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Abstract
In the era of Big Data and electric vehicles growth by market, data-driven methodologies assume a crucial role to create
valuable information. The focus is on supporting the decision-making process for the development of an accurate charging
infrastructure. Forecast analysis allows prediction of energy demand over the network. This supports growing trends
with a consequent increase in customer satisfaction. By anticipating potential breakdowns due to infrastructure overloads,
maintenance costs are reduced. In this paper, we focus on analyzing charging sessions data together with external data
(weather and population information and energy/fuel prices) collected from different sources. The proposed methodology,
named GEORGE (enerGy dEmand fOrecasting foR charGing infrastructurE), offers a building-blocks based approach for
the monthly energy demand forecasting. The approach is both generalisable and data-specific. We discuss the results of a
classification learning approach to predict a belonging range of kwh for a charge point. In particular the most promising model
has good performances in predicting high utilization and is more advantageous to support the company’s decision-making
process. Many possible developments are discussed to improve the prediction.
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Introduction
In order to ensure transport emissions reduction in Eu-
rope and to meet, for example, the Paris Agreement, [1],
and Agenda 2030 objectives, [2], many goals need to be
achieved over the next twenty to forty years. Two of the
17 goals, set by the Agenda, to be completed by 2030 at
European level are: the fight against climate change and
the creation of sustainable communities and cities. These
objectives include the following targets. Integration of
national policies, strategies and plans against climate
change and reduction of negative environmental impact
of cities with regard to air quality. Transport sector in
general and circulation of cars in particular directly in-
fluence greenhouse gas emissions, being responsible of
12% of total emissions at European level, [3]. Thus, the
promotion of e-mobility through an interconnected and
optimized network of charging stations will help to re-
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duce 𝐶𝑂2. Moreover, the overproduction of energy due
to a disproportionate installation of charging stations
will decrease, [4]. A relevant player in this scenario is
F2M eSolutions that designs innovative technologies to
lead the transition to electric mobility. They offer charg-
ing solutions and services that will make this change
intuitive and seamless. Additionally, with the anticipa-
tion of widespread adoption of Electric Vehicles (EVs) in
Europe, both public and private developers of charging
infrastructure heavily rely on proper data collection and
usage to make informed decisions, [5]. Electric mobility
is currently a topic of great interest for Europe and for
researchers. Many studies focus on how to take advan-
tages from data to support Low-Carbon Road Transport
Policies in Europe, [6]. Both the development of charging
infrastructures, [7] and the promotion of e-mobility to
improve the user experience, [8] depend on an accurate
utilization of data. Finding a general method to exam-
ine the impact of external factors on the energy demand
for charging infrastructure in Italy is currently an unre-
solved topic in the literature. From a business side, this
paper aims to answer to two main necessities. First, sup-
port and improve the management of charging stations
through a forecast of monthly energy demand. Second,
let the client to identify targeted interventions in specific
areas. These actions can be supported by interpretable
and accessible results that allow instant interaction with
data. To reach the goals we used F2M eSolutions’ charg-
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Figure 1: GEORGE Building Blocks.

ing session historical data integrated with external data
sources. Data collection and data preprocessing were
the most time-consuming activities. The collection goes
from the company’s internal data (charge point ID, City,
Country, kwh, . . . ) to datasets containing information
about the population, weather data, gas oil/lpg/fuel and
energy prices and characteristics of the territory, collected
from third parties. Different data science models like
Random Forest, [9], and XGBoost, [10], have been trained
to determine the approach that better represents the phe-
nomenon under analysis. In the considered case study,
we followed a classification approach as it was the most
consistent with business needs: predicting the kwh range
of monthly energy demand. In fact, unlike a daily fore-
cast, it provided a general overview of the infrastructure
status. This approach showed good results in predicting
the observations belonging to the class with the high-
est demand, which was the major focus from a business
side. The final output is thus able to support business
decisions in order to achieve a more efficient charging
infrastructure usage. The use case on which the project
has been developed is the 2022 Italian scenario. The pa-
per is organized as follow. The first section is composed
by a brief literature review. It introduces the state-of-art
on the promotion and support of e-mobility through data.
Section two details the methodology, from the prepro-
cessing step to the evaluation of the predictive results.
Section three shows the results obtained by using the
proposed methodology on Italian use case. Finally, sec-
tion four summarizes the content of our work, providing
conclusions and suggestions for future improvements.

1. Literature Review
Nowadays, collecting vast amounts of data has become a
widespread practice in many scenarios. If done properly,
it can be a powerful tool that can offer significant bene-
fits to companies. With the growing market of electric
vehicles, interconnection and data transfer technologies,

many research orientate the analysis on data-centric ap-
proaches.

Studies cited in this section can be grouped in four
macro-categories: (i) application of data science to the
world of EVs, (ii) support for the transition to electric , (iii)
monitoring of infrastructure utilisation through Key Per-
formance Indicators (KPIs) and (iv) study of the exogenous
factors that affect energy demand.

Applications of data science methods to electric sce-
nario already include a wide spectrum of supervised
and unsupervised learning approaches. Several works
have already been proposed in this context. [5] analyses
the economic benefits of applying data-driven models,
i.e. data mining, and machine learning techniques, in a
business context. Paper [11] provides a comprehensive
overview of use cases that link this scenario to data sci-
ence, through machine learning algorithms. The authors
emphasise the scientific interest of the study in the field
of e-mobility. A data-driven approach to extract useful
information from electric vehicle charging events is also
suggested in paper [12]. In this case, a framework was
developed to characterise the demand for electric vehicle
charging in a specific geographical area. A key step in
this methodology is the one of data cleaning and for-
matting that is defined specifically for dealing with EVs
charging data.

Investing into realistic technological solutions, em-
powering citizens and aligning action in key areas, i.e.
industrial policy, ensure a fair transition to electric. The
authors of [13] and [8] focus their studies on predicting
charging point occupancy, to support this shift. In [13]
the aim is to understand whether the city of San Diego
has sufficient charging points to meet the energy demand
of EVs through a quantitative and qualitative analysis. In
[8], the goal is to support users in planning their charging
processes. In particular, they provide a double approach:
classification to predict individual charging point occu-
pancy and regression to predict overall charging station
occupancy both in public and a workplace site. [14] com-



pares performances of two different approaches. The
first one based the installation of new charging points
on a request by an electric vehicle driver. The second
one chooses for the placement of a CP near strategic lo-
cations, considering the decision of a local government.
Results show that not one rollout strategy is favorable
over the other. Moreover, the best strategy needs to be
chosen according to municipal objectives, the maturity
of the market and the technologies available.

The large amount of data collected brings with it the
need to understand how to extract the most meaning-
ful knowledge. Monitoring properly constructed KPIs
usually allows to achieve the goal. [15] presents a study
developed using data from the vast public charging infras-
tructure of the Dutch metropolitan area. The researchers
want to identify different charging patterns between five
areas and relevant related KPIs. Thanks to forecasting
and simulation models, they answer significant ques-
tions like where, when and what type of new charge
points should be installed. In the development of the
study, [7], the authors propose a web-based dashboards
to explain particular well- or ill-performing charging
stations. The platform aims to support the projected
growth of electric mobility through the extraction of rel-
evant knowledge. Performances of the existing charging
infrastructure, measured by KPIs developed, drive the
know-how.

Many studies confirm that exogenous factors influence
charging behaviors. Just to name a few, [6] presents a
data processing platform TEMA (Transport tEchnology
and Mobility Assessment) designed for supporting EU
transport policies through big data. This study shows
the implementation of a method capable of managing a
significant amount of data from various sources. Thanks
to data-driven model, TEMA is able to recognize subtle
connections and hidden patterns, performing customized
analyses. Many governments started to base their charg-
ing network definition on data-driven roll-out strategies.
The study [1] identifies and interprets the most impactful
characteristics that are correlated with energy consump-
tion. Authors offer useful perspectives on what data need
to be utilized to create prediction models and to guide the
planning and implementation of charging infrastructure.

Literature shows that several prediction models enable
relevant knowledge to be extracted from the data. Most
of the studies are very objective-specific and do not allow
generalization. Main contributions brought by our study
are:

1. bring the analysis to Italian level. The growing
circulation of electric vehicles in Italy allows to
start analysing the Italian scenario. Until now
this panorama is little mentioned in literature;

2. introduce a Sliding Window based approach to
align the input structure to the final need;

3. propose a general approach that can be expanded,
thanks to the integration of external data sources,
to investigate the influence of different factors on
future behaviors.

2. Methodology
Here we present the GEORGE methodology, whose
building-blocks representation is shown in Figure 1. It
combines a solid theoretical background with a necessity
to solve real business needs. It uses historical data to
monitor charging stations and develop forecasting mod-
els to predict the monthly energy demand. It consists
of a KDD process (Knowledge Discovery process from
Data) adapted to business needs: support more efficient
development and utilization of the charging infrastruc-
ture.
GEORGE consists of four building blocks:

• data preprocessing step to clean and merge data
from different sources;

• data transformation block to adapt the input data
structure to the final purpose;

• predictive analytics step to derive the most suit-
able descriptive model to perform accurate pre-
dictions;

• evaluation and interpretation of results to assess
the goodness of the model through specific met-
rics.

In the following sub-sections, we reported a detailed
description of each building block.

2.1. Data Preprocessing
Data preprocessing usually is the first step in the KDD
pipeline because prepares data for analysis in the most
suitable way. For internal data, the json files recorded for
each charging sessions were stored in AWS (Amazon Web
Services) s3 bucket. Data was transformed into tables via
Athena, an analytics service of AWS, downloaded and
saved locally as csv files. The external data was extracted
from open source data base in csv format. All input data
was processed through python code using Anaconda
environment (e.g. Spyder). GEORGE preprocessing was
customized in three specific steps: (i) Data Ingestion and
Cleaning, (ii) Data Integration from different sources and
Alignment to the same granularity, (iii) Data Aggregation
and Creation of new KPIs.

The objective of the Data Preprocessing was to have
two macro categories of features:

Monthly Based Features (named Type 1 in the follow-
ing) that are information available on a monthly basis
and include: charging session information, weather data



and energy, gas oil, fuel and lpg prices.

Social-Economic and Geographical Features (named
Type 2 in the following) refer to economic and social
aspects of the population and to characteristics of the
territory. This set includes, for example: average age
of the population, employment rate and population density.

Since environmental factors can influence energy de-
mand, we included external data in addition to charg-
ing behavior information. The comparison with domain
experts led to the following considerations. External
temperatures can affect performance of electric vehicles
batteries and therefore the number of charging sessions.
Moreover, energy prices have direct influence on the de-
mand. On the other hand, since an electric car owner also
owns a traditional vehicle, we decide to include gas oil,
fuel and lpg prices. Social-economic and geographical
factors are able to model the wealth of the population and
therefore, indirectly, the ownership of electric vehicles.

Data ingestion for Type 1 features originated from var-
ious sources:

• F2M eSolutions, for charge points and charging
sessions data;

• Meteo.it, for weather information;
• Italian Government web site, for prices trends.

and for this reason they had different granularities:

• geographical level

– state, region, city, longitude and latitude
for charge points and charging session;

– region and province for weather informa-
tion;

– state for prices;

• time level

– year/month/day hour:minutes:seconds for
charging sessions;

– year/month/day for weather information;
– month for prices.

The step of data cleaning was managed in a specific
way for each data source. In presence of internal anomaly,
e.g., transmission or estimation error, the corresponding
data was removed.
In case of external information not available, different
strategies were implemented like replace the missing
values with the closest geographical and temporal infor-
mation.

During data integration, different data sources were
aligned to the same granularity using supporting datasets,
e.g., for geographical mapping.

Once, the collections had the same granularity we
proceeded with the aggregation and definition of new

KPIs. For each couple (𝑖, 𝑗) = (𝑐ℎ𝑎𝑟𝑔𝑒𝑝𝑜𝑖𝑛𝑡,𝑚𝑜𝑛𝑡ℎ),
with at least one charging session, we computed the
following metrics through a monthly level aggregation:
total number of sessions, total session time, kwh provided
and main statistics for weather values.

From them we computed the following additional indi-
cators, average session time and charge point Occupation
Rate:

ave. sess. time [min]𝑖𝑗 =
tot. session time𝑖𝑗 [min]

tot. #of sessions𝑖𝑗

OR [%]𝑖𝑗 =
tot. session time𝑖𝑗[min]

tot. #of days𝑗 × 24× 60[min]
× 100

From Type 2 features prospective, the preprocessing
was easier. Data ingestion source included only Italian
National Institute of Statistics (ISTAT) and data granu-
larities were at Italian region and annual level. It was
not possible to decrease the aggregation data level and
therefore this set of information was simply added to the
dataset, skipping step (ii) and (iii).

2.2. Data transformation
Data transformation step can be essential for the success
of the entire KDD process and it is typically very project-
specific.

In order to forecast energy consumption using histori-
cal data, we decided for a Sliding Window based approach.
This method uses a moving window to analyse sequential
data and predict future values over a time period. The
approach is justified by the capacity of historical trends
to affect current needs. We defined two variables, one to
identify the time window width, X, and the other one to
define the time horizon for the prediction, or time forecast
window, Y.

Data transformation process consisted of four steps to
modify dataset structure, plus a preliminary step for the
encoding of all nominal variables.

Step 1 We divided dataset into smaller ones each with
information of historical data and prediction window, e.g.
𝑋 + 𝑌 months. 𝑋 months, then named as 𝑀 −𝑋 , . . . ,
𝑀−1, are for the construction of the time window while
the last month, 𝑀0, refers to the time horizon.

Step 2 Not all charge points had data about the entire
time window. In absence of useful information to recon-
struct the lack of charging session data, we decided to
fill missing information with zeros. Thus, we modelled
in the same way, a hypothetical failure of charge points
and lack of charging sessions due to other reasons.

Step 3 Separately, each subdataset has been trans-
formed to obtain the Sliding Window based structure.
Figure 2 the configuration with a time window of two
months and a time horizon of one month.



Step 4 Finally, all sub-datasets were merged together,
resulting in a single dataset where rows contained pre-
dictors for 𝑋 + 𝑌 consecutive months.

Figure 2: Sliding Window based approach for one Charge
Point (CP) with 𝑋 = 2 months of time window and 𝑌 = 1
month of time horizon. Type 1 predictors represent monthly
based features while Type 2 predictors social-economic and
geographical features.

2.3. Predictive analytics
To obtain the data-driven model that best represented the
analysed phenomenon, GEORGE required the validation
of different algorithms. Therefore, the optimal model
was the one with the best combination of performance
and ability to provide results.

Monthly energy forecasting could be approached using
two different strategies: punctual or categorical value
forecasting. While the first one is more specific, it would
require a large amount of data to obtain accurate models.
Therefore, a multi-class classification task would be of
wide interest on several case studies where, especially
initially, data might be limited. In fact, from a business
side was definitely more functional to have a range of
kwh rather than a point value.

We defined classes based on different levels of per-
centiles, a statistical approach that grants balanced classes.
This procedure allowed the identification of different
amounts of load for the charging infrastructure.

GEORGE integrated various forecasting models using
Sliding Window based structure described above. Meth-
ods chosen are tree-based: Random Forest (for details,
see [9]) and XGBoost (eXtreme Gradient Boosting), see
[10]. These are two examples of ensemble learning tech-
niques. In particular, Random Forest combines multiple
decision tree models to improve general performance.
One of the advantages is that this technique has higher
accuracy than single decision trees. Additionally it is
interpretable, robust to noise and outliers. Then, the sta-
tistical framework of XGBoost casts boosting as a numer-
ical optimization problem. The objective is to minimize
model loss by adding weak learners using a stochastic
gradient descent-like procedure.

Models operated on historical data, corresponding to
predictors of Type 1 and Type 2 for 𝑀 −𝑋 , . . . , 𝑀 − 1
and 𝑀0, to forecast the energy demand for 𝑀0, which

changes for each subset of charge points as shown in
Figure 2.

Then, through feature selection phase, conducted by
correlation analysis, Recursive Feature Elimination with
Cross Validation (RFECV ) and domain expert support,
only the optimal set of predictors was identified to give
rise to the best model. Usually, selecting a restricted set
of top predictors helps to reduce noise in the model and
makes result interpretation more straightforward and
effective for business experts.

2.4. Evaluation and Interpretation
Model evaluation is an essential part to understand relia-
bility of prediction against real value.

In this study, identifying charging points that had a
growing trend and whose demand might overload the
network was the focus of the analysis. Particularly, we
were interested on avoiding misclassification of charge
points that belonged to high demand class. Otherwise
this underestimation of the load might lead to potential
risk of breakage in the infrastructure. In this sense, we
were primarily interested in reaching high values for
metrics of this class, named H in the following.

To extract the best combination of model-purpose
GEORGE integrated stratified-cross validation technique
and, in case of limited data, the leave-one-out method.
The latter technique consists of using a subset of data for
training the model and one to validate it, applying then
the learning process for each subset, [16]. For LOOCV
(Leave One Out Cross Validation) the test set consists of
one observation.

For the classification task, chosen for business need,
model performance was estimated based on misclassifi-
cation. Below the metrics selected to evaluate multi-class
classification models on class H, [17]:

Precision

𝑝𝐻 =
#of obs. correctly classified in class 𝐻

total #of obs. assigned to class 𝐻
.

Recall

𝑟𝐻 =
#of obs. correctly classified in class 𝐻

total #of observations belonging to class 𝐻

F1 score for class H is the harmonic mean of the pre-
cision and recall

𝐹1𝐻 =
2 * 𝑝𝐻 * 𝑟𝐻
𝑝𝐻 + 𝑟𝐻

The interpretation of model performances allowed to
re-evaluate some previous steps such as feature selection.



The trade off between results and characteristics of
models (such as interpretability) determined the choice
of the final model to be applied to real time data.

In the following section we present the preliminary
results of the optimal model for a use case in Italy.

3. Preliminary results
An accurate manipulation of the huge amount of data
that are available today is essential in order to make
informed decisions. In this scenario the Energy Demand
Forecaster for Italian charging infrastructure can assume
a relevant role.

The goal was to create a model, based on temporal
aggregation of input data, able to predict the monthly en-
ergy demand for single charge point. At the same time we
were interested on understanding which factors assumed
relevant role in the prediction and their interpretation.

The business value is to support informed decisions to
help the network optimization. Moreover, adjusting the
load of the charging infrastructure can help in avoiding
overloads and breakages.

3.1. Data
In this section we analyse the results of a case study
in Italy for which we had data collected from April to
October 2022. On the territory the highest percentages
were 20% in Piedmont and Lombardy and 10% in Lazio
and Emilia-Romagna.

Dataset contained data such as spatial, temporal and
energy with different granularities: state, region, city, lon-
gitude and latitude for the geographical level and year/-
month/day hour:minutes:seconds for charging sessions
for the time level.

Principal information recorded in the internal data
were: charging session duration, geographical localization,
kwh provided during each sessions. Some charge points
characteristics like if it was subject to any restrictions, i.e.
was located in a parking station or it was not open 24/7,
were also included in the dataset.

On a monthly basis the mean of kwh provided was
about 14.000 kwh for a mean of 500 session per month.

3.2. Data Preprocessing
To obtain the best results from predictive model, we
had to understand and structure our data precisely. We
started with data manipulations steps.

We exploited cases and limit setting, obtaining more
than 3.000 charge points with at least one session and
about 10.000 charging sessions. Through the aggrega-
tion and transformation steps we structured the dataset
to develop the forecasting model. After the evaluation of

different widths for the time window 𝑋 and with the sup-
port of domain experts we set 𝑋 = 2 while for the fore-
cast window 𝑌 = 1. This confirms that energy demand
is linked to historical data by a short-term relationship.

The final dataset was thus composed by predictors for
three consecutive months of all the charge points. Two
months populated the data history while the kwh of the
last one was identified as target variable.

3.3. Predictive analytics and evaluation
Since different algorithms were integrated into GEORGE
we performed various experiments, leveraging LOOCV,
to compare performances.

We recall that, from a business side, it was more func-
tional a classification approach that predicted the range
of kwh for each charge point rather than a punctual value.

For each classification algorithm, we evaluated the
number of classes, the best subset of features, the size of
time window and the impact of hyperparameters. The
best model-purpose combination was obtained for the
Random Forest with 3 classes, 37 predictors summarized
in Figure 3, a 2-month data history and the following
hyperparameters:

n_estimators = 250

max_depth = 109

max_features = 18

min_samples_leaf = 9

min_samples_split = 7

Where n_estimators is the number of trees in the for-
est, max_depth is the the maximum depth of each tree,
max_features is the maximum number of features to con-
sider when splitting a node, min_samples_leaf is the the
minimum number of samples required in a node to be at
a leaf and min_samples_split is the minimum number of
observations in any given node in order to split it.

The model showed high precision, recall and F1 score
in the third (or H ) class, resulting thus more performing
on forecasting high usage:

𝑝3 = 0.66

𝑟3 = 0.66

𝐹13 = 0.65

Type 2 predictors, such as population density, having
annual granularity at Italian region level, were informa-
tion too general to affect a specific prediction. For this
reason, these kind of predictors do not result in the table,
Figure 3.



Figure 3: Best subset of predictors for classification task.

Figure 4 shows rank of the most relevant features for
the prediction based on decrease in Gini’s impurity in-
dex 1. It confirms the strong link between the Energy
Demand Forcasting and trend of previous months as well
the occupancy rate and charging sessions duration.

Figure 4: Top 10 important features for Random Forest based
on impurity.

4. Discussion
Through GEORGE methodology, based on a solid theo-
retical background and motivated by concrete business
needs, we succeeded in bringing tangible benefits to cus-
tomer and company. In particular, it made possible the
development of an interpretable and generalisable esti-
mator for forecasting the energy demand of the charging
infrastructure. The deployment of the model then enables
the methodology to be applied to everyday scenario. The
real time data stream is processed by GEORGE which
extracts relevant patterns. The results are summarised in
a customised dashboard that can monitor the state of the
network and guide the operators’ interventions based on
informed knowledge. Figure 5 summarizes key steps of
the process on real-time data stream. This can not only
1Gini’s impurity index calculates each feature importance as the sum
over the number of splits (accross all tress) that include the feature,
proportionately to the number of samples it splits.

improve the management of the charging network, but
also the user experience of electric vehicle owners.

Figure 5: Go-live Model, GEORGE implementation on real-
time data stream.

For the specific use case, the biggest effort was on the
prediction of class with the highest values of kwh. Cor-
rect classifications allow to prevent potential breakages
due to an overload of the infrastructure.

Although it is a preliminary work, it is promising be-
cause it shows good results for the prediction of the third
class. In addition, thanks to the intuitive interpretation,
results can be easily shown in an interactive dashboard
which can display the history and the forecast for each
charge point in navigable map.

Applying GEORGE to Italian’s charging infrastructure
we can support business decisions with success. Among
various benefits, the more relevant are:

• network monitoring based on continuous collec-
tion of data;

• promotion of underutilized areas to exploit the
infrastructure;

• load monitoring preventing potential breakages
and consequent spread of moneys for mainte-
nance;

• implementation of prompt actions guided by pre-
dictive analysis;

• support of growing trend in high demand areas,
increasing customer satisfaction.

Although GEORGE is a general-purpose methodology,
the feature modeling step can not be fully automated.
This phase must be modeled according to the final goals,
with specific and constant support from domain experts.
In addition, understanding which features affect the pre-
diction is an essential aspect to target informed decisions,
and it needs conscientious supervision.

GEORGE works with different type of data and this
allows future developments of the analysis exploring as-
pects of the phenomenon as deep and specific as the
business needs. It is possible to analyse the influence of
population behaviors and characteristics. On the other
hand, deeply understanding the impact of weather on
battery performance and its consequence on charging
demand assume an important role. In this sense, we can



leverage GEORGE to address different use cases opti-
mally, adjusting the blocks of the process based on new
needs.

Together with the evolution of an electric reality, re-
search progresses and so future directions of this study
can be explored.

Possible improvements are:

1. develop an interactive dashboard to monitor the
network and support informed decision through
the visualization of both historical and forecast
trends;

2. increase data history and quality. All the models
that we applied are data driven so more quality
data will definitely let the model to understand
better the relationship between input and output.
Decrease granularity, i.e., for the Type 2 predic-
tors including information at municipality level,
will help to explicate the dependence of energy
demand on social-economics habits. Considering
other type of external data may help to discover
more hidden patterns, i.e., traffic information and
electric vehicles growth by market for sure im-
pact the forecast of energy demand. The first may
support distribution of load through the infras-
tructure based on pick hours. The latter intro-
duces dependencies on past and, possibly, future
sales trend;

3. implement a hierarchical approach that includes
a three-class classification model and a regres-
sion model for each class to also have a point
prediction for each charge point.

In conclusion, improving the dataset is desirable to
achieve a prediction based on a larger time forecast win-
dow, from a month to 3/6 months, to support the opti-
mization of charging points installation plans.
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