D convolution followed by batch normalization. Between
the two layers, a max-pooling operation takes place. After the
convolution layers, the embedded data are flattened and the fully
connected layer is used as an output to classify the patch in
the 180-D vector. Binary cross entropy is used as loss function
during the training stages, effectively shaping the learning task
as a classification problem of the angular value in one of the
180 available classes. Consequently, the actual predicted angle
is easily obtained from the 180-D vector as the index of the
vector associated to the maximum probability. This angular
value characterizes the orientation of the vertex associated to
the processed patch.

C. Edges

The set E = {ej}mj=1 contains the m edges of the graph.
Identifying the correct edges to be inserted in the graph is
a complex task. Indeed, the connections between the vertices
should consider both their relative proximity as well as orien-
tation constraints, the latter in the form of vertex orientation
and edge orientation. The vertices orientations were described in
Section III-B2. For convenience, a matrixE ∈ Rm×2 describing
the edge set E as organized tuples is introduced.

(a)
(b)

(c) (d) (e)

Fig. 4. Edges processing main elements. (a) Knn edges to obtain
initial candidate edge set. (b) Positive/negative edges illustration. (c)
Graph generated. (d) Intersection subgraph extracted. (e) Subgraph
processing schema.

The relative proximity between vertices is exploited to obtain
an initial candidate set of edges, denoted as Eknn = {ej}mknn

j=1 .
That is, for each vertex, the Knn nearest neighbors in V are
retrieved as edges. The value of Knn is a user-defined parameter
and it follows that mknn = n×Knn if we consider the edges as
directed. In addition,Eknn ∈ Rmknn×2 is the matrix description of
Eknn. The Knn nearest neighbor case with Knn = 8 for a sample
vertex is depicted in Fig. 4(a).

1) Vertex–Vertex Similarity: The orientation constraints be-
tween two general vertices v1 and v2 are evaluated by assigning
a score to their connection by means of the cosine similarity
defined as

s(d1
v,d

2
v) =

d1
v
T
d2
v

‖d1
v‖‖d2

v‖
. (1)

In particular d1
v is obtained as [cos(θ1), sin(θ1)]

�, where θ1 is
the orientation of v1 obtained from Section III-B2. For d2

v the
derivation is similar. In (1), at the denominator is denoted the
product of the norms. The cosine similarity is then used to score
the orientations between two vertices pair.

For efficiency reasons, the cosine similarity is evaluated by
means of matrix operations. Given the matrix Dv ∈ Rn×2 of
vertices orientations in the form of direction vectors obtained
from the predicted angles, i.e., for vertex i we have di

v/‖di
v‖,

the cosine similarity between each pair of vertices of the set V
can be obtained as

Sv,v = |DvD
T
v | (2)

being Sv,v ∈ Rn×n and | · | denoting the absolute value.
2) Vertex-Edge Similarity: Similarly to the vertex–vertex

case, the matrix De ∈ Rmknn×2 of edges orientations can be
defined. It contains the direction vectors obtained by subtracting
the coordinates of the associated vertices followed by a normal-
ization by their distance. The cosine similarity between each
vertex of V and each edge of Eknn is obtained as

Sv,e = DvD
T
e (3)
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with Sv,e ∈ Rn×mknn being the obtained similarity matrix be-
tween vertices and edges.

3) Combining Sv,v and Sv,e: At the current stage, because
of the dimensions mismatch, it is not possible to combine Sv,v

[see (2)] and Sv,e [see (3)]. Thus, an augmented similarity
vertices score matrix S̄v,v ∈ Rn×mknn is introduced. This matrix
is obtained by mapping the values of Sv,v in a column vector
employing the entries of Eknn as row-column pairs to access
Sv,v. Then, a matrix is constructed by repeating the column
vectorn times along the rows. Notice that this is a valid operation
since Sv,v is a symmetric matrix. The complete similarity score
matrix is obtained as

S = Sv,e � S̄v,v �B (4)

where B ∈ Rn×mknn is the oriented incidence matrix and �
is the Hadamard product. The matrix B is used to inject into
the scores the knowledge of the edge existence (entries 0) and
direction (entries ±1), i.e., source vertex to target vertex. This
information is very helpful since it allows the discrimination
of the edge set based on the sign of their similarity score, i.e.,
the entries of S. An illustration of the two possible situations
that can occur is provided in Fig. 4(b). The cosine similarity
between the sample vertex 30 and its Knn neighbors can provide
both positive values, in case the edge direction vectors and the
vertex orientation vector of 30 are both in the green region, or
negative values if instead they lay in the red region.

Based on the scores contained in the similarity matrix S, a
positive and a negative edge for each vertex ofV is sought, being
the characterization of an edge as positive or negative related to
the sign of the associated score in S. Notice that it may happen
that a positive or negative edge for a given vertex does not exist,
e.g., in presence of a vertex describing the terminal region of a
DLO. In Sections III-C4 and III-C5, the calculus to extract the
positive and negative edges from the similarity matrix S of (4)
are provided.

4) Positive Edges: Let us defineB+ ∈ Rn×m as the positive
incidence matrix where the entries −1 of B are set to zero, i.e.,
B+ contains values of the set {0,+1}. Let us also define a row
vectord ∈ R1×mknn containing the lengths of the edges. A matrix
D ∈ Rn×mknn can be created stacking n times d along the rows.
Thus, the entries of D can be filtered out based on B+ as D+ =
D �B+. Then, a generic entry (i, j) of S is weighted based on

the associated edge length aswij
+ = 1 − dij

+−min(di
+)

max(di
+)

. The vector

di
+ denotes the ith row of D+. The matrix containing all the

computed weights is denoted as W+ ∈ Rn×mknn . The presence
of B+ makes W+ sparse since only the entries associated to
an entry +1 in B+ will have a weight different from zero. It
follows that S+ = S �W+, where S+ is the similarity matrix
associated to the positive incidence matrix. Finally, an edge, if
it exists, is selected for each row of S+ as the edge associated
to the maximum entry of S+ along the considered row. Thus,
considering the generic vertex i, i.e., row i of S+, its positive
edge ei+ is obtained as ei+ = {Eknn}j∗ , with j∗ = argmax(si+),

sij
∗

+ > μ, where with si+ we denote the ith row of S+, with
{Eknn}j∗ ∈ R1×2 the column vector at index j∗ containing the

indices of the source and target vertices and with μ a small
threshold to avoid selecting edges with a very low similarity
score.

5) Negative Edges: Following a similar discussion to the
one of Section III-C4, let us define B− ∈ Rn×m as the negative
incidence matrix where the entries +1 are set to zero, i.e., B−
contains values {−1, 0}. The entries of D can be filtered out
based on B− as D− = D �B−. The weight matrix associated
to D− can be defined as W− ∈ Rn×mknn where only the entries
associated to −1 in B− are different from zero. A generic entry

wij
− of W− is obtained as wij

− = 1 − dij
− −min(di−)
max(di−)

. It follows that

S− = S �W−, obtaining S− as the similarity matrix associated
to the negative incidence matrix. Finally, an edge, if it exists,
is selected for each row of S− as the edge associated to the
minimum entry of S− along the considered row. The generic
edge ei− is obtained as ei− = {Eknn}j∗ , with j∗ = argmin(si−),
sij

∗
− < −μ.

6) Edge Set: The edges obtained from Sections III-C4 and
III-C5 are combined into a single edge set denoted as E with
which the graph G is generated [see Fig. 4(c)].

D. Intersections Processing

Although the graphG should contain vertices having a degree,
i.e., number of neighbors, of only 1 or 2, depending on if the
considered vertex is an endpoint, vertices having a higher degree,
i.e., 3 or more, are still possible. This happens if the considered
vertex is placed at the intersection area between multiple DLOs
resulting in several ambiguous edge connections, e.g., Fig. 4(d).
To address this problem, Algorithm 1 is employed: it detects the
problematic vertices, extracts subgraphs around each of them,
and by employing the cosine similarity approach it finds the
correct edges.

With more details, Algorithm 1 takes as input the graph G just
created and provides as output the updated graph G′ where the
ambiguous vertices are removed and their edges redistributed
correctly in their local subgraphs. First, the ambiguous vertices
are detected as those vertices with a degree larger than 2 and
collected in Vint, line 1. Then, for each v in Vint, the neighbor
vertices are collected (lines 2 to 5). In case one or more vertices
of one set of neighbors overlaps with another one, those sets are
merged (line 6) grouping all vertices and treating the problematic
area as the composition of the original ones. Each set N of N̄
defines a subgraph around the problematic area. For each sub-
graph defined by the vertices in N , the number of connections
(edges) to establish is determined by kconn as the integer division
between the cardinality of N and 2 (line 9). The combinations
of 2 elements of the vertices contained in N are collected in the
set C (line 10). These tuples of elements can be considered as
edge candidates for the subgraph. For instance, in Fig. 4(e), the
candidate edges of the subgraph under analysis are depicted in
red (wrong) and green (valid). Thus, an edge solver (line 11) is
employed to assign a score to each of those. In particular, given
two sample vertices, i.e., v1 and v2, which connection should be
scored, the direction of the edge connecting them is computed
asd1,2

e = v1 − v2. Then, the connection cosine similarity score,
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Algorithm 1: Intersections Processing.

Fig. 5. Connectivity graph (a) is processed to extract the DLOs in-
stances and obtaining the colored mask Mc (b). (a) Grap final. (b)
Colored mask.

similarly to (1), is evaluated as

sint(d
1
v,d

2
v,d

1,2
e ) = |s(d1

v,d
1,2
e ) s(d2

v,d
1,2
e )|

where with d1
v and d2

v the vertices orientations are denoted.
Notice that the absolute value of the similarity is employed since
we are not interested in its sign, but only in its magnitude. Each
(vi, vj) of C is, therefore, augmented by the computed score sij
as (vi, vj , sij) and collected by the set Z , which is then sorted
based on the score values in descending order (line 12). Finally,
an interactive procedure takes place to loop through the elements
of Z and collect the kconn new edges into Enew as those defined
by vertices not being already assigned to other edges (lines 13 to
19). The sample subgraph analyzed through this article is solved
obtaining the final graph depicted in Fig. 5(a).

E. DLOs Instances Extraction

The single instances of the DLOs present in the scene are re-
trieved considering the connectivity of the graph, i.e., each DLO
is represented as an isolated subgraph from the initial global

Fig. 6. DLOs instances extraction with and without consistency check
in case of a problematic mask.

graph. For each subgraph, the path from one endpoint (vertex
with degree 1) to the other is extracted. A pathPt can be denoted
as an ordered sequence of vertices asPt = {vt1, vt2, . . . vttn}. The
extracted path denotes the sequence of key-points describing the
DLO instance. From these key-points, a spline curve can be fitted
to better approximate the DLO shape and then an estimate of
the DLO thickness can be obtained from the distance transform
mask Mdist. Thus, a colored mask Mc can be drawn as shown in
Fig. 5.

In some cases, it can happen that two or more DLO instances
are effectively denoted by a single path. This situation can occur
in case, for instance, the intersection between two DLOs happens
along the border of the image. RT-DLO, employing only the
mask image, tries to solve this scene by connecting jointly
the two distinct DLOs, see as an example Fig. 6 showing the
obtained DLOs instances given the source image and mask.
To handle this condition, as a final consistency check along
the obtained path, the cosine similarity is computed between
each vertex of the path and its two neighbors. In particular,
given a sample vertex vti , i ∈ [2, tn − 1] belonging to path
Pt. Its two neighboring vertices are vti−1 and vti+1 while the
two edges directions are di,i−1

e and di,i+1
e . According to (1),

the cosine similarity between di
v and di,i−1

e can be denoted
as si,i−1 = s(di

v,d
i,i−1
e ), where di

v describes the orientation
of vertex vti . Similarly, si,i+1 = s(di

v,d
i,i+1
e ). If the product

si,i+1 si,i−1 is negative, it means that the path is not smooth at
vertex vti . Thus, the path Pt is detached at vertex vti into two
different paths (see Fig. 6).

F. Intersections Layout

To correctly assign the DLOs IDs in the intersection areas
among two or more DLOs, additional color information is
required. Indeed, only from the binary mask Mb and the corre-
sponding constructed graph, this information is not achievable.
In this work, we deploy the approach first described in [9]: the
standard deviation of the RGB color along the edge connecting
two vertices in the area of the intersection is used. For a given
intersection, all the involved edges are collected and the standard
deviation of the RGB values along the edges compared. The edge
corresponding to the smallest value is selected as the one being
at the top of the pile. Therefore, the mask Mc is drawn taking
into account this information.

IV. EXPERIMENTAL VALIDATION

The experiments were performed employing a workstation
with an Intel Core i9-9900 K CPU clocked at 3.60 GHz and
an NVIDIA GeForce GTX 2080 Ti. PyTorch 1.4 is used for
software implementation.
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Fig. 7. Evaluation of the CNN angular prediction network and com-
parison against baseline approach based on Gabor filters. (a) Training
and validation losses. (b) Evaluation on synthetic dataset. (c) Evaluation
on real dataset. The error density is recovered via a kernel density
estimation.

A. Test Dataset and Metrics

To evaluate the RT-DLO performances on real data, a test
set originally deployed in [8] and extended in [9] is used. It
consists of 135 manually labeled real images of electrical wires
with varying diameters and grouped into three categories, each
consisting of 45 images defining a specific scenario, labeled as
C1, C2, and C3. Each category is further divided into subclasses
based on the number of intersections present in the images, i.e.,
1, 2, and 3, with 15 samples each.

As evaluation metric, the IoU (IoU =
|M∩Mgt|
|M |+|Mgt| , where M

is the mask under evaluation and Mgt is the ground truth) is
employed. The mask M corresponds to the colored mask Mc

where each DLO instance is denoted by a unique color and the
IoU score is just the average score across the instances of the
image.

B. Training

The training dataset and the training details for the semantic
segmentation network employed in Section III-A are those of [9].
As the threshold for the segmentation mask Mb, the value of 0.3
is used for its binarization based on [9].

Concerning the CNN network of Section III-B2, the dataset
was obtained from the synthetic dataset of [9] by randomly
cropping a square patch along the vertices, obtained applying
Section III-B, and by using the knowledge of the 2-D ground
truth curve to label the orientations. A patch size δ = 15 was
used. The convolutional layers have 32 filter channels as opposed
to the 180 neurons for the last linear layer. The network was
trained for 50 epochs, employing a batch size of 32 and a
learning rate equal to 5 × 10−4. Adam was selected as optimizer
with the final network weights selected based on the validation
loss. In Fig. 7(a), the training and validation loss curves smooth
decay can be observed, validating the choice of the smooth angle
labeling approach.

C. Angle Prediction Evaluation

The network employed to sample the vertices orientations
(see Section III-B2) is compared to a baseline method and
tested both on a synthetic test set (100 samples like those of
Section III-A) and on the real test set. As baseline method, an
approach based on Gabor filters [22] is used. A Gabor filter is a

TABLE I
PERFORMANCES OF RT-DLO WHEN VARYING THE VERTICES SAMPLING

RATIO α AND THE NUMBER OF KNN NEAREST NEIGHBORS

linear filter usually employed for texture analysis. By properly
defining its main parameters, it is possible to obtain a patch
similar to the one processed by the network. Thus, the baseline
approach consists in: generating 180 Gabor filters spanning
[0, 180[ degrees; finding the filter with the smallest cumulative
difference with respect to the input local patch; assigning as
angle prediction the angular value used to generate the filter.

The ground truth angular value for each vertex is directly
available in the synthetic data. In the real test set, instead, it is
recovered from the ground truth instances mask: spline curves
are fitted for each instance and the vertices’ reference orientation
extrapolated as tangent of the curve at a vertex position.

Overall, the proposed network approach shows better perfor-
mances, especially in the real scenario [see Fig. 7(b) and 7(c)].
Indeed, we discovered that the Gabor filter approach is more
sensitive to the mask’s noisy edges and to its characterizing
parameters. Considering the real scenario, the error distributions
are characterized with the following mean and standard devia-
tion statistics: −0.03◦ ± 6.00◦ for network; −0.17◦ ± 7.07◦ for
Gabor.

D. Parameters Choice and Influence

RT-DLO employs two user-defined parameters that can affect
the method performances, the vertex sampling ratio α and the
number ofKnn nearest neighbors. In Table I, the performances of
RT-DLO on the test set are compared by varying α and Knn. RT-
DLO maintains remarkably strong performances across a wide
range of values for α, i.e., between 0.1 and 0.3. On the contrary,
selecting α as 0.05 results in a quite reduced number of vertices,
hurting the description power of the graph. The selection of Knn

is also not critical with a value of 8 already sufficient to reach
top performances.

E. Baseline Methods

RT-DLO is compared against both DLO-specific and general-
purpose instance segmentation methods. To the first group be-
long the algorithms named Ariadne+ [8] and FASTDLO [9].
Both approaches employ the same segmentation network archi-
tecture of the one deployed in Section III-A. In particular, the
network weights are those of [9], thus allowing a straightforward
comparison with [9] and [8].

The general purpose DCNN baselines are: YOLACT [10],
YOLACT++ [11], BlendMask [13], and CondInst [14]. Overall,
the same dataset configuration and training details of [9] are used
to train the aforementioned nets.
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TABLE II
RT-DLO VERSUS BASELINE METHODS

Fig. 8. Qualitative evaluation of RT-DLO versus FASTDLO and Ari-
adne+ on the test set classes.

F. Evaluation

The comparison of RT-DLO against the baseline methods of
Section IV-E is presented in Table II by means of the IoU score
computed starting from the color masks provided as output by
each method. The table also provides details about the aver-
age inference time, FPS, and key-points availability as output.
Overall, RT-DLO shows strong performances both in terms of
IoU score, i.e., +2.14% and +3.76% improvements against
FASTDLO, i.e., top-performing algorithm, when deploying the
same segmentation maskMb. In particular, RT-DLO can provide
the same level of performance of FASTDLO employing a lighter
backbone, thus making it possible to reach a frame-rate of 36
FPS, +13 FPS over FASTDLO.

A qualitative comparison on a few samples of the test set
among RT-DLO and the DLO-specific methods is provided in
Fig. 8, where the superiority of RT-DLO is especially visible
at the intersections. Indeed, the major advantage of RT-DLO
against the competing approaches resides in its graph represen-
tation, which is based on Mb but is less susceptible to degraded
area as opposed to the skeleton approach of FASTDLO and
mask-guided superpixels method of Ariadne+. In this regard,
a deeper analysis on RT-DLO robustness is reported in Sec-
tion IV-H, where the requirement of an accurate segmentation
mask Mb is experimentally relaxed in two different scenarios:
1) the mask is artificially corrupted with an erosion process; 2)
the segmentation back-end specifically trained on electric wires

TABLE III
AVERAGE EXECUTION TIMES [MS] OF THE MAIN RT-DLO STAGES WRT THE

NUMBER OF INTERSECTIONS IN THE IMAGE

is replaced with others back-ends trained on general purposed
datasets.

G. Evaluation of Inference Time

In Table III, a characterization of the average timing on the
test set for each stage of the proposed method is provided.
Faster processing times can be achieved by deploying a lighter
backbone, such as residual neural network (ResNet)-50, saving
several milliseconds in the binary segmentation phase and ob-
taining a total processing time of about 27 ms as opposed to
31 ms. The graph generation time is below 10 ms, highlighting
the efficiency of RT-DLO. If the colored mask is not required,
the last two stages can be skipped shortening the computation
time by 1 to 2 ms depending on the number of intersections,
as shown in Table III. The timings in the table are obtained
employing the hardware setup highlighted at the beginning of
Section IV. A similar timing of about 13.5 ms is obtained
for the total w/o segmentation case with a consumer laptop
(Intel Core i7-12700H CPU). Indeed, high computation power
is mostly required for the deep segmentation network. Thus,
if the application does not require a complex deep model for
scene semantic segmentation, the hardware specifications can
be relaxed or, alternatively, higher overall FPS can be achieved.

H. Mask Degradation and Different Segmentation
Back-Ends

The improvements of RT-DLO against the main compet-
ing methods, i.e., the DLO-specific algorithms Ariadne+ and
FASTDLO, are not only in the form of faster processing time
and better accuracy. Indeed, an important benefit of the graph
representation approach of RT-DLO is its ability to better handle
degraded semantic segmentation masks Mb. To illustrate the
graph-based advantage of RT-DLO, a two-fold study is con-
ducted. On one hand, the performance drop of RT-DLO and the
competition is evaluated after an erosion process is applied on
Mb. On the other hand, different segmentation networks trained
on public datasets, i.e., not DLO-specific ones, are employed.

Concerning the first study, the masks Mb of the test set are
iteratively eroded, that is the process consisting in thinning
the foreground area of a binary mask, with a kernel of 3 × 3
pixels to simulate the effects of less precise masks coming from
Section III-A. The evaluation is performed by comparing RT-
DLO to the DLO-specific methods on the masks obtained from
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Fig. 9. RT-DLO, FASTDLO, and Ariadne+ performance comparison
after iteratively degrading the binary mask Mb. (a) Evaluation on the
test set eroding Mb. (b) Qualitative comparison given Mb eroded for 1,
2, and 3 iterations.

Fig. 10. Comparison of RT-DLO, FASTDLO, and Ariadne+ when em-
ploying popular salient object segmentation networks. (a) Evaluation on
the test set employing Mb obtained by SOS networks. (b) Qualitative
comparison of the instances masks given Mb from EGNet.

the two different backbones, i.e., ResNet-50 and ResNet-101
(see Fig. 9). From the plots of Fig. 9(a), RT-DLO shows the
capability of maintaining an almost steady performance after
the first round of erosion process, followed by a drop in the
scores in the subsequent iterations. On the contrary, the drop
of scores associated to FASTDLO and Ariadne+ is significant
from the very first iteration. Considering the mask IoU score as
an upper bound, RT-DLO is capable of maximizing its score as
opposed to the compared approaches. The images of Fig. 9(b)

allow us to catch better the effects of the erosion process and the
RT-DLO advantages on the test sample C1 of Fig. 8.

A study about replacing the segmentation back-end of Sec-
tion III-A with ImageNet pretrained salient object segmentation
(SOS) approaches is conducted in Fig. 10, avoiding the need of
training a segmentation network on a DLO-specific dataset. The
SOS architectures tested are as follows: EGNet [23], F3Net [24],
CPD [25], and PoolNet [26]. When evaluated on the test set,
RT-DLO continues to achieve strong performances compared to
the competing approaches [see Fig. 10(a)]. The advantages of
RT-DLO in the case of degraded masks are even more apparent
for the sample images of Fig. 10(c), which show how RT-DLO
is able to minimize the number of extracted instances.

V. CONCLUSION

In this article, a novel method for real-time instance segmen-
tation of DLOs is presented. The representation of the DLOs as
a graph offers an efficient, simple, and intuitive way to obtain
the DLOs instances. The segmentation performance improve-
ments compared to current state-of-the-art approaches for DLOs
detection are noticeable. More importantly, the inference time
capabilities of RT-DLO make it stand out even more compared to
existing approaches. In future works, RT-DLO can be improved
and expanded in several ways. For example, RT-DLO currently
processes each image individually. However, the segmentation
stage can be substituted with a different approach exploiting the
previous frames of a video sequence for a better and possibly
faster segmentation mask. In this context, a tracking system can
be also investigated to match the DLO instances across the video
sequence. Finally, the graph-based representation of DLOs can
be easily extended to other structures, like wiring harnesses, and
other sensors, like 3-D cameras resulting in a 3-D graph.
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