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Deformable Linear Objects 3D Shape Estimation and
Tracking From Multiple 2D Views

Alessio Caporali , Kevin Galassi , and Gianluca Palli , Senior Member, IEEE

Abstract—This letter presents DLO3DS, an approach for the
3D shapes estimation and tracking of Deformable Linear Objects
(DLOs) such as cables, wires or plastic hoses, using a cheap and
compact 2D vision sensor mounted on the robot end-effector.
DLO3DS can be applied in all those scenarios in which the percep-
tion and manipulation of DLO-like structures are needed, such as in
the case of switchgear cabling, wiring harness manufacturing and
assembly in the automotive and aerospace industries, or production
of hoses for medical applications. The developed procedure is based
on a pipeline that first processes the images coming from the 2D
camera extracting key topological points along the DLOs. These
points are then used to model each DLO with a B-spline curve.
Finally, the set of splines obtained from all the images is matched
by exploiting a multi-view stereo-based algorithm. DLO3DS is
validated both on a real scenario and on simulated data obtained by
exploiting a rendering engine for photo-realistic images. In this way,
reliable ground-truth data are retrieved and utilized for assessing
the estimation error achievable by DLO3DS, which on the employed
test set is characterized by a mean reconstruction error of 0.82 mm.

Index Terms—Deformable linear objects estimation, shape
detection, robotic vision, reconstruction, 3D.

I. INTRODUCTION

NOWADAYS the request for the automation of processes
involving cables, wires, hoses, wiring harnesses, and in

general Deformable Linear Objects (DLOs), is relevant in many
industrial manufacturing areas. As an example, in the automotive
and aerospace sectors, the assembly of the cabling systems is ac-
tually an expensive process almost completely based on human
work [1]. On the other hand, automating aspects concerning
the manipulation of DLOs is not easy. In fact, manufacturing
processes involving DLOs pose serious problems at both the ma-
nipulation and perception levels [2] since their intrinsic deforma-
bility makes modeling their behavior during the manipulation
complex. Moreover, if connectors or other rigid parts attached
to them are missing, the DLOs lack of features and significant
textures make their detection with vision systems challenging
even with new state-of-the-art learning-based methods [3], [4].
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Fig. 1. Showcase of DLO3DS capabilities in reconstructing the shapes of
DLOs in different scenarios.

In this letter, we analyze the problem of the accurate esti-
mation of the DLOs 3D shape. In this regard, general purpose
consumer 3D cameras like Intel RealSense or CamBoard pico
flexx fails in perceiving thin objects like DLOs [5]. This problem
is shared across all consumer devices irrespective of the specific
3D depth technologies. The only category of 3D active cameras
that can reliably detect the shape of very thin cylindrically shaped
objects like DLOs with a diameter as low as 2-3 mm is the
high-end one, consisting of devices like Zivid One+/Two and
Photoneo MotionCam3D or short-range laser scanners [5]. In
fact, these devices can reach sub-millimeter depth accuracy,
but, on the other hand, they show several limitations in terms
of pricing, bulkiness, and working constraints. Thus, they are
usually placed at a fixed position and not at the end-effector level,
increasing the risk of occlusions and reducing the flexibility
of the application. If semi-transparent materials are taken into
account, such as in the case of medical hoses manufacturing,
even high-end 3D sensors are not able to correctly detect those
materials because of transparency, refraction and internal reflec-
tions [5].

In contrast, 2D cameras arranged in a stereo (or multi-view
stereo) setup could potentially be more effective in detecting
thin DLOs. However, these passive 3D devices have limitations
in terms of baseline (which is fixed and optimized for distant
objects) and usually struggle in case of changes in lights and
non-textured areas. DLOs, having small dimensions and lacking
relevant textures, represent a difficult object to tackle for passive
stereo cameras.

To address the drawbacks of both 3D active and passive
cameras, we decided to deploy a single 2D camera mounted on
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a robotic arm. Utilizing just a 2D camera brings many beneficial
effects: these cameras are usually cheaper than 3D devices, more
compact and lighter, they have a wide range of resolutions, and
the field of view and working distance can be easily adapted
to the specific scenario. In addition, placing the 2D sensor on
the robotic arm allows for exploiting the high repeatability and
accuracy of the latter to avoid occlusions while, at the same time,
enabling immense flexibility in terms of baselines and distances
from the target.

In this letter, a method to infer the 3D shape of DLOs in static
scenes by exploiting DLO instances [4] extracted from multiple
images is introduced. For the sake of brevity, the proposed
method is referred to as DLO3DS in the following. DLO3DS
exploits a multi-view stereo-based approach to reconstruct the
3D DLO shape from multiple images taken at known viewpoints
without any prior knowledge of the DLOs or the surrounding
scene, independently from the background. DLO3DS extends
the preliminary results obtained in [6]. The DLO instances, after
being modeled as B-spline curves, are matched by exploiting a
triangulation-based method. DLO3DS provides reliable results
where standard stereo-matching algorithms [7] fail due to the
peculiar characteristics of DLOs previously discussed. Finally,
the availability of the robotic arm is exploited by optimizing at
run-time the baseline and distance from the target, thus reducing,
even more, the estimation error. In Fig. 1 the capabilities of
DLO3DS in two different scenarios are shown.

The contributions of this letter can be summarized as:
� B-splines modeling of the DLO shape in image coordinates

and reliable estimation of the shape of a target DLO in the
3D space;

� Optimization at run-time of baseline and distance from the
target exploiting the robotic arm and camera on the end-
effector;

� Extensive analysis of the accuracy and error characteristics
of the 3D estimations with comparisons against several
stereo-based baseline methods;

The DLO3DS source code is available at https://github.com/
lar-unibo/DLO3DS.

II. RELATED WORKS

A. 3D Reconstruction From Multiple Views

The 3D shape reconstruction of objects from 2D images
is a complex and extensively analyzed problem in computer
vision. In this letter, we develop a multi-view stereo approach
for the 3D estimation of DLOs. The goal of multi-view stereo is
to reconstruct a complete 3D object model from a collection
of images taken from known camera viewpoints [8]. In this
section, we review the closest contributions and methods dealing
with stereopsis. In order to achieve high accuracy in the 3D
reconstruction, we should work on both the disparity error and
the geometric error [9]. The first is related to correspondence
algorithms while the latter is to physical parameters like baseline
and distance from the objects. In the context of correspondence
algorithms, stereo approaches are usually classified between
local and global methods [10]. The latter are usually slower but
more effective than the first in the case of non-textured areas.
Among the many existing approaches, Semi-Global Matching
(SGM) [7] is the most widely used approach due to its balance
between quality, efficiency and scalability. However, its limi-
tations in the case of non-textured areas are well-known [11]

and several works have tried to address its weaknesses, such as
time execution with a GPU implementation [12]. With the rise
of deep learning, several approaches have been proposed for the
computation of correspondence by employing SGM with, for
instance, learned parameters [13], learned matching cost [14], a
complete end-to-end learning approach [15]. Learning methods
could potentially solve several challenges of traditional stereo
algorithms, although the problem of dataset generation and
model deployment in the real world still remains to be evaluated.

Concerning the geometric error, it can be not possible to
adjust the baseline in case of a fixed stereo setup, as well as
with commercial solutions. Thus, only the distance of operation
(and possibly the resolution) can be modified. Instead, some
works exploit either multiple 2D cameras mounted with different
baselines to combine the advantages of short and wide baseline
systems [16], whereas others employ a single 2D camera and a
robot to emulate a multi-baseline system [17]. DLO3DS tackles
both the disparity and geometric errors. The first is addressed
by the reliable processing of the 2D images and the matching of
splines. The latter is by exploiting the robotic arm optimizing at
run-time the baseline and the distance from the target.

B. 3D Perception in Robotics

Common sensors that can be found in robotics are from the
RealSense and PrimeSense families [18] or more expensive ones
such as the Ensenso 3D camera [19]. Very recently, new highly
accurate 3D active sensors were made available, like the ones
from Zivid or Photoneo. From [5] emerged their suitability for
reconstructing very thin and small objects. Alternatively, Linear
Laser Scanners mounted in an eye-in-hand configuration can
be considered as well, in case an even higher reconstruction
accuracy is sought [20]. Despite the abundance of sensors and 3D
technologies, there still exist some limitations in case a specific
application, like the one presented in this letter, requires the
utilization of the device very close to the target while satisfying
space constraints as well [5]. DLO3DS solves these limitations
by empowering a compact 2D camera mounted on the robot
end-effector.

C. DLOs Detection and Segmentation

Concerning the detection and modeling of DLO in images,
several approaches have been described in the literature [2].
The semantic segmentation of DLOs, specifically electric wires,
via learning-based methods has been attempted in [21] where a
dataset is made publicly available. Similarly, a weakly super-
vised dataset generation approach combining synthetic and real
images of DLOs has been proposed in [22]. Simpler methods to
segment DLOs in images are based on markers [1], background
color removal [23], [24], [25], Frangi filter [26], Ridge filter [27]
or ELSD algorithm [28].

More complex approaches are [3], [4], [29]. In particular,
these methods allow obtaining the individual instances com-
posing the scene. In Ariadne [29], the individual DLOs are
segmented from complex backgrounds starting from their end-
points, which are detected by a CNN. Ariadne+ [3] improves
Ariadne by building the graph representation directly from the
segmentation mask avoiding the CNN step. In combination with
a more efficient paths discovery algorithm, better accuracy and
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Fig. 2. 3D shape estimation pipeline of DLO3DS. The set of k image samples is processed by an instance selection algorithm for extracting the DLOs from each
individual image. A B-spline model is computed for each detected instance and a single 2D target spline is selected from each image sample. The set of selected
B-splines is matched prior to performing the triangulation procedure, obtaining a 3D spline describing the DLO shape in world coordinates. Data flow: the blue
arrow denotes the image; the red arrow denotes the 2D spline.

a noticeable speedup are achieved. Recently, a 20 Frames-Per-
Second (FPS) capable approach named FASTDLO [4] was pro-
posed, further boosting accuracy and throughput. These methods
were then exploited in bigger frameworks in order, for instance,
to combine the sensing of DLO also from tactile sensors [30].
In [6], instead, some preliminary results about the shape esti-
mation of DLOs are provided. Notice that DLO3DS contains
several improvements with respect to [6], like being able to deal
with multiple DLOs in the scene and to track a target DLO shape.
In addition, extensive experimental validations and comparisons
are provided.

III. INSTANCE SELECTION AND MODELING

This section reports the details about the processing and
estimation of a spline for each captured image. The estimated
spline is employed both for computing the 3D shape of the
DLO but also for aligning the camera with the target DLO main
direction through Principal Component Analysis (PCA). Indeed,
in order to increase the portion of the same DLO visible in every
sample, it is assumed to have the camera oriented along the DLO
main axis and to record the samples by sliding orthogonally to it,
see Fig. 3 for an example of the sliding direction with respect to
the DLOs orientation. In Section III-A, the extraction of DLO
instances from each image and their modeling via B-splines
curves is presented. Section III-B discusses the selection of the
target spline among the set of detected ones extracted from a
captured sample.

A. DLOs Segmentation and B-Spline Modeling

DLO3DS exploits existing approaches for segmenting the
DLOs from an image. In this work, the learning-based algorithm
named FASTDLO [4] is employed, taking as input the RGB
image of the scene and providing as output both an instance
mask, where each DLO is denoted with a unique color identi-
fying the assigned ID, and a sequence of 2D coordinates in the
image plane for each detected DLO. A cubic B-spline is fitted
to these coordinate points obtaining a continuous representation
of the considered DLO. The considered spline is addressed as
q(u), where u ∈ [0, 1] is the free parameter, i.e. the normalized
position along the spline neutral axis. The computed curve is
then discretized into a fixed number ns of points. The utiliza-
tion of a learning framework in [4] allows to intrinsically deal
with changes in lights and textureless areas, partially solving

Fig. 3. Target spline selection approach based on distance computation. The
symbol u denotes the spline free parameter.

the limitations discussed in Section I. However, other image
processing pipelines can be employed for increased robustness
and depending on the application scenario.

B. Spline Selection

The spline selection is performed in case an image contains
multiple DLOs. Indeed, all the instances extracted from an image
are modeled in Section III-A. However, in the following, a single
DLO spline per image is expected. Thus, a regression-based
distance approach is employed for retrieving the target DLO in
sample i, based on sample i− 1, with i = 2, . . . , k. In particular,
the point-to-point distance between the target spline T of a
sample i− 1 and each newly detected spline of a sample i is
computed, as shown in Fig. 3. Then, a line is regressed for each
distance curve and the spline associated with the smaller slope
line is selected. Indeed, due to the orthogonal sliding direction,
the same portion of DLO is assumed to be visible in each sample,
thus an overall constant distance between the two curves given
by the motion of the baseline step is expected.

IV. SHAPE ESTIMATION FROM MULTIPLE VIEWS

This section details how the different k splines are matched
and exploited for obtaining the final 3D shape of a given DLO,
see Fig. 2. In Section IV-A the matching of the splines is
discussed, while in Section IV-B the triangulation approach
is detailed. In Section IV-C the possibility of employing the
reprojection error for evaluating the quality of the estimation is
presented. In Section IV-D, the optimization of the baseline and
distance from the target is described. Finally, in Section IV-E,
the applicability of DLO3DS in a DLO tracking framework is
analyzed.
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Fig. 4. Scaling process. The shortest spline is selected as the reference and all
the others are scaled to match the same DLO portion as closely as possible.

A. Splines Matching

A spline qi(u) can be sampled by defining a suitable vector u
of ns equally-spaced free parameter values in the interval [0, 1].
Thus, ns 2D pixel points along the DLO for the i-th view are
retrieved.

Let’s denote with pij = [pxij
pyij

]T the j-th spline sample
on the i-th image plane, with i = 1, . . . , k and j = 1, . . . , ns.
To assess the accurate 3D location of a generic point seen from
multiple images at pixel coordinates pij , we need to compute
precisely the corresponding points pij . For this purpose, we
exploit both the constraints embedded in the case of a normal
stereo setup and the availability of the splines modeling the DLO.

The first step consists of sampling all the splines over the
same DLO section by defining suitable vectors ui, one for each
spline. The length li of each spline is measured by summing the
distance in pixels among adjacent points. Then, the index r of
the shortest spline is taken as a reference

r = argmini{li : i ∈ 1, . . . , k}
Thus, the splines are re-sampled according to the redefined
vectors of free parameters

ui ← ui
li
lr

+
d(qi(0), qr(0))

li

where the function d(·, ·) provides the distance in pixels between
two points. As a consequence, the spline samples qi(ui) provide
a coarse matching across the different views.

The ns spline samples of the shortest spline need to be pre-
cisely matched in all the other splines qi(u), i = 1 . . . k \ r. In
this regard, the corresponding j-th point on the i-th image plane
pij is searched along the row coordinate of prj , empowering the
basic constraints of epipolar lines in case of a normal stereo rig,
as the intersection point with the spline qi(u). In the eventuality
of multiple matches between the spline curve and the epipolar
line, a smoothness constraint is also employed enforcing the
most consistent point based on the past matches.

The aforementioned procedure is depicted in Fig. 4. The
spline samples pij are then used to compute the DLO 3D shape
as detailed in Section IV-B.

B. Multi-View Triangulation

For the sake of simplicity, the discussion is focused first on
just one target point, i.e. j = 1. Let us consider the case in which
a single unknown point p in the Cartesian space expressed with
respect to the world reference frame is observed by the camera
mounted on the robot from multiple points of view. Provided
that the camera frame with respect to the world frame at the i-th

points of view is

wT ci =

[
wRci

wtci
0 0 0 1

]

where wRci is the rotation matrix and wtci is the position of
the camera frame origin in world coordinates obtained from the
kinematics of the robot and the extrinsic parameter of the camera
calibration. It is assumed that the point p is seen in the image
related to the i-th points of view at pi = [pxi

pyi
]T , being pxi

and pyi
the point pixel coordinates in the image.

A so-called unit ray vi passing through the image reference
frame origin and p can be expressed in the image frame con-
sidering the pixel coordinates pi and the camera focal distance
f

v′i =

[
pxi
− cx

pyi
− cy
f

]
, vi =

v′i
‖v′i‖

where cx and cy are the pixel coordinates of the image center
(assuming the camera frame is centered with respect to the
image). Then, vi can be expressed in the world frame by

wvi =
wT civi

Provided that k distinguished points of view are available, the
estimation p̃ of the unknown point p can be obtained by looking
for the point having the minimum distance from all the rays. By
defining the symmetric Vi matrix

Vi = I − wvi
wvTi (1)

providing the semi-norm on the ray distance, the point location
estimate x̃ is provided by the nearest point search algorithm, i.e.

p̃ =

(
k∑

i=1

Vi

)−1( k∑
i=1

Vi
wtci

)

The aforementioned algorithm is thus applied to estimate
the DLO segment employing as input the spline samples pij =
pi(uj), j = 1, . . . , ns, i = 1, . . . , k. The vector of control points
qv = [q1 · · · qns

]T of the 3D spline q(u) that optimally approx-
imated the set of point estimates pij can be defined as

qv = B#x̃v

where # represents the matrix pseudo-inverse and

B =

⎡
⎢⎢⎣
b1(u1) · · · bnu

(u1)
b1(u2) · · · bnu

(u2)
...

...
...

b1(uns
) · · · bnu

(uns
)

⎤
⎥⎥⎦

x̃v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(∑k
i=1 Vi1

)−1 (∑k
i=1 Vi1

wtci

)
(∑k

i=1 Vi2

)−1 (∑k
i=1 Vi2

wtci

)
...(∑k

i=1 Vins

)−1 (∑k
i=1 Vins

wtci

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

being Vij the matrix computed according to (1) for the j-th
sample provided by the i-th image.
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C. Evaluation of Estimation Error by Reprojection

To evaluate the estimation error, the 3D DLO B-spline ob-
tained in Section IV-B is reprojected on each image and the
difference with respect to the input 2D spline provided by
Section III-A is computed. Considering a generic 3D spline
sample q(uj) = B qv , its homogeneous representation is pro-
vided by q̄(uj) = [q(uj)

T 1]T . The projected coordinates p̃ij =
[p̃xij

p̃yij
]T of the j-th spline sample on the i-th image plane

can be written as

p̃′ij =

⎡
⎣p̃′xij

p̃′yij

p̃′zij

⎤
⎦ = A [wRT

ci
| − wRT

ci
wtci ] q̄(uj)

p̃ij =

[
p̃xij

p̃yij

]
=

[
p̃′xij

/p̃′zij
p̃′yij

/p̃′zij

]

where

A =

[
f 0 cx
0 f cy
0 0 1

]

is the camera matrix containing the camera intrinsic parameters,
such as the focal length f and center point coordinates cx and
cy . Then, the overall error is provided by collecting all together
in a single vector the error related to every single image, i.e.
e = [· · · eij · · · ]T , j = 1, . . . , ns, i = 1, . . . , k, where eij =
‖pij − p̃ij‖ is the distance between the corresponding initial
spline sample provided by Section III-B and the projection on
the image plane of the estimated 3D spline sample. Finally, the
mean error norm‖e‖nsk =

√
eT e/(ns k) can be used to evaluate

the quality of the estimation result.

D. Online Reconstruction Optimization

In a general stereo setup, the two sensors are fixed and, as a
consequence, their baseline can not be modified. In our setup,
instead, the mobility of the robot can be exploited in order to find
the best baseline and distance from the object corresponding to
the minimum depth error. Indeed, both the baseline b and the
distance from the target object z are responsible for the overall
depth estimation error arising in triangulation methods, with the
well-known relationship [9]:

ε =
z2

b f
εd (2)

where ε denotes the depth error, f the focal length of the camera
and εd the disparity error (assumed to be within one pixel in
the following). Thus, given a set of points in the 3D space p :
{pi = (xi yi zi)

T , i ∈ [1, ns]}, the optimization problem aiming
at minimizing the depth error can be implemented, having the
following cost function:

min
δz,b

1

n

ns∑
n=0

(zi + δz)
2

b f

where δz denotes the camera distance increment from the object,
a value that can be either positive or negative.

This multi-variable optimization problem is subjected to a set
of bounds and constraints that limit the admissible search space.
The bounds are thus defined as :

b ≥ 0

Fig. 5. Tracking the same DLO after a forward motion by exploiting a distance-
based computation on the overlap area.

xsδmin
z ≤ δz ≤ δmax

z

whereas the constraints are :

zmin − zi ≤ δz

zi (−pxi
+ σ) ≤ b f + δz (pxi

+ σ) (3)

b f + δz (pxi
+ σ − w) ≤ zi (−pxi

− σ + w) (4)

where pxi
is the row pixel value corresponding to the 3D

coordinate pi, σ is a safe offset in pixel coordinates to avoid
regions of the image near the borders, w is the image width and
zmin denotes the minimum distance of the camera from the 3D
point. The solution to this minimization problem provides the
optimal pair of baseline b and camera distance increment δz .
Notice that (3) and (4) restrict the value of the parameters b and
δz such that all the points p are inside the k images taken using
the optimal parameters.

The optimization routine requires as input an initial guess of
the depth values zi. Thus, a coarse guess should be utilized or an
initial execution of DLO3DS with fixed default parameters for
b and δz is required for computing the initial guess. Moreover,
in the case of tracking of the DLO shape (see Section IV-E), the
values of the previous section can be used as an initial guess.

E. Tracking

In order to achieve a precise estimation of the DLO shape,
DLO3DS is executed with camera samples captured in the prox-
imity of sections of the DLO, e.g. the depth error is proportional
to z (2). Thus, if the estimation of a long DLO shape is sought, a
different approach is required. In this section, we described the
steps employed for applying DLO3DS in a tracking framework,
thus reconstructing the full 3D shape of a DLO combining
individual estimations of small sections. In particular, after the
estimation of a given section of the DLO, the camera is moved
forward along the DLO principal direction and centered with
respect to the estimated points. Thus, based on the overlap
parameter no, a given percentage of previous points are still
visible in the next DLO section and they are used for keeping
track of the DLO under reconstruction, even in presence of
multiple DLOs in the scene, as shown in Fig. 5.

At the end of the tracking performed along a DLO, the 3D
points estimated for each segment of the DLO under analysis
are collected in a unique vector in order to then obtain a single
spline curve able to represent the overall DLO 3D shape.

Moreover, in order to further improve the estimation, these
points are filtered to eliminate outliers and overlaps produced by
subsequent acquisitions. To this end, the Locally Weighted Scat-
terplot Smoothing (Lowess) algorithm [31], a locally weighted
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Fig. 6. Experimental setup composed of a Panda robot from Franka Emika
and a low-cost eye-in-hand 2D USB camera.

regression method that works by defining a window in the sample
data, is applied for the final filtering of the points.

V. EXPERIMENTAL VALIDATION

DLO3DS is validated experimentally employing a 7DoF
robotic arm, the Panda from Franka Emika, equipped with
an eye-in-hand 2D low-cost camera having a resolution of
640× 480 pixels. The camera is both intrinsically and extrin-
sically calibrated, as shown in Fig. 6. The experiments are
performed both with simulated and real data, in Section V-A and
Section V-B respectively. Moreover, in Section V-C, DLO3DS
is characterized in terms of processing time.

A. Evaluation in Simulation

To perform a proper evaluation of DLO3DS, ground truth
data is needed. Considering that it is quite difficult to obtain
an error-free 3D ground truth shape of a real DLO, synthet-
ically generated data [32] is exploited to assert the DLO3DS
performances. Thus, a test set of 10 randomly shaped reference
synthetic DLOs of 0.8 meters in length is generated resembling
the shape and appearance of real DLOs. They are accompanied
by ground truth data in the form of 3D points describing their
center line.

1) Influence of DLO3DS Parameters and DLO Diameter:
The test set is rendered using three different reference diameters
φ= 2.0, 3.5, and 5.0 mm to analyze how the DLO thickness may
affect the performance of DLO3DS. In addition, we analyzed
the influence of the number of views, the percentage of overlap
during the tracking (Section IV-E), and the contribution of
the online optimization approach compared to a fixed stereo
parameter setup or a partial optimization. When otherwise not
specified, the default values are cable diameter 3.5 mm; number
of views 3; overlap 50%; optimization of baseline and distance
from the object (b+ z). With default settings, the estimation
mean error is 0.821 mm whereas the reprojection mean error is
0.731 pixels.

The box plots resulting from this analysis are depicted in
Fig. 7. From the plots, it is possible to conclude that the diameter
of the DLO does not play a major role in the estimation error.
The same can be said for the overlap percentage, with the only
remark that in a real estimation a bigger overlap may help to
compensate for calibration errors. On the contrary, the slight
drop in the error between 2 and 3 views is noticeable. Indeed,
we commonly deploy DLO3DS using 3 views since the increase

Fig. 7. Error distribution on the synthetic test set when varying a single
parameter of DLO3DS. For the optimization plot: fixed means fixed setup,
b means just baseline, z means just distance, b+ z means both baseline and
distance.

in the algorithm processing time is negligible and can be mostly
compensated by its execution in masked time, as detailed in
Section V-C.

Ultimately, online optimization does play a major role in
bringing the interquartile range of the reconstruction error be-
tween 1 and 0.5 mm. The contribution of optimizing just the
baseline corresponds to an error drop of 9 % compared to the
fixed setup. Instead, the optimization of the camera distance
provides a drop of 22 %. The joint optimization makes the error
drop of 29 %. We claim that the major relative improvement
of z as opposed to b compared to the fixed setup is due to
the changing of the virtual baseline, i.e. the baseline virtually
increases when the camera is moved closer to the object. Thus,
in the z experiment there is an actual minor coupling with b
making its result closer to the b+ z configuration.

2) Comparison With Baseline Methods: A comparison be-
tween DLO3DS, established methods like Semi-Global Match-
ing (SGM) [7], and more recent approaches like SISTER [17] is
provided by rendering the sample number 1 of the test set with
different backgrounds and colors. For the estimation performed
by DLO3DS, we used 3 views. Concerning the SGM method, we
used just 2 views and we compute the matching cost one time
via Census Transform (denoted as CENSUS/SGM) and a second
time via a learned similarity measure [13], [33] (denoted as
MCCNN/SGM). Finally, for SISTER we used 5 views as detailed
in [17]. Aiming at a fair evaluation, in all the experiments the
baseline was set to 25 mm, and the not-optimized fixed setup
was employed, see Section V-A1.

Fig. 8 shows the computed depth images normalized between
the min and max values of the ground truth one. Both SISTER
and SGM provide as output a disparity image, thus we converted
it into a depth image given the known baseline and focal length.
Instead, DLO3DS provides as output just 3D points describing
the DLO center line. In order to compute the depth image, the
estimated 3D points and the colored mask of Section III-A are
used to first estimate the radius of the DLO in world coordinates.
Then, the original center line description is over-sampled and
used to reconstruct the DLO surface keeping into consideration
its radius. The result is a dense depth image of the DLO. For a fair
comparison, the methods are evaluated only for what concerns
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Fig. 8. Comparison with baseline methods in the form of depth images and boxplot. Plot legend: 0) DLO3DS, 1) SISTER, 2) CENSUS/SGM and 3) MCCNN/SGM.
The display of the MCCNN/SGM boxplot in the third row is avoided due to large errors.

the depth values belonging to the DLO, the ground truth mask
was used to select those points. The error between each method
and the ground truth depth is computed by subtracting the latter
from the first and it is shown using a box plot capturing the error
distribution. From the figure, it is clear that DLO3DS provides
an overall better estimate of the depth with wrong estimates
only along the DLO boundaries due to prediction error in the
segmentation mask.

B. Real-World Evaluation

To establish a boundary value of the estimation error in a
real application, an experiment is performed using two types of
purposely designed gripper fingers that, once closed, provide
a hollow circle with a diameter of 6 and 10 mm respectively.
First, DLO3DS is applied to estimate the DLO shape, then the
center of the circumference is used as the reference frame for the
generation of the motion: the robot should successfully follow
the DLO without touching it, despite the shape of the DLO
and changes in the z values. For the sake of generality, this
experiment is performed both with electrical cables having a
diameter of 3.5 mm and also with a different type of DLO, a
polymeric hose for medical applications with an external diame-
ter of 1.2 mm. The material of this hose is semi-transparent, such
that it is almost invisible to commercial 3D sensors (including
high-end ones) and laser scanners [5]. In Fig. 9, key-frames
from a video sequence showing the experiment are reported.
The cable of 3.5 mm is tested with the 10 mm gripper, while
the hose with the one of 6 mm. Despite the complexity of the
task, the cheap 2D camera used in this work is able to provide
a reliable reconstruction of the sample objects, allowing for
correct tracking without touching in both experiments.

C. Timings

The execution timings of DLO3DS are affected, other than
the specific computing resources used, by the instance seg-
mentation, modeling and selection performed in Section III,
and by the triangulation procedure of Section IV. The timings
of the first are mostly correlated to the choice of the image

Fig. 9. Key-frames from a video sequence (available as supplementary ma-
terial) showing the tracking test performed on DLOs of different types and
diameters. Tester gripper diameter: black 6 mm, blue 10 mm.

processing algorithm. By employing FASTDLO [4], 20 FPS
are guaranteed for processing a single image when deployed
on a workstation equipped with an Intel i9-9900 K CPU and
Nvidia 2080Ti [4]. The performances’ triangulation procedure
of Section IV is affected by the number of points (ns) at which
the spline is evaluated. The following values are obtained for
some configurations: ns = 10, 7.5 ± 3.3 ms; ns = 20, 19.5 ±
9.3 ms; ns = 40, 27.2 ± 12.1 ms. Overall, DLO3DS provides
competitive performances. It is worth mentioning that the data
processing on a real setup can be mostly executed in masked
time while the robot is moving toward the next pose.

VI. CONCLUSION

DLO3DS utilizes multiple 2D acquisitions for the accurate 3D
shape estimation of DLOs. It is a fundamental tool for enabling
the manipulation of DLOs by means of a robot without the
need for expensive, bulky, and constrained 3D sensors. Thus,
DLO3DS can be particularly useful in industrial applications
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aiming for low-cost and effective solutions to complex manufac-
turing tasks involving the manipulation of cables, hoses, wires,
ropes, and other similar objects.

DLO3DS in its current form deals with static scenes, i.e. the
DLOs are still between the images acquisitions, and can be
susceptible to the quality of the extracted splines. Thus, future
activities will be devoted to addressing dynamic scenes and
increasing robustness in cluttered conditions.
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