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Abstract—This paper presents a framework composed by 

Domain Decomposition Method (DDM) that integrates a local 

mesh refinement scheme based on Huygens’ equivalence principle 

and the integration of multibranch basis functions for the efficient 

analysis of multiscale problems. The proposed method allows the 

improvement of the precision of the solution while the solving time 

is reduced via the decomposition of the problem. 

I. INTRODUCTION 

When dealing with complex real-life problems, 
computational electromagnetic analysis becomes a challenge. 
These structures [1] combine large regions with a small level of 
details and areas with tiny details, like antennas, that need dense 
meshes to properly address the elements' behavior. This gives 
place to multiscale problems, requiring heavy computational 
requirements when using widespread methods, such as the 
surface-integral equation method of moments (SIE-MoM). 

Mesh refinement methods [2,3] constitute an attractive 
approach for this kind of problem. First, the problem is solved 
using an initial mesh, called coarse mesh. Once the initial 
solution is obtained, a process to detect the error over the body 
analyzed is performed, and those regions above a certain 
threshold are refined. The problem is solved again after getting 
the optimized mesh, obtaining an improved solution. 

Despite its suitability for multiscale problems, the overall 
cost of this process is not efficient enough compared to other 
methods. In response, this paper proposes a framework that 
combines Domain Decomposition Methods (DDM) [4] that 
applies Huygens’ equivalence principle to reduce the global cost 
of the mesh refinement process. 

II. PROPOSED FRAMEWORK

The following framework is proposed to perform an efficient 
approach to this kind of problem. First, as in other existing mesh 
refinement approaches, the problem is solved using an initial 
coarse mesh. In this stage, DDM is applied along with Huygens’ 
surfaces enclosing the domains to improve global performance. 
This is because part of the matrix system posed is also used in 
the refinement and final solving stages. These surfaces act as a 
proxy between the encapsulated domain and the rest of the 
geometry, isolating it from the part of the problem that is 
external to the HS and allowing us to tackle the local problem 

without re-computing the couplings of the rest of the problem 
with it when the mesh is refined. 

Once the initial solution is obtained, the accuracy of the 
solution is evaluated locally, and mesh refinement is performed 
to obtain the adapted optimal mesh. The resulting adapted mesh 
integrates multibranch basis [5] functions to improve the 
transition from coarse mesh to fine mesh in those parts that 
require denser mesh. 

At last, the solution of each domain is computed with the 
scheme represented in Fig. 1, expressed in terms of the local 
self-coupling matrix of the refined mesh (in grey), considering 
the global coupling with other domains only once on the right-
hand side. This is done through a straightforward way for the 
part of the body intersected by the Huygens Surface (in red) and 
through the coupling matrix of the outer part of the body with 
the Huygens Surface (in blue) and the coupling of the Huygens 
Surface over the local domain (represented by the gradient arrow 
in blue/grey color). In addition to this, the excitation is also 
added to address the problem correctly.  

Figure 1. Example of an entire body in an environment with electromagnetic 
fields (left) and the isolation of one of its subdomains using Huygens’ 
equivalence principle to describe the external fields (right). 

III. NUMERICAL RESULTS

As a preliminary result of this framework's application, we 
present a PEC cube of 5λ of side divided into eight identical 
domains. The excitation of the problem is an obliquely 
impinging plane wave with a wavelength equal to 1. Figure 2 
shows the initial (left) and adapted (right) meshes. 



 
 Figure 2. 5λ cube divided into eight subdomains with initial mesh (left) and its 
adapted mesh with local refinement scheme (right). 

The superficial electric currents obtained for the adapted 
mesh are shown in Fig. 3. The figure reports the solution 
obtained for the proposed scheme using Huygens’ surfaces to 
perform isolation (left) and the same adapted mesh solved 
globally using MLFMA (right). Both cases show good 
agreement, indicating that the introduction of isolation with this 
method has a limited impact on the accuracy. 

 
Figure 3. Electric currents were obtained for the adapted mesh using the local 
scheme with Huygens’ surfaces (left) and computing the global solution with 
MLFMA (right). 

The convergence times for this problem can be seen in Fig. 
4. In this figure, we represent the solving times for different 
approaches: parallel solution of the refined local domains with 
adapted mesh using Huygens’ surface isolation (first blue-dotted 
line), sequential solution of the refined local domains with 
adapted mesh using Huygens’ surface isolation (second blue-
dotted line), global solution of the adapted mesh with MLFMA 
(red-dotted line) and global solution of the fully refined mesh 
with MFLMA (solid black line, not fully represented). 

 
Figure 4. Total convergence times of the example with different approaches. 

It can be appreciated that globally analyzing the adapted 
mesh, which provides an acceptable accuracy, provides an 
speed-up higher than 4 in comparison to the fully refined mesh. 
At the same time, the application in parallel of the isolation 
through the application of the Huygens’ surfaces to perform the 
analysis locally provides a speed-up higher than 11 in 
comparison to the global analysis of the adapted mesh. The 
combination of both the local analysis with Huygens' surfaces 
and the adapted mesh achieves a total speed-up higher than 50 
in comparison to the fully refined mesh analyzed globally. 

IV. CONCLUSION 

The proposed h-refinement method provides adapted 
meshes that allow accurate solutions with high time-saving. The 
integration of the Huygens’ equivalence principle into the 
proposed framework offers additional time saving, maintaining 
the accuracy of the solution, allowing a local solution of the 
problem. Finally, the integration of multibranch basis functions 
allows improving the transition between coarse and more 
refined meshes limiting the increment needed in the number of 
basis.  
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