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ABSTRACT Complexity and performance of Automotive System-on-Chips have exponentially grown in the
last decade, also according to technology advancements. Unfortunately, this trend directly and profoundly
impacts modern Electronic Design Automation tools, which must handle very large amounts of logic
gates. The consequence is an exponential increase in computation times, potentially leading to significant
production delays. In the context of Burn-In, to reduce the computing time, the stress specification is often
relaxed due to the difficulty of grading extensive pattern sets, and it may result in the insurgence of unstressed
circuit zones. As a matter of fact, current Electronic Design Automation software tools provide limited
capabilities to effectively quantify stress effectiveness, investigate per-pattern set coverage loss, and compute
layout-aware stress metrics. This article proposes a toolchain to overcome the limitations mentioned above.
We propose a complete software flow to evaluate Burn-In stress patterns through standard toggle coverage
and activity effectively. Together with these standard metrics, this article illustrates how to complement
traditional measurement with layout-aware toggle coverage metrics. By exploiting parallel programming
paradigms and machine learning algorithms, the proposed toolchain drastically reduces computation time
for evaluating traditional stress metrics, and it offers new analysis metrics to test engineers conceiving the
Burn-in stress patterns. In addition, the toolchain offers some commodities to superimpose the generated
stress from different patterns and visualize it over the SoC layout through a heatmap, providing great
benefits to test engineers in charge of composing Burn-In recipes. We validated our toolchain on two
industrial devices from STMicroelectronics belonging to the SPC58 and SPC56 families, which include
around 20 million and 2.7 million gates, respectively.

INDEX TERMS Automotive SoCs burn-in, simulation analysis, parallel applications, density aware metrics,
toggle activity, stress-test evaluation, EDA tool, stress coverage loss troubleshooting, stress plot, burn-in
stress effectiveness analysis.

I. INTRODUCTION
State-of-the-art System-on-Chips (SoCs) integrate several
technologies, include heterogeneous devices, and contain
many embedded memories. They include a massive number

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

of logic gates. Because the probability of a physical defect in
a SoC is related to its complexity and size in logic gates [1],
testing modern devices is always more challenging.

In the automotive scenario, devices should also respect the
safety requirements dictated by the standard ISO-26262 [2],
every defect potentially causing a harmful failure should
be avoided. Therefore, for automotive SoCs, the standard
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manufacturing test flow, usually encompassing only wafer
and package tests, is enhanced with a Burn-In stress step,
followed by a final package test, and eventually a System-
Level-Test phase [3], [4], [5]. In this article we essentially
concentrate on the Burn-In phase. Still, we show that our
analysis flow can also provide useful feedback about final test
procedures and SLT.

Burn-In (BI) is a stress phase designed to remove the infant
mortality of SoCs [6] manufactured with some weakness,
such as thinner metal oxide or metallization. The BI phase
provides both external and internal stress to a device. External
overexertion (such as thermal stress) is generated by a
climatic chamber or at the socket level. Its main objective
is to age the device material [7]. Internal stress (such as
electrical stress) is produced by scan-based approaches [8],
Built-In Self-Test (BIST) modules [9], or functional test
programs [10], [11]. Its main target is to force device gates
to produce high internal activity and possibly exacerbate
the insurgence of latent defects not screened by the wafer
and packaged test procedures, which could be later captured
by the successive test steps. The final test is performed
by automotive chip manufacturers just before the market.
Some companies execute this step by re-running all previous
tests after the BI stress phase; others also perform an
additional step called System-Level Tests (SLTs) to cope
with system interaction issues [12], [13], [14]. The SLT
procedures usually use advanced functional (often holistic)
test strategies, such as booting an operating system [13].

Nowadays, grading the quality of BI procedures is
getting extremely important [3], [15]. Unfortunately, grading
activities are affected by the size and complexity of
modern SoCs. Moreover, modern devices present new defect
types [16], [17] requiring enhanced coveragemetrics not fully
supported by current Electronic Design Automation (EDA)
tools. For example, the most frequently used metric, i.e., the
so-called toggle coverage [18], represents the number of gates
that make at least one transition. Nonetheless, there is an
increasing interest in also evaluating the average number of
times and how uniformly a signal is stressed [19]. To perform
these advanced tasks, it is necessary to simulate the stress
patterns and post-process the resulting simulation dump [20];
this approach may become prohibitively expensive for large
devices. Furthermore, the SoC layouts should be considered
as gate density may vary from area to area, affecting the
accuracy of the stress measures [18], [21].
In summary, reaching an excellent stress quality during

BI for automotive SoCs is a significant achievement [16].
From an industrial perspective, a trade-off between stress
metrics and computation time is often required. With the
increasing complexity of SoCs, the specifications on the
stress metrics are often relaxed to keep the computation time
reasonable.Moreover, to speed up the development time of BI
stress patterns, approaches from other manufacturing areas
are reused, e.g., functional programs used for verification
purposes are also used for BI [19]. However, they are not
primarily intended to stress the SoC effectively and may

not exacerbate all latent defects. Grading the stress abilities
of these procedures borrowed from other steps in device
production is often left to designers’ expertise due to the lack
of proper measurement tools.

A problem related to the complexity and the deep
submicron era is that different activation methods exist
for effectively stressing a gate [9]. Moreover, the gates
distribution is not uniform, which makes it critical to
distribute the stress over the SoC layout uniformly. With the
current state-of-the-art stress metrics, a more dense area has
the same weight in terms of stress coverage compared to
a less dense area. Consequently, the applied stress per area
in the SoC can vary depending on the layout region and
may affect the insurgence of latent defects by delaying their
appearance. All the issues mentioned above could lead to
ineffective BI stress for automotive devices. Consequently,
only a subset of all the latent defects are captured during
the Final and System Level Tests. Therefore, latent defects
may arise during the SoC operational life, creating in-field
returns for manufacturers and dangerous situations for
customers.

This article illustrates the components of a toolchain
designed to conceive the efficiency of computing BI
stress and better quantify its effectiveness. The toolchain
encompasses several software analysis tools orchestrated
to evaluate stress patterns more flexibly, efficiently, and
effectively. Moreover, state-of-the-art EDA tools do not
consider advanced stress metrics and lack of layout-aware
capabilities. Overall, the toolchain includes tools to:

• Process the files generated during the logic simulation
phase to quickly and effectively measure the stress
ability of the stress pattern.

• Compute many kinds of stress metrics, ranging from
the common toggle activity to a layout-aware toggle
activity.

• Evaluate a single or multiple stress pattern sets to
highlight their individual, collective, and progressive
coverage abilities.

• Grade different stress patterns, highlighting their differ-
ent abilities and improving them by using coverage [22]
and specific area-related information.

• Display the stress activity over the plot of the chip
surface to increase the awareness and confidence of the
designers in the testing process.

We resort to thread-based parallel computation strategies
and machine-learning techniques to perform these steps in
a reasonable time. The main result of the above efforts is a
toolchain capable of evaluating stress metrics on extremely
complex automotive SoCs and considering a variety of
pattern types, spanning from ATPG to Functional patterns,
and able to grading BIST executions.

As stated by Polian et al. [3], grading SLT applications
through fault simulations is becoming increasingly pro-
hibitive due to the rising SoC complexity. Therefore, the
toggle activity could be a clever trade-off between accuracy
and computation time for grading SLT applications. However,
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FIGURE 1. The manufacturing test flow of automotive SoCs.

SLT-oriented grading is a by-product of the toolchain, which
was mainly conceived for BI purposes.

We gather experimental results on two automotive SoC
belonging to the SPC58 and SPC56 families of ST Micro-
electronics, respectively. The SoC from the SPC58 family,
designed with different integration strategies and a 40 nm
technology node, is ASIL-D compliant and includes about
20 million gates. We apply and evaluate different stress
approaches, such as logic BIST, memory BIST, scan-based,
and functional stress techniques. Our graphical output shows
the main weaknesses of the stress pattern generation process
on a colored layout heatmap. The toolchain effectively
highlights the unstressed zones and enables the development
of additional stress patterns to increase the stress level.

The SoC from the SPC56 family is designed with an older
90 nm technology node, and it includes 2,7 million gates.
In the final part of the experimental results, this case of
study is used to demonstrate the use of the toolchain for a
different SoC family and technology node. By relying on
an IEEE standard for simulation dumps and an open format
specification for layouts widely integrated within EDA tools,
the toolchain does not lose generality when porting it to
different SoC design flow. Therefore, porting the toolchain
to a different SoC implies only running a preprocessing phase
in which we automatically extract layout information. In the
experimental results section, functional stress patterns of the
SPC56 SoC are evaluated to validate the portability.

We ran all experiments on the medium-size server, and our
toolchain was able to complete the entire analysis in a few
hours. In contrast, the same task was previously carried out
on extremely powerful workstations and required weeks and
sometimes even months.

The article is organized as follows. Section II provides
some background on the manufacturing process for auto-
motive SoCs and the related evaluation metrics. Moreover,
to better clarify the contribution of the article, we present a
comparison with the state-of-the-art EDA tools for BI metrics
and the proposed toolchain. The comparison is made from the
analysis perspective of stress metrics for BI. Section III first
illustrates the most critical units of the proposed toolchain;
then, it describes every tool in detail. Section IV shows our
results on an industrial SoC, and Section V shows how to
apply the toolchain to a different industrial SoC. Finally,
Section VI draws some conclusions.

II. BACKGROUND
In this section, we include a general description of the
manufacturing test process (Section II-A), emphasize the

FIGURE 2. The typical bathtub curve for automotive devices.

BI phase (Section II-B), illustrate its evaluation metrics
(Section II-C), and briefly summarize state-of-the-art EDA
tools for BI metrics (Section II-D).

A. MANUFACTURING TEST FLOW
Industrial manufacturing test flows are well-known and
precisely defined [3], [16].

Their main target is to discard all faulty chips, and they
usually consist of the phases represented in Figure 1:

• Wafer test: Performed at the wafer level, it checks the
primary electrical functionalities of the device, and it
executes structural tests.

• Package test: Executed after the packaging, it tests and
measures the essential electrical characteristics of the
pins.

• Burn-In (BI): Latent defects are exacerbated to be
captured by later test steps and reduce infant mortality,
BI provides external stress to the device in terms of
voltage and temperature, aiming at aging the device.
Moreover, it provides internal electrical stress using
structural and functional patterns.

• Final Test (FT): Run after the BI phase, it captures man-
ufactured devices with some weaknesses. It executes a
mix of structural and functional tests.

• System-Level Test (SLT): Performed before shipping,
it focuses on hardware, software, and module interac-
tions using advanced functional test programs, such as
booting an Operating System [3].

B. BURN-IN PRINCIPLES
The distribution of the failure rate [6] is often described
using the bathtub curve of Figure 2. The curve defines three
distinct working periods: An infant mortality period (with a
decreasing failure rate), a regular (or ‘‘useful’’) life (with a
low and relatively constant failure rate), and awear-out period
(that exhibits an increasing failure rate).

The BI process [16] is designed to produce a more
uniform behavior, i.e., it exacerbates latent faulty SoCs.
A BI tester exacerbates latent defects deriving from thin
metal oxide or metallization. The climate chamber of a
BI tester can have many BI Boards (BIBs), each possibly
hosting hundreds of packaged SoCs. Consequently, a single
BI tester can simultaneously provide intense external stress
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FIGURE 3. Neighbors gates.

to many SoCs. Each BI tester achieves substantial external
stress through a temperature and a voltage higher than
the nominal ones. These two factors are crucial to aging
SoCs and accelerating infant mortality, forcing weaker SoCs
to fail in later manufacturing test steps. Another critical
feature of a BI tester is the possibility of generating internal
overexertion by employing logical electrical stimulation.
Internal stress is produced by acting on the SoC scan inputs,
providing suitable patterns generated by Automatic Test
Patter Generator (ATPG), and using internal logic generators
such as logic BIST and functional stress procedures. For
young technology, the BI phase can last up to 12 hours. For
mature technology, it may last a few hours.

C. STRESS METRICS
Specific metrics are adopted to evaluate the stress capabilities
of test patterns [7], [23], [24]. Unfortunately, with new
technologies, adequate activity can be obtained only with
complex methods, e.g., static electrical stress approaches
(which share similarities with IDDQ [25] patterns). In this
article, we consider the following stress metrics:

• Single point stress metrics. These focus on single-gate
events. A gate is considered covered when it executes
both transitions (i.e., from 0 to 1 and vice versa) during
the simulation. Commonly named toggle coverage,
it can be further extended with statistics (i.e., the number
of times an event occurs on a given gate, also known as
toggle activity) or timing-related measures (i.e., average
toggling frequency of a gate along the simulation time).

• Multiple point stress metrics. These neighborhood-
oriented metrics focus on close gate pairs and analyze
their behavior for a specific amount of time.

As a final consideration, in modern automotive SoC, it
is essential to consider the physical layout. As the physical
gates distribution is not uniform, the stress can be unbalanced,
and latent faults may not be stressed. Therefore, to reach a
uniform and specific coverage, Layout-awaremetrics weight
the stress uniformly between dense and less dense sections
of the SoC [18]. As represented in Figure 3, it is possible
to analyze the physical placement of the gates and detect
neighbor gates, i.e., gates whose distance is lower than a given
threshold.

Neighbor gates can be further stressed by forcing their
inputs to opposite values for a sufficiently long time (t in
Figure 4).

FIGURE 4. Neighbor gates keeping opposite values for some time equal
to t.

FIGURE 5. Possible evaluation flows for stress metrics.

Effective stress can be generated when the logical
configurations ‘‘0–1’’ and ‘‘1–0’’ are maintained on the
gate pair by ‘‘blocking’’ well-tailored values for a given
time. This measure is called neighborhood-oriented static
stress metric [18] and it exacerbates latent defects with
electromagnetic stress [21], [26], [27], [28].

D. STATE-OF-THE-ART TOOLS FOR BI METRICS
Overexertion must stimulate as many device nodes as
possible [7], [23], [24], and evaluating BI metrics is crucial
for grading the quality of stress patterns. Figure 5 illustrates
two possible high-level workflows for evaluating BI stress
metrics: An ATPG and a VCD (Value Change Dump) based
approach.

ATPG-based methods (the upper path of Figure 5) focus
on toggle coverage metrics based on the fault simulation of
the netlist. Unfortunately, they cannot focus on more specific
coverage metrics for the BI phase, as stated in Table 1.
Moreover, since a single core may execute a single fault
simulation, ATPG-based methods may require prohibitive
computational times for large devices. VCD-based methods
(the lower path of Figure 5) rely on the standard VCD format
to evaluate the BI metrics. They often run ad-hoc tools in
a post-processing phase without the necessity of performing
fault simulation [29].
Table 1 compares the proposed toolchain with some main

state-of-the-art EDA tools. The table reports the capabilities
of the different tools in terms of the following: adopted
metrics (single point, multi-point, layout-aware), the use
of parallel techniques to improve time efficiency (notice
that process-based techniques are more expensive than
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TABLE 1. The table compares our toolchain with state-of-the-art EDA tools. The Comparison is made only from the analysis perspective of stress metrics
for BI.

FIGURE 6. The picture represents a high-level view of the proposed toolchain. The stress pattern, either structural or
functional, is validated on the silicon implementation of the SoC. Afterwards, a logic simulation based on the given
stress pattern is performed to provide a VCD file. This file is then analyzed to provide a single or multi-point stress
coverage for the stress pattern. The Layout-Aware elaboration links the stress pattern to the SoC layout by weighting
the stress metrics with the gate density. There are several options for the final step, from plotting the stress over a
layout heatmap to superimposing different stress patterns or presenting stress coverage metrics for each module.

thread-based parallelization), the capability to superimpose
different stress patterns, and the troubleshooting capability
for coverage-loss (coarse or fine coverage, per module or gate
coverage, or by plotting the stress over a layout heatmap).
Overall, it could drastically reduce development time and
improve the quality of the stress patterns.

III. THE PROPOSED TOOLCHAIN
As the complexity of automotive devices is dramatically
increasing, so are the requirements on memory and CPU time
from tools to compute metrics for grading stress patterns.
Therefore, a common trade-off is to relax the constraints of
the final coverage and relief of the tools from time-consuming
analysis and simulations.

Moreover, the increasing complexity of automotive devices
is also impacting the stress metrics, requiring more advanced
metrics [18]. More in detail, the distribution of gates among
the SoC floorplan could play a crucial role in distributing

uniformly the stress, as well as the mutual interaction
between neighbor gates. The latter considerations are not
handled by commercial tools in the metrics, as presented
in Table 1.

The aim of the proposed toolchain, represented in Figure 6,
is to abate the computing cost for handling the increased
complexity of automotive devices by exploiting thread-
based parallel techniques instead of process-based parallel
techniques and to overcome the limitation of current EDA
tools in terms of stress metrics analyzed per pattern.

Moreover, it provides test engineers with a visualization of
the stress over the layout of the SoC, as well as capabilities to
troubleshoot coverage loss by providing fine and coarse stress
coverage per gate or module.

As described in Figure 6, the toolchain analyzes a VCDfile
produced by a commercial logic simulator from a functional
test program or a structural pattern. In general, test patterns
can be developed on the existing silicon version of the device

VOLUME 11, 2023 105659



F. Angione et al.: Toolchain to Quantify BI Stress Effectiveness on Large Automotive SoCs

to reduce the prototyping time [30]. Therefore, after the
VCD file generation, the toolchain performs the following
steps:

• Tool B: VCD analysis and computation of stress
metrics.

• Tool C: Layout-aware elaboration for connecting the
VCD analysis to the physical device.

• ToolD: Superimposition of the stress results for different
stress patterns to provide incremental coverage.

• Tool E: Hierarchical netlist analysis for computing per-
module/gate stress metrics.

• Tool F: Visualization of the stress with a heatmap created
from the physical layout of the device.

An automated flow for overcoming the limitation of current
commercial EDA tools is the major progress concerning
the state of the art that this article is proposing. The
concrete benefit is a conjunction of human time cost saving
derived from the quick execution times achieved by parallel
computing and the clear indications that the results return,
either in percentages or visually. In the following sections,
we describe every tool in detail from both the theoretical and
implementation point of view.

A. TOOL A: THE LOGIC SIMULATOR
During the BI phase, both structural and functional tests are
executed. Consequently, the netlist-based logic simulation
phase of the SoC is based on a commercial tool capable of
generating a VCDfile for different stress approaches and then
analyzed by the proposed toolchain.

In the testing, verification, and validation steps, the logic
simulation phase is one of the most time-consuming phases.
Although, during the years, attempts to parallelize logic
simulation have been published [31]. These strategies are
based on netlist analysis, which would make the approach
unfeasible today due to the rising complexity of modern
SoC because they are based on time-consuming formal
methods. Therefore, a logic simulation is commonly a single-
thread process reproducing the device behavior correctly.
Occasionally, a second thread can be used to write the VCD
file, providing a slight speedup.

Functional stress programs are developed as small pro-
grams in terms of executed instructions because, in this case,
the simulated netlist needs to behave exactly as the actual
implementation of the device, e.g., the power-up operations.
Under those circumstances, a logic simulation based on
functional patterns cannot be reduced in terms of execution
time. Consequently, the functional programs are based on a
defined sequence of instructions to be executed for reaching
a specific state, and they cannot be further boosted except
by changing the hardware on which the logic simulator
runs. Nonetheless, a slight speedup can be achieved by
preloading the memories before the actual logic simulation
starts.

Meanwhile, for logic simulations based on structural
patterns, the most straightforward solution is to simulate the
whole shifting phase of the test vectors inside the scan chain

exhaustively to evaluate the effectiveness of a scan pattern
in terms of stressing capabilities. This method can replicate
what happens at the hardware level; it could be defined as
an ‘‘exhaustive’’ approach because it measures every activity
produced by the device. Exhaustive methods can succeed in
reproducing the device behavior in a reasonable time if part of
the device is stimulated, making a limited number of modules
work simultaneously. Conversely, when a scan chain is used,
exhaustive methods are not recommended. The shift phase
can require the simulation of millions of clock cycles while
simulating the entire SoC. Such a combination of duration
and activation abilities leads to a very long simulation
time (estimated in months for the case study described
below).

To overcome problems related to scan-chain-based stress
and to find a compromise between computational effort
and accuracy during the simulation phase, ATPG engines
use a ‘‘deductive’’ approach. It consists in loading the
corresponding value in each flip-flop of the scan chain
in parallel. Such a parallel load approach is based on the
following simplified assumption: given a set of test patterns
to be applied to the SoC, only the final configuration of the
scan chain after the entire shift of every single pattern is
considered.

Theoretically, it is true that if applying two consecutive
final configurations to the combinational part cause transi-
tions, then the same transitions will show up during the shift
operations. It means that:

t(deductive) ⊆ t(exhaustive) (1)

where t stands for transitions caused by the method within
round brackets. This approach is called ‘‘deductive’’ as the
recorded transitions constitute a subset of the transitions that
take place when applying the exhaustive approach, and a
lower bound on the possible transition coverage is deduced.
When we simulate two consecutive final configurations,
as in the deductive approach, if a gate toggles, we can
demonstrate that this gate is guaranteed to toggle in the
exhaustive approach. Hence, the gate is guaranteed to toggle.
On the other hand, if the gate does not toggle according
to the deductive approach, we cannot guarantee that it
does not toggle. In conclusion, the results obtained through
the deductive approach are approximated but conservative.
More in detail, the deductive approach is implemented as
an additional simulated set of System Verilog tasks. System
Verilog tasks load a given structural stress pattern in all the
scan-chain registers in parallel.

The article [18] illustrates in more detail how the deductive
approach works. Even though the deductive approach pro-
vides an approximation, its use is valuable not only for its
efficiency but also because it is conservative and can guide
the test engineer to develop good patterns, leaving the shift
phase out of consideration. It is also appropriate for a high
switching frequency, driven by a PLL, during the apply phase
but less significant during the low switching frequency of the
shift phase.
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FIGURE 7. The VCD file format.

B. TOOL B: THE VCD FILE ANALYZER
The VCD File analyzer is a crucial tool within the toolchain,
and it is based on the parallel analysis of typical data
format [29].

1) THE VCD FILE FORMAT
A general Value Change Dump (VCD) file produced by
the logic simulation is divided into three main sections,
as depicted in Figure 7:

• Signal header. Each gate or bus is located within a
hierarchical structure, and an ID identifies it; the main
difference is that gates hold one logic value, while buses
hold many, hence the need for a sub-ID to identify each
of those values. We identify as signals both gates and
buses. This section also provides the initial value for
all signals. Every signal is guaranteed to appear in it,
together with the initial time of the recorded simulation.

• Signal change dump. Each change list is introduced by
the current time of the simulation; the list contains only
the signals that changed state at the previously declared
time. The signal initialization and the change lists share
the same format, with the difference that the first is
ensured to contain all the signals previously declared.
The list goes on until the end of the file.

2) THE VCD FILE ANALYZER
The VCD tends to be very large (typically between hundreds
of GBytes and few TBytes) due to the high number of
changes. Because of this, the signal change dump analysis is
the most critical in terms of computation time. As described
in Section III, we consider three types of analysis: the full
and statistical single-point stress metrics, and the multiple-
point stress metric. To speed up the process, we implement a

FIGURE 8. The different stages of the pipeline: [D]iscovery, [R]eading,
[P]arsing, [E]laboration, [W]rite-Back. In a realistic scenario, some [S]talls
might be present.

parallel pipeline consisting of 5 stages, each managed by one
or more concurrent threads, as shown in Figure 8:

• The Discovery stage divides the file into logical
sections, dividing the file for the next stage.

• The Reading stage is in charge of reading the logical
sections and loading them from the disk to the main
memory.

• The Parsing stage uses the Reading stage results to
transform the text data into logical data; this stage may
also update the signal list in the main memory.

• The Elaboration stage performs calculations based on
the data provided by the Parsing stage, updating the
signal list in the main memory.

• The Write-Back stage stores the analysis results on
disk.

In Figure 8, we have a visual representation of the pipeline
stages. In a pipeline, the elapsed time strongly depends on the
slowest stage. As the pipeline may need to be more perfectly
balanced, stalls may appear when waiting for stages that take
longer than others. For example, reading from a disk is the
slowest operation; because of this, the Parsing, Elaboration,
and Write-Back stages are delayed. In this case, we put more
effort into reducing the reading stage overhead as much as
possible.

Using Equation 2 we can describe the elapsed time Tproc
based on the knowledge of the slowest stage Tslowest and the
number of times N that we make a pipeline call; the other
stages, as they are executed in parallel with each other (and
with the slowest stage), so the elapsed time for each stage Ts
only appears once.

Tproc = Tslowest · N +

{all stages\slowest}∑
s

Ts (2)

Communication between each stage occurs through thread-
safe queues with limited, predefined size; as a stage fills
in a queue with its results, the next one empties it until
the end of the computation occurs. Please notice that this
is a general idea, during implementations for each type of
analysis slightly differs. In particular:

• In the full single-point metric (toggle analysis), the
Parsing and Elaboration stages are merged, as the
overhead of data passing would be much higher than
the duration of each operation. Moreover, since the
Write-Back stage is only needed at the end of the
elaboration, it starts after every other stage is finished.

• In the statistical single-point stress metric, we have
all the stages in the pipeline. Since the results may be
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huge on disk, the Write-Back stage works parallel with
the others. We have two versions for the output file:
One similar to the standard file, with the difference that
we only save the toggle information, and one using the
widely used SQLite [32].

• In the multiple-point stress metrics, the Parse and the
Elaboration stage may read and write from the same
queue. We designed a mechanism that needs subsequent
circuit states to be read. Parallelism in the Parsing
stage may lead to an issue where two elements in the
queue may not be subsequent. We solved this issue by
providing a unique increasing identifier for each element
in a queue; in this case, the queue is a priority queue,
where the element identifier is the key, and elements are
removed in ascending order; if we extract two elements
with no consecutive identifiers, those elements are put
back in the queue.

Low-level optimizations are also a critical factor in speeding
up the process:

• We created a low-level buffered reader that performs
file reading and it provides essential tools for parsing.
A buffered reader reduces the number of file readings
by loading file chunks of approximately 8 MBytes; the
choice of chunk size is based on experimental data on
our system.

• We minimize the number of dynamic allocations as
much as possible, resorting to fixed-size structures
allocated before the signal change analysis. Queues are
also pre-allocated using their maximum size available.

• We use an O(1) access table for accessing the signals
through the ID and sub-ID keys, as signals are frequently
accessed and updated by different threads.

• We use data structures optimized for the needed
analysis; this comes at the expense of their flexibility.
However, as future devices may be larger, we want to
reduce memory usage and computation time as much as
possible.

Considering the large spectrum ofmanipulation that the stress
information should endure, and as we would like all tools to
be compatible, we designed an intermediate human-readable
text-based file format to pass information among the various
components of the proposed toolchain. This intermediate
formatted source allows the toolchain to be improved with
less effort, possibly introducing intermediate steps if needed,
only sacrificing a small amount of disk memory. Tools are
also built to read and write files that must be coherent with
the format specified; we divide the values by spaces, while
each record is on a separate line, meanwhile comments starts
with ‘‘#’’; comments usually include traceability information
such as the metric coverage.

C. TOOL C: LAYOUT-AWARE ELABORATION SCRIPTS
In this phase of the proposed toolchain, a set of scripts
is included to provide layout-awareness capabilities. This
toolchain elaboration step is exploited to link the stress
evaluation with the actual SoC physical characteristics.

FIGURE 9. Layout-aware elaboration substeps.

FIGURE 10. An example of the filtering method result.

The substeps are summarized in Figure 9, and three main
components can be individuated:

• Virtual node elimination: it eliminates virtual nodes and
signals that do not have a physical implementation.

• Topology analysis: it analyzes the floorplan of a given
SoC to generate helpful information on the neighbor
gates used for multi-point stress metric analysis in the
VCD file analyzer.

• Metrics Weighting: the stress metrics can be weighted
using a bi-dimensional density by exploiting layout
information.

In the following subsection, every component of the Layout-
aware elaboration scripts is described in detail.

1) VIRTUAL NODE ELIMINATION
A significant issue in the stress coverage evaluation process
comes from the pure VCD analysis of the simulation dump.
As a matter of fact, by looking at the VCD header part,
the number of signals saved in the dump includes many
replications. As shown in Figure 10, a circuit connection
traversing hierarchies ismemorized several times in theVCD.

More in detail, the path to and from the not gate ports
includes physical circuits points ‘‘a’’ to ‘‘d’’ and ‘‘f’’ to ‘‘i’’,
but the VCD dump also includes points ‘‘b’’, ‘‘c’’, ‘‘g’’, and
‘‘f’’, which are not corresponding to any real circuit point but
are inherited as simulation artifacts. Including extra points
leads to longer computations and affects the stress metric
value because an unexcited gate may reflect in many VCD
signals, thus polluting the final stress metric value.

In order to eliminate VCD over information and not affect
stress metrics, a tool is used to filter useless VCD signals.
Such a method is similar to a collapsing strategy, but it is not
based on the netlist analysis.
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The signal pruning is obtained by matching the VCD
information with the list of real SoC gates, i.e., gates with a
physical implementation in the layout. This operation is based
on two steps:

1) The coherent loading of a list of gates extracted from
the layout.

2) The linear search of VCD signals in the layout gates.
An example of the operation performed in this step can be
seen in Algorithm 1.

Algorithm 1 Virtual Node Elimination Pseudo Code
Input: VCD file.
Require: Layout information.
1: Read and save physical gates into a hash table.
2: for signal in VCD do
3: if signal in the hash table then
4: Preserve the signal.
5: end if
6: end for

In terms of complexity, the method leads to an overallO(n)
algorithmic complexity.

2) TOPOLOGY ANALYSIS
When dealing with a complex System-on-Chip, it is funda-
mental first to understand its topology, i.e., how gates are
physically placed across the layout to gather valuable insights
that can help understand the meaning of the computed stress
metrics and devise tests to cover all the parts of the SoC
adequately and uniformly.

Modern SoCs do not show a uniform distribution of gates
on the layout front-end [18]. Traditional stress metrics are
usually ‘‘gate-based’’, i.e., they consider the behavior of a
gate or a set of gates regardless of how the SoC is structured;
they are also ‘‘unweighted’’, i.e., they consider each gate to
yield the same contribution to the metric. The stress per unit
of the area varies across the layout, and it may lead to different
aging scenarios depending on the density of gates in a given
area. Therefore, knowledge of the device topology is crucial
to assessing the quality and uniformity of the stress.

For the reasons above, we provide layout-aware elabora-
tion steps to enhance the computed stress metrics.

More in detail, the purposes of crossing information
extracted from the VCD analysis with layout data permits to:

1) Introduce gates aggregation when measuring multi-
point stress metrics.

2) Reach a high level of accuracy by weighting the stress
measurement according to the SoC density.

3) Generate SoC stress heatmap plot by providing infor-
mation about gate coordinates.

The core aspect of the topology analysis is based on a
heuristic method capable of generating density information
starting from the layout front-end.

It is essential to mention that exhaustive methods exist
for computing the bidimensional density. However, when we
use exhaustive methods, the computing time grows with the

FIGURE 11. An example of the clustering method (DBSCAN) on layout
front-end.

dimension of gates, and it explodes for larger SoC. For the
sake of this work, to overcome computing time limitations,
Machine Learning approaches are used. In particular, the
Density-based spatial clustering of applications with noise
(DBSCAN) [33] approach is used. The idea of DBSCAN is
to generate a set of clustering, i.e., grouping data in the same
group with some similarities.

DBSCAN is a density-based clustering algorithm. Given
a set of points, it groups closely packed points (points with
many nearby neighbors), highlighting outliers in the low-
density region.

With a fixed inter-gate distance, all the logic gates of the
SoC can be organized into tuples of neighbors for performing
multiple-point analysis. In the toolchain flow, a gate pair
located at a distance smaller than a selected threshold on the
layout is considered of interest and extracted to feed the VCD
analysis tools for the multi-point analysis.

In particular, the computation time costs to extract a couple
of gates close enough to each other are traded off with
accuracy; a classification method that implements clustering
is proposed to abate the timing costs while guaranteeing
sufficient accuracy in the selection.

Figure 11 illustrates with an example how the algorithm
works on a generic front-end layout: The classification
process divides SoC gates into core points (in red), border
points (in yellow), and noise points (in blue), and it analyzes
the neighborhood within a fixed inter-gate distance (red
dashed circle). Once the clusters are identified over the SoC
surface, the list of couples (or tuples) can be performed in
a little computation time. Furthermore, the method is helpful
for successive steps of the flow, particularly for weighting the
stress activity based on the SoC density, which can vary from
one region to another in the SoC layout.

3) METRICS WEIGHTING
As stated in the previous subsection regarding the topology
analysis, the stress per unit of area differs across the layout in
modern SoC. Depending on the density of gates in a given
area, it may lead to different aging scenarios. Therefore,
knowledge of the SoC topology is crucial to assessing the
quality and uniformity of the stress and enhancing the stress
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FIGURE 12. Rising and falling transition set cover: From file to set interacts.

metric with density awareness as proposed in [18]. This
substep of the toolchain provides formulas and considerations
presented in [18].
Consequently, a layout-aware stress metric is provided for

the single and multi-point stress metric to weigh the stress
over denser areas of the SoC instead of considering all the
gates equal among them.

D. TOOL D: THE SET COVERING TOOL
During the BI, different stress approaches of various
natures can be used. For example, a BI phase can run
scan-based patterns, logic or memory BISTs procedures,
and functional programs. Distinguishing which coverage is
granted bywhichmethod (i.e., which pattern covers a specific
section of the SoC) is extremely important, as it allows an
understanding of which approaches provide more remarkable
improvements.

Therefore, the proposed toolchain includes a tool for
implementing a set covering analysis. This tool receives
the stress results collected by adopting patterns of different
natures, generating all possible set interactions, and pro-
viding insights about the stress percentage for each stress
approach.

In particular, the set tool provides the following:
• A confusion matrix of toggle coverages among different
stress approaches.

• The list of unique toggle coverages for each stress
approach.

• The number of times that a signal toggles.
• The possibility to merge different results, using the
different coverages as a subsequent superimposition of
stress approaches.

• The possibility to identify raising or falling transitions
of a given gate for each stress approach.

More in detail, for inputs and outputs of gates, we store all
the raising and falling signal transitions in the table.

As signal names are unique and immutable and tend to
be referenced by many files, we use a technique called

‘‘string pooling’’ or ‘‘string interning’’ to avoid having equal
strings in memory as strings would be memory hungry.
Signals in different files share references to their names
instead of havingmore instances of the same string. However,
reading the input files is the slowest part of the process, string
pooling is enabled when moving the signals to an appropriate
data structure; in this way, we avoid slowing down the file
reading stage. In the beginning, the application reads all
covering sets directly from the file and stores them in hash
tables using the identifiers of the signal as a hash key. Later,
as we identify the sequence of signals, we move them to a
dynamic array.

Figure 12 show an example of the entire process. The upper
table shows the original set covering representation, which
stores each rising and falling transition covering for each
signal. The bottom Venn diagrams show the set interpretation
and highlighting per-pattern subsets.

Suppose to have N signals (with N potentially very large)
andM set covering (withM limited by the number of different
covers), the application has anO(N ·M2) time complexity and
memory complexity. As the value ofM is usually limited to a
few units, the time required by the entire process is restricted
to a few tens of seconds in the worst case. Moreover, using a
single bit for each signal value reduces the memory usage to
a few GBytes.

E. TOOL E: THE HIERARCHICAL ANALYSIS TOOL
The ‘‘Divide et impera’’ approach in digital design has
increased the overall complexity of SoCs, allowing teams to
focus more on a design of a single entity instead of the whole
SoC. Following this approach, today’s SoCs comprise several
subunits with a variable number of other nested subunits up to
the leaves, i.e., the logic gates. Therefore, consideringmetrics
on SoCs with millions of gates, it becomes evident that coarse
metrics on the overall device have less meaning that thorough
computed metrics on modules below the average coverage of
the whole SoC.

105664 VOLUME 11, 2023



F. Angione et al.: Toolchain to Quantify BI Stress Effectiveness on Large Automotive SoCs

TABLE 2. A simplified view of the coverage file.

FIGURE 13. A high-level view of the tree data structure containing the
coverage for each node.

The stress analysis frequently has to concentrate on
some specific module, e.g., the ones showing low coverage.
In order to support this analysis, the flow includes a selection
process implemented as a tool that extracts critical modules
below a given threshold and a per-module stress coverage.

The hierarchical analysis tool analyzes a stress pattern, or a
set of them, in order to produce a module-based coverage
file where the module and sub-modules have their coverage
within the design hierarchy.

The hierarchical analysis starts from the standard human
readable text-based input file of coverage. Table 2 presents
an example of a coverage file, where signal names contain
the hierarchy with the associated stress coverage.

The tool is independent of the SoC and analyzes the input
file sequentially to avoid non-deterministic access to data
structures. Consequently, it analyzes only the coverage file
recreating the hierarchy by decomposing the path. In other
words, using as an example the design represented in Table 2,
the top-level unit a is decomposed into a subunit called
b and h; b is further decomposed into its children, i.e., c, d, f,
and the leaf g.

Internally, it works on parsing strings in such a way as
to create a tree of modules and sub-modules, starting from
the top entity; for each node of the tree, it calculates and
saves the list of signals and their coverages in the internal
data structure. The tool creates the tree-coverage structure
depicted in Figure 13.

An important aspect to mention is that the coverage of
a general parents node in the tree hierarchy follows the
recursive formula:

Cov(node) =

#children(node)−1∑
i=0

Cov(i)

n
(3)

FIGURE 14. An example of stress heatmap over a generic SoC layout.

where n is the number of leaves in the sub-tree, if the number
of children of the node is one, then the node coverage is
returned. The formula can generate, given a module, its
related stress coverage by computing the average on all the
children nodes.

More in detail, it generates warnings on those modules
in the hierarchy that does not reach the acceptable level of
coverage, given as an input parameter. Moreover, it produces
a file containing every module with its associated level in the
hierarchy and the related stress coverage. Instead of searching
for a not satisfied coverage module, the tool also accepts a
module name (a string) to extract the stress coverage and
generate a coverage file within the module hierarchy.

A hierarchical decomposition of SoC modules eventually
allows for test engineers to focus on the module, which would
more likely give a more significant step up into the coverage
than modules that have already reached an acceptable level.

F. TOOL F: THE CHIP-SURFACE STRESS PLOTTER
Although an essential aspect of the stress approach is a
quantitative information provided by the hierarchical analysis
tool and the set covering tool, a qualitative visualization of
stress plays a crucial role. Qualitative visualization of stress
over the SoC layout allows locating stress pattern weaknesses
and easily highlighting the coverage abilities of different
stress patterns.

The plot tool uses as input a pure outcome of the VCD
analysis or the superimposition of different stress approaches
from the set covering tool to generate a heatmap of the stress
over the SoC layout.

Figure 14 presents an example of such a heatmap over a
generic SoC.

All signals are mapped into pixels that summarize the
stress applied to the device gates, while white zones are
embedded memories that are not part of the BI grading. Gate
stress coverage resides between 0% (red pixel) and 100%
(green pixel), with values in the middle represented by a color
gradient.

As it can be seen from Figure 14, there exist portion
of red that correspond to non-stressed modules, portions of
green (stressed modules) in different shades depending on the
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FIGURE 15. Experimental setup.

resolution of the image, and islands of white that correspond
to memories, analog and power modules (outside the scope
of BI).

Since images of arbitrary resolutions can be generated,
it is important to speed up the drawing process depending
on the level of detail we need in parallel. GPUs are usually
the way to go for image elaboration, as their parallel
computation capabilities vastly surpass the ones of the CPU.
However, to guarantee compatibility with every device,
we perform computations on CPU resorting to the widely
used SDL2 libraries [34] for saving the image into a standard
format. SDL2 libraries provide APIs for image creation
and manipulation on the CPU and GPU. It also provides
methods to color the image pixel-by-pixel. Since every pixel
is independent, this tool assigns each pixel to a different
thread. In this case, we use OpenMP [35], a widely used
library for easing parallel patterns implementation to perform
image generation.

IV. EXPERIMENTAL RESULTS
Each element in the proposed toolchain is validated on a
target industrial automotive SoC from the 40nm SPC58
family produced by ST Microelectronics. Moreover, an addi-
tional SoC of the 90nm family SPC56, also manufactured
by STMicroelectronics, is considered to prove the portability
of the flow from one chip design to another. The following
sections describe the SoC analyzed, our experimental setting,
and discuss benefits and costs of each phase of our toolchain.

A. THE CASE STUDY: AN AUTOMOTIVE SoC
The target device is a 40 nm Automotive SoC [36] belonging
to the SPC58 family manufactured by ST Microelectronics
and compliant with the standard ISO26262 ASIL-D. In the
following, it is referred to as DUT. The DUT has a multicore
architecture with three 32-bit cores using the PowerPC
Variable-Length Encoding (VLE) instruction set. It has
6 Mbyte of Flash memory and 128 Kbyte of general-purpose
SRAM. It contains about 20 million logic gates in the logic
parts and about 700 k flip-flops. Therefore, it constitutes
a medium-high complexity case study for the proposed
toolchain.

As far as the stress flow during the BI phase is concerned,
the DUT is stimulated by:

• A configurable scan chain stimulates the DUT from
regular pins using scan-based patterns.

• A logic and memory Built-In Self-Test (BIST) activated
from inside or outside the device.

• Some functional programs are executed by the DUT.
The RTL and gate-level description of the DUT, as well
as the layout, are available and accessible to extract useful
information for the toolchain. Furthermore, the manufactured
DUT is available to speed up the development process of
functional and structural stress approaches [30].

B. EXPERIMENTAL SETUP
Figure 15 illustrates our simulation and analysis setup
designed to evaluate BI stress effectively and mitigate the
computational costs of the evaluation. The experimental setup
includes two different phases on different platforms:

• A developing phase. In this phase, we use the man-
ufactured SoC to run and verify quickly structural
and functional stress patterns. A medium-performance
desktop executes the local stress pattern validation phase
by communicating with the evaluation board and an ad-
hoc developed tester [30], [37]. This desktop is equipped
with a quad-core Intel Core i7 running at 2.8 GHz, and
16 GBytes of main memory.

• An analysis phase. In this stage, we evaluate the
structural and functional stress patterns. We run the
toolchain, from the simulation phase to the extraction of
final BI metrics, on a high-performance multi-processor
server. The server has an Intel Xeon Gold 6238R
processor with 112 CPUs. These processors have 64 bits
architecture, allow two hardware threads per CPU, and
run at 2.2 GHz. Moreover, the system has 256 GByes
of RAM, a storage system of 8 TB, and a network
disk of an additional 10 TBytes. The operating system
orchestrating the server is CentOS Linux 7.

We use the manufactured SoC during the developing phase
to boost the validation phase with stress patterns coming
from different sources, such as ATPG (using single or
multiple scan ports), LBIST engines (using compressed
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TABLE 3. The logic simulation phase: CPU times and size of the VCD files generated. The symbol ‘‘*’’ means the time is estimated. ‘‘NA’’ means that the
value is not available.

test patterns), firmware controlled MBIST engine and pure
functional programs. The validation step is supported by
a tester, which applies scan-oriented stress, whereas a
hardware debugger supports the development of functional
procedures.

For example, validating a stress pattern requires a few
seconds (functional stress pattern) to minutes (structural
stress pattern), depending on the type of pattern to be
executed on the manufactured SoC. More in detail for
the time-consuming structural stress patterns, during this
phase, they may be applied by resorting to a low-cost
microcontroller [37] or a more complex tester based on
a Zynq Ultrascale+ MPSoC ZCU104 evaluation board by
Xilinx [30]. The application time of structural stress patterns
is higher than functional stress patterns due to a large
amount of provided data to the high number of scan cells
(around 700k); the low-cost electrical connections impact the
maximum application frequency of structural patterns.

Downstream of the developing phase, the evaluation
process starts on the server, where it must guarantee enough
resources to:

• Store huge files on disk, up to Terabytes, generated by
the initial simulation and then post-processed to collect
refined results.

• Keep in the main memory all required information, up to
tens of Gigabytes while running the post-process phase.

• Distribute parallel tasks to CPUs.

C. TOOL A: THE LOGIC SIMULATOR
The logic simulator is the first step in the proposed toolchain.
It is based on a commercial logic simulator capable of
generating a VCD file, which stores all the signal events
during the logic simulation.

As mentioned, during the BI phase, the DUT is exposed to
structural and functional stress patterns. Therefore, the logic
simulator phase can apply structural and functional stress
patterns to the DUT and dumps the related VCD file. The
simulation of a structural or a functional stress pattern is
substantially different.

In the functional case, the simulation exactly reproduces
the behavior of the functional test program. Therefore,

FIGURE 16. Coverage difference between exhaustive and deductive
structural simulation for OpenRisc 1200.

a functional test program should be as short as possible from
the perspective of execution time.

Regarding the structural patterns logic simulation,
as already proved in [18], the exhaustive simulation of a com-
plete shift of the scan chain may require an extremely high
number of clock cycles. Exhaustive simulations have been
executed on the open-source benchmark OpenRisc 1200,
which is small enough to allow the exhaustive simulations
to be performed. When 200 patterns are applied, the full
results show that the difference in terms of stress coverage
between the two strategies amounts to less than 0.2% as
Figure 16 shows, whereas the difference in terms of time is,
on average, around 1700x more for the complete simulation,
and it depends on the number of applied stress vectors.
Therefore, the deductive simulation has the tradeoff of a
slight decrease in the final coverage but strongly affects the
computing time.

Following this strategy, Table 3 shows the simulation time
for all stress patterns considered in the given case study. Case
in point, the simulation of a 32 ATPG stress vector lasts
about 45 minutes using our deductive approach, whereas the
estimated time required to run the exhaustive approach would
be about 5,376 hours (i.e., seven months). These data prove
the validity of the deductive approach, which, as expected,
can provide precise and conservative results with reasonable
computational effort.

VOLUME 11, 2023 105667



F. Angione et al.: Toolchain to Quantify BI Stress Effectiveness on Large Automotive SoCs

TABLE 4. Profiled execution for the VCD Analysis for the single-point
stress metric.

TABLE 5. Profiled execution for the VCD Analysis for the multi-point
stress metric.

In Table 3, simulation times for the deductive approach
regarding Logic and Memory BISTs and functional test
programs are not calculated since they are not based on
shifting patterns along the entire scan chain.

D. TOOL B: THE VCD FILE ANALYZER
The VCD analysis performs a transformation of the original
VCD file from a time-based view to a signal-based view.
Experimental results presented in [20] and [29] are updated
with VCD files ranging from a few GBytes to TBytes. The
execution time bottleneck, as stated in [29], is always the file
reading from the disk.

Table 4 shows single-point analysis elaboration times
for each stress pattern; the size of input and output files
is reported. Main memory occupation is constant between
the stress patterns, as each signal contains only trivially
copyable elements [38] regarding the analysis; thus, memory
occupation only depends on the signal names and the number
of signals themselves. On the other hand, the output file size
is always constant and directly proportional to the number of
signals in the VCD file.

On the other hand, in Table 5, elaboration times for
multi-point analysis of different stress patterns are presented,
with input and output file sizes and runtime memory usage.

As Table 5 shows, the runtime memory usage is constant
across different stress patterns due to the internal data
structure containing the signals. The output file size is
reduced since the couples are saved as an incremental,
unique index. Regarding the execution time, experimental
results in Table 5 depict the advantages of resorting to

TABLE 6. Profiled execution of virtual node elimination script.

parallel programming for analyzing multi-point metrics in a
reasonable amount of time.

E. TOOL C: LAYOUT-AWARE ELABORATION SCRIPTS
In this phase of the proposed toolchain, a set of scripts
provides layout-awareness capabilities to the entire toolchain.
Consequently, the following experimental results depend on
the analysis of the DUT layout. In the following subsection,
experimental results on the Layout-aware elaboration scripts
are presented in detail.

1) VIRTUAL NODE ELIMINATION
The layout information is extracted, in advance, from the
physical design of the DUT, generating a file that contains
the physical positions of logic gates within the layout.

The aforementioned preliminary step allows refining the
stress metric produced by the VCD analysis tool in such a
way as to correctly consider only physical, implemented logic
gates.

As time and memory usage depend mainly on the output
size of the VCD elaboration the result, this step has a fixed
cost (proportional to the number of signals present in the input
file) for each analyzed DUT as Table 6 shows.

2) TOPOLOGY ANALYSIS
The topology analysis on the layout of the DUT is performed
as a preliminary step of the toolchain to generate all the
required data.

The DUT layout used as a case study can be seen in
Figure 17, where an important concept can be highlighted:
typically, an SoC does not show a uniform distribution of
gates. The differences in the gate density distribution of
the various parts of an SoC are further highlighted in the
Figure 17; a brighter shade of green describes parts with a
higher gate density, while a darker shade of green indicates
low gate density.

Following the aforementioned consideration, in order to
extract the neighbor gates of a given gate for being used in
the toolchain, there exist two different approaches:

• The exhaustive method is based on elaborating the list
of all gates. Each gate is analyzed by comparing its
Euclidean distance with its layout physical position.

• The heuristic method is based on the DBSCAN algo-
rithm to extract the neighbors for a given logic gate by
using as internal metric the Euclidian distance with a
fixed internode distance of 6µm.
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FIGURE 17. Density-colored heatmap for the DUT.

TABLE 7. Comparing the execution time of the exhaustive and the
heuristic approach.

Table 7 compares the execution time of the Exhaustive
method and the heuristic one.

As seen from Table 7, the execution time of the exhaustive
method is 1000 orders of magnitude more than the heuristic
one. This substantial reduction in the execution time allows
for analyzing more complex DUT.

Regarding the exhaustive method, the runtime memory
consumption is stable, and it is less than 4 GBytes due to the
elaboration of a single gate at the time. An important aspect
to mention, rather than the execution time of the heuristic
method is the runtime memory consumption as Figure 18
depicts. Due to the nature of the heuristic method, it can
analyze more than one gate in parallel. Therefore, its memory
consumption is unstable, as seen from Figure 18. The initial
ramp-up is due to the file readingwhere the physical positions
of gates are stored. On the other hand, the peak in memory
consumption is when the DBSCAN starts its computation.
It creates for each gate a cluster, thus the peak in the memory
usage, and it gradually merges neighborhood clusters until a
stable configuration.

Whereas a heuristic method is used, it dramatically relieves
the execution time, but it impacts the accuracy of the analysis
compared to the exhaustive method. Therefore, it is fair to
report the accuracy of the analysis by utilizing a confusion
matrix shown in Table 8.
It can be observed that the heuristic method returns a larger

set of close nodes, i.e., about 30million pairs. On the contrary,
the heuristic method returns 75 million close pairs and misses

FIGURE 18. Runtime memory consumption of the heuristic method.

TABLE 8. Confusion matrix showing the accuracy of the heuristic method
compared to the exhaustive.

almost 1 million far pairs. Overall, the exhaustive and the
heuristic methods discard coherently 200 thousands of pairs.
Therefore, the accuracy of the heuristic method is 95,9%,
which is acceptable for the other analysis.

3) METRICS WEIGHTING
Downstream the topology and VCD analyses, the single or
multi-point metric can be enhanced with layout awareness
capabilities. As for the evaluation of the stress metrics,
experiments have been performed to show how layout
awareness affects the metrics and their computational costs
regarding time and memory consumption.

Table 9 details results starting from the single point metric,
the toggle activity, which is enhanced with layout awareness
coverage, i.e., weighting the metric based on the density
surrounding a given logic gate.

As seen from Table 9, the required execution time and
runtime memory usage remains constant across different
stress patterns. The reason behind the constant values of
memory and execution time is the nature of the input file
containing the list of signals and their toggle activity. Those
files have the same number of signals. Thus the same size and
the script introducing layout awareness in the simple stress
metric is independent of the stress pattern.

On the other hand, Table 10 reports the results on the
multiple-point metric enhanced with the layout awareness.

Table 10 confirms the same results seen in Table 9, i.e., the
execution time and the runtime memory usage are constant
across different stress patterns, and they only depend on the
input file size and its nature.

Furthermore, in order to prove the effectiveness of
layout awareness metrics, Figure 19 visually represents
how the weighted and unweighted activity metrics evolve
concerning the number of applied structural patterns in the
OpenRISC 1200 [18].

VOLUME 11, 2023 105669



F. Angione et al.: Toolchain to Quantify BI Stress Effectiveness on Large Automotive SoCs

TABLE 9. Single point stress metric coverage.

TABLE 10. Multiple point stress metric coverage.

FIGURE 19. Evolution of BI metrics.

When just a few patterns are used, the layout-aware metric
is lower than the unaware one, whereas when more than eight
patterns are applied, the layout-aware metric tends to have
higher values. Consequently, a much more significant part of
the denser areas of the DUT is being covered.

This kind of behavior captures the way the patterns
stimulate the different parts of the DUT. Indeed, with just
a few patterns applied, the stimulation is nicely ‘‘spread’’
across the DUT. On the contrary, when many patterns are
applied, the activity concentrates on the denser parts of the
DUT. In this way, the contribution to the layout-aware metric
tends to increase. Eventually, the layout-aware metric values
exceed those provided by the unaware ones.

F. TOOL D: THE SET COVERING TOOL
The time and memory costs required by the set covering tool
mainly depend on the number of signals analyzed and the
number of input files compared and merged. File reading

TABLE 11. Profiled execution of the set covering tool.

is the slowest step of this stage, whereas analyzing the sets
require fewer resources than the file reading step.

Table 11 shows the memory and time consumption trend
over an increasing number of files of a fixed size of 2.3GB,
performing all the available operations on the tool, which
includes comparing and merging capabilities.

Memory increases proportionally with the number of files
involved. However, the execution time increases only by a
small amount. As more and more files get added, profiling
shows that moving them to the proper data structure is the
most costly operation, with the operation of saving the results.
On the other hand, the output file size is always the same as
the input file.

G. TOOL E: THE HIERARCHICAL ANALYSIS TOOL
In order to analyze the stress pattern and its strength in terms
of coverage in the entities and sub-entities composing the
DUT, a hierarchical analysis is performed.

Table 12 presents a profiled execution of the tool for
a different number of entities for which the coverage is
extracted. Moreover, runtime memory usage and execution
time for different execution is presented, as well as the size of
the output file. Table 12 depicts a constant execution time and
memory consumption independently from the stress pattern.
Therefore, its execution time, output file size, and memory
usage is directly proportional to the number of signals in the
input file, hence, in the DUT.

The high memory consumption is due to the internal data
structure of the tool holding all the information for each entity
within the DUT.

H. TOOL F: THE CHIP-SURFACE STRESS PLOTTER
A plotter tool is used for troubleshooting, visually, the
eventual coverage loss of a stress pattern or showing
weaknesses due to the superimposition of different stress
patterns. A stress-colored heatmap is produced by exploiting
the physical placement of logic gates in the DUT layout.

Table 13 shows the runtime memory usage and execution
time and how they are affected by the resolution of the
image. Regarding the input files, they are most of the same
size (around 2.3 GBytes for the analyzed stress pattern and
2 GBytes for the file containing the physical placement of
gates as coordinates).
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TABLE 12. Profiled execution of Hierarchical analysis tool.

TABLE 13. Profiled execution of chip-surface stress plotter.

Most of the time cost to build images is the file reading,
which, again, it strongly depends on the number of signals
and the number of gates in the DUT.

Upscaling or downscaling the image between resolution
values of 1,000 × 1,000 to 10,000 × 10,000 does not impact
performance as much as the file reading, due to the intrinsic
parallelism of the drawing operation, despite the image
generation being performed on the CPU rather than on GPU.

For example, Figure 22 contains output images represent-
ing the stress coverage from different stress patterns.

In addition, Figure 22 highlights unstressed and stressed
regions for different patterns. Figure 22a depicts a non-
stressed region better strained by the pattern in Figure 22b.
Similarly, the pattern in Figure 22d focuses on a module
not well stressed by the pattern represented in Figure 22c.
On the other hand, the same pattern does not activate enough
memory ports and some functional units, i.e., the upper and
lower left zooms in Figure 22d. Finally, Figure 22e and
Figure 22f show how to adequately stress memory ports and
functional units, respectively.

I. WRAPPING UP THE FLOW
The BI for safety-critical devices includes different patterns,
ranging from structural to functional. Therefore, as repre-
sented in Table 3, single patterns are superimposed and
analyzed to understand their weaknesses and ability. This
activity allows the generation of the stress-colored heatmap
plot for the overall BI phase displayed in Figure 20. From
these images, it is straightforward to distinguish the zones
where the stress level is adequate from those needing
additional patterns (such as the area inside the dotted red
circle).

As pinpointed from Figure 20 and confirmed from the
hierarchical analysis tool (Tool E), an unstressed zone exists
that does not reach an acceptable level of stress coverage.

FIGURE 20. Visualization of the overall stress provided by the
superimposition of all stress patterns.

FIGURE 21. Visualization of the overall stress provided by the
superimposition of all stress patterns, plus the additional functional
stress pattern targeting the identified unstressed module.

Therefore, we develop an additional functional stress pattern
that can provide additional stress as represented in Figure 21.

As shown from Figure 21, the ad-hoc developed functional
pattern stresses the region of interest, effectively increasing
the stress coverage.

V. THE TOOLCHAIN PORTABILITY
This section focuses on the portability of our toolchain
on a different SoC. To provide the effectiveness of the
proposed toolchain on a different SoC from a different family,
in conjunction with STMicroelectronics, we singled out an
SoC with a higher technology node (90nm vs. 40nm of the
other SoC used as a benchmark) without using the new SoC
as a benchmark for the designed toolchain but rather to prove
the easiness of porting the toolchain to a different Soc, from
a different family, and with a different technology node.

A. THE CHARACTERISTICS OF THE NEW SoC
The target device is a 90 nm Automotive SoC [39] belonging
to the SPC56 family, manufactured by ST Microelectronics,
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FIGURE 22. Stress-colored heatmaps in terms of toggle coverage with detailed zoom on some regions. Figure 22a: 32 scan
based ATPG patterns, 22b: 12 Selective ATPG patterns; 22c: 1024 Scan based pseudo-random patterns; 22d: LBIST patterns;
22e: MBIST patterns; 22f: Functional pattern.

105672 VOLUME 11, 2023



F. Angione et al.: Toolchain to Quantify BI Stress Effectiveness on Large Automotive SoCs

TABLE 14. Profiled execution for the VCD Analysis for the single-point
stress metric.

TABLE 15. Comparing the execution time of the exhaustive and the
heuristic approach.

and compliant with the standard ISO26262 ASIL-D. This
device has a single-core 32-bit architecture using the
PowerPC Variable-Length Encoding (VLE) instruction set.
It includes 4 Mbyte of flash memory and 192 Kbyte of
general-purpose SRAM. It contains about 2.7 million logic
gates in the logic parts and about 86 k flip-flops. Therefore,
it constitutes a medium-complexity case study to show the
portability of our toolchain on a different device architecture.
We refer to this device as DUT2.

Regarding stress patterns, the DUT2 is only stimulated by
four functional programs. The RTL and gate-level description
of the DUT2 and the layout are available and accessible to
extract helpful information for the toolchain.

B. THE NEW EXPERIMENTAL RESULTS
Running the toolchain to a different SoC requires a pre-
processing phase. This step automatically extracts valuable
layout information from the floorplan. The floorplan is
generated by a physical design EDA tool. Physical design
EDA tools can save the layout in a Design Exchange Format
(DEF)/Library Exchange Format (LEF) [40]. Those formats
are open specifications for describing the physical layout of
an integrated circuit widely adopted by EDA tools.

More in detail, we first use the floorplan to generate a file
containing the placements of all gates. Then, we use this file
to analyze: the neighbor gates for the multi-point analysis,
the virtual node elimination for linking the logic simulation
to the layout, and the density information for weighting the
stress metrics.

The VCD file generated from the Logic simulation is
based on an IEEE standard [41]; consequently, the VCD
file analyzer does not need any adjustment. Therefore, since
the fundamental input files are based on two widely used
standards and formats, the toolchain can be easily integrated
within every design flow without losing generality.

As reported in Table 14, the analysis time strictly depends
on the input file size, which depends on the number of
signals stored during the simulation. Overall, we have a linear

FIGURE 23. Density-colored heatmap for the DUT2.

FIGURE 24. Visualization of the overall stress for the DUT2.

dependency on the execution time concerning the file size
generated.

Regarding the topology analysis, it is worth mentioning
that since the case study has a minor complexity compared
to the one presented before, as Table 15 shows, it is feasible
to execute an exhaustive topology analysis.

Different technology nodes (in this case 90 nm) and
numbers of gates lead to a different gate density distribution,
as Figure 23 shows.

The same concept can be applied to the chip-surface stress
plotter. Higher technology nodes have a higher distance
between gates. Therefore, bymaintaining the exact resolution
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of the previous case study, the street-colored layout heatmap
is represented in Figure 24.

Compared to the case study analyzed before, memory
usage and execution time are lower due to the reduced
complexity in terms of gates.

The DUT2 has a higher technology node (90nm); con-
sequently, the SoC layout is strongly different, i.e., the
intra-gates distance is bigger, and it has less dense areas
(as well as fewer gates). The technology node impacts all
the layout-aware tools of the toolchain. Regarding the VCD,
since we rely on a commercial logic simulator, it dumps the
VCD according to the IEEE standard. However, the reduced
complexity in terms of logic gates affects only the number of
signals in the VCD, reflecting a reduced file dimension.

VI. CONCLUSION
SoCs continuously grow in size and complexity and require
more efficient and scalable strategies to be designed, tested,
and verified. Unfortunately, recent statistics show that most
SoC designs miss their time-to-market deadlines since
their complexity grow much faster than many testing and
verification strategies [42].

One of the most critical phases in the automotive design
flow is the so-called BI phase and its evaluation [8]. Burn-in
is the process used to stress SoCs before their final test [3].

A crucial aspect when assessing the BI phase is that a stress
pattern, or a set of stress patterns, must stimulate the whole
device uniformly to an acceptable level. Achieving acceptable
stress in the BI phase is essential to exacerbate latent defects
that may arise during later manufacturing test steps to
increase the quality of SoCs. However, stress patterns are
usually retrieved from other manufacturing process steps and
sometimes even from the early steps, such as the verification
phase during the design. Although this approach may speed
up the development of BI stress patterns generation, it may
result in unstressed gates due to the nature of the pattern,
or not considering all the possible working modes, or non-
uniform stress, of a module within the DUT [11].

This article illustrates a flexible, efficient, and scalable
toolchain to effectively evaluate the BI stress efficiency in
integrated circuits.

To summarize, the main characteristics of the proposed
toolchain are the following:

• To overcome the limitations of simple toggle coverage
by generating extended statistics on the average toggle
events and the total toggle events.

• A layout-aware stress metric based on topology infor-
mation (such as gate neighbors) is provided to overcome
problems derived from uniformity and variation in the
device density.

• To superimpose different stress patterns to understand
each pattern’s strengths and weaknesses.

• To improve the designer’s confidence by providing
visualization tools over a stress heatmap over the layout
of the devices. Visually, moving from one plot to

another, even with the human eye, some approaches
stimulate, in green, the part of the device better than
others where it is red. Moreover, it provides per-module/
gate stress coverages.

• To improve the scalability of large devices by drastically
reducing the computation effort, in terms of time and
memory, through parallel techniques, clever software
optimizations, and machine learning techniques. This
way, the computing time drastically shrinks from days
or weeks to just a few hours.

• To enhance the portability for different SoC by extract-
ing layout information.

Nevertheless, even using the incremental superimposition
of different stress patterns, the stress layout heatmap may still
have red stains. For example, on the boundaries of the SoC,
there are analog modules and pads which any stress pattern
could not stimulate. Regarding the Sea of Gates, red stains are
due to the presence of bypassed or unstimulated gates of the
interconnection between components, the presence of timer
modules and sparse logic, which could be safely activated
only by specific functional procedures.

All main steps of the toolchain have been evaluated using
an industrial SoC from the SPC58 family of ST Micro-
electronics. Experimental results show that the proposed
approach significantly reduces the analysis time, and at the
same time, it improves the confidence and accuracy of BI
metrics. In addition, it increases the designer’s confidence
in developing new stress pattern, troubleshooting eventual
coverage-loss problems, and enhancing productivity as a side
effect. In addition, the portability of the proposed toolchain
is validated on a different SoC family, the SPC56 family,
manufactured by ST Microelectronics.
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