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Abstract—An extensive literature exists on the efficient and
accurate evaluation of the double surface integrals that arise
in the Method of Moments. Most papers have focused on the
evaluation of the inner (source) integral with the idea that once
that integral is evaluated, the test (outer) integral’s integrand
is sufficiently smooth that it should be much easier to integrate
numerically. However, that affirmation is not always true. Here,
we propose an integration scheme that improves the numerical
evaluation of the test integral without affecting the treatment
of the source integral. The method is numerically validated for
static and dynamic kernels in the reaction integrals arising in
electric field integral equations.

Index Terms—integral equations, moment methods, numerical
analysis, singular integrals.

I. INTRODUCTION

A cost-effective numerical evaluation of double surface
reaction integrals is required to achieve an accurate solution
of direct or inverse electromagnetic problems using surface
integral equation formulations. The inner integral is commonly
known as source integral, and the outer one is the test
integral. The most common approaches for dealing with the
source integral are the singularity subtraction or singularity
cancellation methods. For singularity subtraction [1]–[3], a
simplified asymptotic form of the integrand is first identi-
fied and subtracted from integrand. The resulting difference
integrand should be less singular than the original, and the
subtracted term should be analytically integrable (or at least
easily evaluated numerically); adding the analytical integral
to the difference integral restores the original value of the
integral. On the other hand, for singularity cancellation [3]–
[7], variable transforms are chosen whose Jacobian cancels or
regularizes any singularities. More recently, a paper has con-
sidered the possibility of using both methods to bring together
the advantages of both previous approaches [8] handling the
singular behavior that arise when evaluating the magnetic field
integral equation (MFIE). As can be seen in the literature,
the effort to evaluate the double integrals has been focused
on the efficient evaluation of the source integral [1]–[7] and
simply assuming that for the test integral any singular behavior
has been smoothed by the source integral, making the test
integral relatively easy to integrate numerically. In cases where

the source and test domains share points in common, this
affirmation does not hold, as shown in [9].

Here, we focus on the numerical evaluation of the outer test
integral that arises in the reaction integrals. We will use the
vertex functions described in [10] to discern the behavior of
the test integral integrand. The vertex functions are element-
independent functions describing the (possibly) singular be-
havior of potentials or their gradients near a given vertex or
edge for constant or linear sources on a planar element. Once
the behavior of the vertex functions is understood, we can
design an efficient quadrature scheme for the test integral.

II. VERTEX FUNCTION

The evaluation of the electromagnetic interaction between
a pair of triangles in the Method of Moments (MoM) leads to
the evaluation of the double surface integral∫

S

∫
S′

F (r, r′) dS′ dS, (1)

where typically F (r, r′) takes the form

F (r, r′) = t(r)g(r, r′) b(r′), (2)

and where t(r) is either a scalar or a vector component of a
testing function, b(r′) is similarly defined for a basis function,
and g(r, r′) is either a scalar or a scalar component of a
vector or dyadic Green’s function, with a O(|r− r′|−1

) or
O(∇|r− r′|−1

) singularity.
We assume the inner integral in (1) may be evaluated to

sufficiently high accuracy so its influence is dismissed. Its
singular behavior follows from is static (k = 0) form. This,
in terms, can be represented as a sum over vertex function
pairs, with the superposition describing the essential behavior
of the various potentials (scalar and vector) involved. For a
case of a pair of triangles with a common vertex, the static
vertex potential functions for the common vertices associated
with a pair of adjacent source triangle edges for a constant
(unit) source density are given by

I l3V1
=R1 sinα

[
cosβ sinh−1 (cotα)

−| sinβ| tan−1

(
cosα+ cosβ

sinα+ | sinβ|

)]
, (3)



Fig. 1. The vertex function of each adjacent vertex-edge pairs shows a
singular behavior close to the edge that defines the function (thicker lines)
and smoother behavior far from the edge (thinner lines). Dashed lines are not
in the test integral domain.

where R1 is the distance from the obs. point to the vertex,
α is the angle between the edge l3 and R1 and β is the
angle between the two triangles (or the extended planes in
which they lie). Analyzing (3), we find that the vertex function
has a linear dependence with distance R1 and exhibits a
singular behavior as α → 0. The remaining vertex func-
tions, though with more complex expressions, exhibit similar
singular behavior, that is, a linear dependence with respect
to the distance to the vertex and a singular behavior with
respect to angle. Figure 1 shows graphically this behavior,
where the vertex functions exhibit more nearly- singular along
the thicker lines (with dashed lines indicating points outside
the test integral domain). Considering this behavior, we can
better handle the singularities if we concentrate more sample
points close to the common vertex as well as closer to the
source triangle. The vertex functions also reveal a logarithmic
angular singularity, hence the proposed scheme uses MWR
[11] quadrature with logarithmically weighted sample points
for the angular integration and a parameterization of the edge
opposite the common vertex to form an angular scheme. Using
these points as endpoints, we now parameterize radially from
the common vertex also using the logarithmic MWR scheme.
This procedure is described graphically in Fig. 2. The new
quadrature points ξi can be mathematically expressed as

ξi = V T
1 (1− ξrj ) + V T

2 (ξrj − ξrj ξ
a
k) + V T

3 (ξrj ξ
a
k) (4)

Fig. 2. Procedure to obtain the proposed scheme, a) parametrize the edge
oposite to the common vertex, b) define radial integration dimension, c)
parametrize radial integration dimension, d) obtain quadrature points.

Fig. 3. Near-field convergence of test integrals. Inset: Orientation of a pair
of triangle elements in space.

where V T
i=1,2,3 are the vertices of the test triangle and ξrj and

ξak are the 1-D MRW quadrature points used to parameterize
the radial and angular directions, respectively.

III. PRELIMINARY NUMERICAL RESULTS

To demonstrate the accuracy of the proposed scheme, we
analyze the convergence behavior of the test scalar potential
integral in (1). We consider a pair of triangles with a common
vertex as shown in the Fig. 3 inset. We compare the proposed
method with the standard Gauss-triangle (GT) quadrature
scheme [12]. The reference for each of the plot is evaluated
with the highest number of points we have available. In the
case of GT, we do not have more than 166 points so the
behavior over that number of points is estimated with the plot
trend. The proposed method reaches machine precision at a
faster rate in the medium accuracy range than GT.



IV. CONCLUSION AND PERSPECTIVES

Preliminary results show better accuracy and efficiency
of the proposed method with respect to the GT quadrature
scheme.With small modifications, the method can also be
applied to test triangles with a test triangle edge in common
with the source triangle and self-term triangles for all the
reaction integrals arising in the electric field integral equation
and magnetic field integral equation.
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Technique for High-Order Polynomial Vector Basis Functions on Planar
Triangles,” IEEE Transactions on Antennas and Propagation, vol. 54,
no. 1, pp. 42–49, Jan. 2006.

[3] L. Li and T. F. Eibert, “Radial-Angular Singularity Cancellation Trans-
formations Derived by Variable Separation,” IEEE Transactions on
Antennas and Propagation, vol. 64, pp. 189–200, Jan. 2016.

[4] M. A. Khayat, D. R. Wilton, and P. W. Fink, “An Improved Transfor-
mation and Optimized Sampling Scheme for the Numerical Evaluation
of Singular and Near-Singular Potentials,” IEEE Antennas and Wireless
Propagation Letters, vol. 7, pp. 377–380, 2008.

[5] F. Vipiana and D. R. Wilton, “Numerical Evaluation via Singularity
Cancellation Schemes of Near-Singular Integrals Involving the Gradient
of Helmholtz-Type Potentials,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 3, pp. 1255–1265, Mar. 2013.

[6] M. M. Botha, “A Family of Augmented Duffy Transformations for Near-
Singularity Cancellation Quadrature,” IEEE Transactions on Antennas
and Propagation, vol. 61, pp. 3123–3134, Jun. 2013.

[7] ——, “Numerical Integration Scheme for the Near-Singular Green
Function Gradient on General Triangles,” IEEE Transactions on
Antennas and Propagation, vol. 63, no. 10, pp. 4435–4445, Oct. 2015.
[Online]. Available: http://ieeexplore.ieee.org/document/7160690/

[8] J. Rivero, F. Vipiana, D. R. Wilton, and W. A. Johnson, “Hybrid
Integration Scheme for the Evaluation of Strongly Singular and Near-
Singular Integrals in Surface Integral Equations,” IEEE Transactions on
Antennas and Propagation, vol. 67, no. 10, pp. 6532–6540, Oct. 2019.

[9] F. Vipiana, D. R. Wilton, and W. A. Johnson, “Advanced Numerical
Schemes for the Accurate Evaluation of 4-D Reaction Integrals in the
Method of Moments,” IEEE Transactions on Antennas and Propagation,
vol. 61, no. 11, pp. 5559–5566, Nov. 2013.

[10] D. R. Wilton, J. Rivero, W. A. Johnson, and F. Vipiana, “Evaluation of
Static Potential Integrals on Triangular Domains,” IEEE Access, vol. 8,
pp. 99 806–99 819, 2020.

[11] J. Ma, V. Rokhlin, and S. Wandzura, “Generalized Gaussian
quadrature rules for systems of arbitrary functions,” SIAM J. Numer.
Anal., vol. 33, no. 3, pp. 971–996, 1996. [Online]. Available:
http://www.jstor.org/stable/2158491

[12] L. Zhang, T. Cui, and H. Liu, “A Set of Symmetric Quadrature Rules
on Triangles and Tetrahedra,” Journal of Computational Mathematics,
vol. 27, no. 1, pp. 89–96, 2009.


