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A B S T R A C T   

The tunnel segmental lining is a type of support structure that is very complex and widely used in tunnel 
excavation. Of particular importance is the behaviour of circular joints in contact with adjacent rings. 

The shear behaviour of the circular joint is studied in detail in this paper. Particularly, bolts, which are widely 
used to connect the adjacent segments, play a fundamental role in the mechanical behaviour of the circular joints 
and therefore of the tunnel segmental lining. 

A new FEM model has been developed to be able to analyse the shear deformation of bolts, when two adjacent 
segments show a relative transversal displacement. The model allows to consider also the interaction of the bolt 
with the walls of the hole. It was possible to obtain the trend of the shear stiffness of the circular joint as the 
relative transversal displacements varied. 

A successfully comparison of the calculation results with the laboratory measurements was obtained. Some 
suggestions are proposed in order to enhancing the practicality of the model. The proposed numerical model is a 
useful calculation tool capable of correctly evaluating the mechanical behaviour of the circular joints and 
therefore to correctly represent them during the design stage.   

1. Introduction 

Adopting TBM to construct the tunnel, the ground is supported by 
the precast concrete segments connected by bolts. Therefore the tunnel 
lining is composed of segments and joints (including transverse joints 
and longitudinal joints); furthermore, the joints consist of bolts and the 
concrete body (joint influenced zone) which is the edge part of the 
segments having bolt holes inside (Fig. 1) (Do et al., 2015; Zaheri et al., 
2020). 

Due to the weaker stiffness of joints than the one of the segmental 
lining, the deformation magnitude of the joints is larger than the one of 
segments along the longitudinal direction, and the relative movement of 
the adjacent rings caused by external loads leads to a decrease of the 
stressed zone size and to an increase of the stress values, which results in 
a stress concentration and eventually a lining damage. Liu et al. (2020b) 
reported that the leakage inside a lining leads to the settlement of the 
segmental lining, which causes a relative dislocation of adjacent rings 
and also a sever spalling along the circumferential joint. Huang et al. 
(2020) described an incident of Tianjin metro (China), where the sand 
and water flow into the tunnel along the 42 mm drilling hole of the steel 
segments used for a crossing passage, led to cracks and spallation along 

the circumferential joint. In these two cases, joints are the vulnerable 
zone compared with segments when the large deformations of the 
segmental lining happen, and an induced high stress concentration 
along the joint can be dangerous. More specifically, the load on the 
segmental lining during the tunnel construction is generally unevenly 
distributed, and also the movements of the lining along the longitudinal 
direction and the transversal direction are presented in that period 
(Chen et al., 2018; Feng et al., 2022; Gil Lorenzo, 2019; Han et al., 
2023a; Oreste et al., 2021; Zhou and Ji, 2014). Therefore, it is important 
in the design stage to develop an evaluation of the induced transient 
stress concentration in the segmental lining, using specific methods 
considering the changeable contact among segments and the bolt pres-
ence along the circumferential joints. 

When evaluating the segment behaviours, the analytical method 
based on some parameters is widely used beside the experimental 
method and the empirical one. The analytical method includes the 
analytical computing, 3D and 2D numerical modelling. A numerical 
model can be able to calculate the stress and strain distribution along the 
longitudinal and circumferential direction of a segmental lining (Chai-
panna and Jongpradist, 2019; Dastjerdy et al., 2018; Do et al., 2016; Do 
et al., 2013; Wang et al., 2021). When a lining is analysed, a new model 
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has to be built, and the time-consuming of the model building and of the 
calculation of the results restricts its widespread use. 

With reference to the analytical computing, the beam theory is 
usually adopted to evaluate the deformations of a segmental lining along 
the longitudinal direction (Huang et al., 2015; Huang et al., 2022; Liang 
et al., 2020; Liang, 2019; Liang et al., 2017; Shi et al., 2022; Wu et al., 
2015; Wu et al., 2018). Based on the simplification of the joint behav-
iour, these theories can be divided into two categories: beam-spring 
model (Koizumi et al., 1988) and continuous beam model (Shiba 
et al., 1988). In the beam-spring model, the segmental rings are 
simplified as a short beam and the joints are represented by the axial, 
shear and rotational springs. Because it is difficult to determine the 
stiffness of the springs, the beam-spring model is used limitedly. For the 
continuous beam model, the Euler-Bernoulli beam and the Timoshenko 
beam are adopted to analyse the longitudinal deformation of the 
segmental lining. In order to obtain the analytical solution, the contin-
uous beam model simply consider the lining ring and the joint as an 
equivalent continuous beam, and it is difficult to display the difference 
between the lining ring deformation and the joint deformation. How-
ever, when the dislocation and the damage of a segmental joint have to 
be analysed, the behaviour of the circular joint is important. Combining 
the advantages of the numerical model and the beam theory, the nu-
merical beam-spring method is used to evaluate the lining ring defor-
mation (Do et al., 2014; Oreste, 2007; Oreste et al., 2018) and the lining 
deformation along the longitudinal direction (Han et al., 2023a). On 
these analytical models, the stiffness of the joint is the key parameter: it 
includes both the bending stiffness and the shear stiffness. 

For the bending stiffness, the relative rotation between the adjacent 
surfaces of joints will determine the contact area and the stress trans-
mission between the segments. Shiba et al. (1988) analysed the defor-
mation and the stress along the joint when the normal force is equal to 
zero, and developed the bending stiffness equation considering the joint 
opening rotation. Some authors (Cheng et al., 2021; Huang et al., 2015; 
Liao et al., 2008; Wu et al., 2015; Yu et al., 2019) developed models by 
considering the influencing length of the joints. Li et al. (2019) carried 
out an indoor experiment to test the bending stiffness with different 
normal (longitudinal) force acting on the circular joint, and obtained a 
bending stiffness equation which depends on the normal force and the 
moment. Geng et al. (2019) and Wang et al. (2022) divided the defor-
mation of the joint into different patterns based on the joint opening 
magnitude, and obtained an equivalent bending stiffness under the 

application of the normal force. Based on the finite element theory, Han 
et al. (2023b) developed a bending stiffness equation for the joint 
element on the basis of the transformed area method, which can be used 
to calculate the bending stiffness and the deformation state of a joint 
(from the joint closed to the open case) under a normal force. 

Compared with the bending deformation, the shear deformation is 
more complex and insufficient attention paid to it in the scientific 
literature. Based on the test results, the dislocation of a joint under the 
shear force can be divided into three phases: static friction phase, bolt 
(and concave and convex tenon) sheared phase, damage phase (Cheng 
et al., 2021; Liu et al., 2018; Zuo et al., 2022). Due to the scarcity of 
available trials and specimens, the numerical modelling of a circular 
joint was applied to analyse the joint shear deformation behaviour (Li 
et al., 2014; Wang et al., 2021). Furthermore, an equivalent shear 
stiffness equation was developed with the segmental lining deformation 
along the longitudinal direction. When the Euler–Bernoulli beam theory 
is used to analyse the segmental lining deformation, the shear defor-
mation is ignored (Talmon and Bezuijen, 2013). Afterward, using the 
Timoshenko beam theory for the analysis of the segmental lining 
deformation, the equation of the equivalent share stiffness is developed 
simultaneously (Cheng et al., 2021; Liang et al., 2017; Liu et al., 2021a; 
Wang et al., 2022; Wu et al., 2015). Based on the results of Wu et al. 
(2015) and Liang et al. (2017), reducing the shear stiffness of the joint 
leads to an increase of the dislocation and a decrease of the joint opening 
and of the segment rotation. Therefore, an accurate evaluation of the 
joint shear stiffness is very important for the analysis of the segmental 
lining behaviour. Some aspects must be considered in the three main 
phases of the shear dislocation of a circular joint: firstly, the friction is 
influenced by the surface smoothness of the segments and by the normal 
force; secondly, the shear deformation of the bolting system depends on 
the bending stiffness of each bolt, the concrete foundation modulus and 
the strength of steel and concrete; thirdly, the shear deformation of the 
tenon has a significant relationship with the tenon sizes and its strength. 

In this paper, focusing on the bolt deformation during relative dis-
placements of segments, the shear stiffness of the circular joint is 
investigated. Based on the beam-spring method, a new FEM model was 
developed to evaluate the shear deformation of the straight bolt and the 
influence of the concrete foundation modulus. Furthermore, using the 
same FEM model the curved bolt was also studied with its influence on 
the shear stiffness of the joint. Regarding the shear deformation of each 
bolt, four different combinations of the constraints on the bolt endpoint 

Fig. 1. The components of segmental lining joints.  
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were considered and discussed. The influences of the bolt pretension and 
of the gap between the bolt and the hole wall on the maximum shear 
force and the tensile force in the bolt were analysed, and the stresses on 
the material are compared with the yielding strength of the steel and 
concrete. Finally, the calculation results obtained by the proposed model 
were compared successfully with available laboratory test results in the 
scientific literature. Some suggestions are finally proposed for the 
segmental lining design based on the considerations that emerged from 
the study. 

The proposed calculation model can therefore be very useful in the 
design phase of sizing the segmental lining, allowing the circular joint to 
be represented in the numerical simulations with an appropriate shear 
stiffness. This stiffness, in fact, constitutes a fundamental parameter to 
be able to study in detail the behavior of the segmental lining and to 
evaluate stresses and deformations that develop inside it. 

2. Shear stiffness evaluation and equations available in the 
scientific literature 

2.1. Short review of researches about the shear deformation and the 
damage of circular joints 

Based on the forms of joint, the circular joint can be divided into flat 
joint and tenon joint. The flat joint is composed of the bolt and the shear 
force is undertaken by the bolt (Fig. 2a). The tenon joint is composed of 
the bolt and the tenon (including the concave tenon and convex tenon, 
Fig. 2b, 2c, 2d). The tenon joint can be further divided into the 
distributed tenon joint (Fig. 2b & 2c) and the continuous tenon joint 
(Fig. 2d) based on the distribution of the tenon along the circumferential 
joint. 

For the tenon joint, the main factors which influence the shear 
deformation of the joint include three parts: the friction force between 
segments, the shear deformation of the tenon, the shear deformation of 
the bolt. The friction force between the segments depend on the normal 
force and the friction angle of the joint, and is the main reason to restrict 
the relative movement of segments on the joint before the contact of the 
tenons and the bolts with the hole walls due to the gaps between the 
concave tenon and the convex one and between the bolt and the hole 
wall (Liu et al., 2018; Zuo et al., 2022). When the shear force on the joint 
is larger than the static friction force, the tenon and the bolt will resist 
the relative displacement and undertake the shear force. Compared with 
the indoor test, the numerical model can show the stress of the tenon and 
the bolt separately. Zhang et al. (2020) and Zhao et al. (2022) analysed 
the stress state of the continuous tenon and the distributed one using a 
numerical model. The maximum shear force of the tenon and the cor-
responding relative displacement are shown in Table 1. From Table 1 it 
is possible to note how the continuous tenon reaches the maximum shear 
force with a small relative displacement which is about 0.1–0.3 mm, 
while the distributed one reaches the limit stress state when the relative 
displacement is about 1 mm. Furthermore, the damage location of the 
continuous tenon results to be always the concave tenon, which may 
produce the breakage of the concrete. The distributed tenon shows more 
ductility than the continuous one. After reaching the limit stress state, 

the shear force of the tenon decreases, and the opening and rotation of 
the joint is observed from the indoor tests (Liu et al., 2021b; Zuo et al., 
2022); it means that the residual shear force of the tenon will continue to 
influence the shear deformation of the joint, and the shear force un-
dertaken by the tenon will be released and transferred to adjacent bolts. 
Although the shear force on the joint is undertaken by the bolts and the 
tenons after the friction phase, the behaviour and contribution of bolts 
and tenons are not clear. 

2.2. Short review of solutions for equivalent shear stiffness in the scientific 
literature 

In order to analyse the tunnel shear deformation along the longitu-
dinal direction, Wu et al. (2015) developed an equivalent shear stiffness 
equation (Eq. (1)) based on the displacement of the segmental lining 
along the joint under the application of a shear force. 

(k • G • AJ)eq = ξ
ls

(
lb

m•kb•Gb•Ab
+ ls − lb

ks•Gs•As

) (1)  

where (k • G • AJ)eq is the equivalent shear stiffness of joint, ls is the 
length of the segmental lining ring, lb is the length of longitudinal bolts; 
m is the total number of bolts on the joint; kb is the shear coefficient of 
the bolt based on the Timoshenko beam assumption, and it is equal to 
0.9 for a circular section, ks is the one of the segmental lining ring, and is 
equal to 0.5 for the annular cross section; Gb is the shear modulus of the 
bolt, Gs is the one of the ring; Ab is the transverse area of the bolt, As is 
the one of the ring; ξ is a modifying factor. 

The Eq. (1) is widely used to calculate the tunnel shear deformation 
based on the Timoshenko beam theory (Liang et al., 2017; Liu et al., 
2020a; Liu et al., 2021a; Shi et al., 2022; Yu et al., 2022). 

On the basis of experimental results, Cheng et al. (2021) divided the 
shear deformation of a joint into three stages: a static friction stage (I), a 
gap close stage (II) and a bolt (or tenon) shear deformation stage (III). 
Considering the influence of the rubber gaskets on the joint, the stiffness 
of the stage I is neglected, and Cheng et al. (2021) derived the shear 
stiffness for the stage II (Eq. (2)) and stage III (Eq. (3) for the bolt shear 
deformation alone and Eq. (4) considering also the tongue and groove 
tenon shear deformation). 

(k • G • AJ)eq,II =
ls

(
λ•lb

(k•G•AJ )g
+ ls − λ•lb

ks•Gs•As

) (2) Fig. 2. The component of the segmental lining joint. Key: a) Flat joint; b) The 
concave tenon of the distributed tenon joint; c) The convex tenon of the 
distributed tenon joint; d) Continuous tenon joint. 

Table 1 
The relative displacement of the concave and convex tenons and the reached 
maximum shear force in numerical model on segment joints (data obtained from 
published results).  

Maximum 
shear force 
(kN) 

Corresponding 
displacement 
(mm) 

Damage 
location 

Type of the 
tenon joint 

Reference 
from  

322.93  0.21 concave 
tenon 

Continuous 
tenon 

Zhang et al. 
(2020)  

193.17  0.27 concave 
tenon 

Continuous 
tenon 

Zhang et al. 
(2020)  

147.58  0.11 concave 
tenon 

Continuous 
tenon 

Zhao et al. 
(2022)  

361.79  0.95 concave 
tenon & 
convex 
tenon 

Distributed 
tenon 

Zhao et al. 
(2022)  

364.36  1.02 concave 
tenon & 
convex 
tenon 

Distributed 
tenon 

Zhao et al. 
(2022)  

128.47  0.96 concave 
tenon & 
convex 
tenon 

Distributed 
tenon 

Zhao et al. 
(2022)  
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(k • G • AJ)eq,III,bolt =
ls(

λ•lb
m•kb•Gb•Ab

+ ls − λ•lb
ks•Gs•As

) (3)  

(k • G • AJ)eq,III,boltandtenon =
ls

(
λ•lb

m•kb•Gb•Ab+kg•Gg•Ag
+ ls − λ•lb

ks•Gs•As

) (4)  

where (k • G • AJ)eq,II is the equivalent shear stiffness of joint for the 
stage II, (k • G • AJ)eq,III is the equivalent shear stiffness of joint for the 
stage III; λ represents the influenced length factor of the joint for the 
segmental lining; (k • G • AJ)g is the shear stiffness of the joint during the 
gaps closing on the stage II; kg, Gg and Ag are the Timoshenko shear 
coefficient, the shear modulus and the shear area of the groove, 
respectively. 

The equations of Wu et al. (2015) and Cheng et al. (2021) are based 
on the assumption that the shear force is undertaken by the bolt, and are 
derived by considering that the shear stiffness of the joint is equal to the 
one of the bolt. These simple equations clearly describe the weaker shear 
stiffness of the joint. However, due to the existing of the gap between the 
bolt and hole wall, there is a shear deformation phase that the bolt can 
move without restricted force from the hole wall; additionally, because 
the stiffness of the concrete is smaller than the one of steel, which can be 
found based on the elastic modulus of the bolt and the concrete 
(Ebolt≫Econcrete), the concrete has a more significant deformation when 
the bolts and the concrete hole wall squeeze each other. In short, there is 
a greater shear deformation of the joint when considering the gap and 
the concrete compression deformation, and for this reason the shear 
stiffness of the circular joint between the segmental rings is generally 
overestimated, which is confirmed on Sect. 3.2. 

By analysing the deformation of the bolt in the hole, Han et al. 
(2023b) developed a calculation procedure for the equivalent shear 
stiffness evaluation considering the bolt as a cantilever beam (Fig. 3). 
However, due to the real shape of the bolt, the geometry of the bolt hole 
and the construction loads that are different among the tunnel projects, 
this model is not able to express the bolt shear deformation in all the real 
cases. 

2.3. Short review of researches about bolt action in the scientific literature 

The joint deformation due to the bolt action requires the analysis of 
the interaction between the bolt and the bolt hole. Many researches 
focused on the bolt deformation in rock joints and the steel deformation 
in the concrete, and analysed the dowel action of the bolt on the joint 
(Ma et al., 2018; Moradi et al., 2012; Oreste, 2009; Oreste and Cravero, 
2008; Ranjbarnia et al., 2014; Sørensen et al., 2017). 

The dowel action of the bolt is classically described based on the 
theory of a beam on elastic foundation (BEF model) (Fig. 4). Based on 
the results of the Ma et al. (2018), the shear deformation of the bolt 
depends on the mechanical properties of the concrete and the bolt (Eq. 
(5) and Eq. (6)). 

Q0 =
k

2 • t
• v0 (5)  

t =
̅̅̅̅̅̅̅̅̅̅̅̅

k
4E • I

4

√

(6)  

where Q0 is the external shear load on the bolt at the point of the joint, v0 
is the displacement of the bolt at that point; k is the spring stiffness of 
concrete which is able to describe the reaction force of the concrete on 
the bolt, which is equal to the concrete foundation modulus kc multiply 
the bolt diameter k = kc • db, E is the elastic modulus of the bolt material 
(steel), I is the inertia moment of the bolt cross-section depending on the 
bolt diameter, I = π • d4

b/64, db is the diameter of the bolt. 
Considering the influence of the concrete, three critical aspects need 

to be analysed: the concrete foundation modulus, the ultimate load ca-
pacity of the concrete, and the bolt yielding and failure criteria. 

For the concrete foundation modulus, Soroushian et al. (1987) based 
on laboratory experiments suggested to adopt the following equation: 

kc =
127 • f 0.5

cc

(db)
2
3

(7)  

where fcc is the compressive strength of concrete (MPa), the unit of db is 
mm. 

Maekawa and Qureshi (1996) obtained a similar equation for con-
crete, which is modified by Moradi et al. (2012): 

kc =
150 • f 0.85

cc

db
(8) 

Vintzēleou and Tassios (1986) studied the damage model of concrete 
under the dowel action of the bolt; two different models were consid-
ered: Model A) bolt yielding and concrete crushing; Model B) concrete 
splitting. Based on test results, the damage model depends on the 
thickness of the concrete which is compressed by the bolt (when the 
concrete thickness is larger than 6–7 times the bolt diameter, the failure 
model is the Model A; otherwise, the failure model is the Model B). 
Regarding the Model A, Vintzēleou and Tassios (1986) obtained the 
maximum compressive stress in the concrete by applying a concentrated 
load on an infinite cohesive material. Regarding the Model B, Sor-
oushian et al. (1986) tested the bearing strength of the concrete when 
the concrete begins to crack. 

Under the contemporary application of the axial force (NL), the 
bending moment (ML) and the shear force (VL), the criteria of the 
determination of the bolt condition include two main methods. The 
main difference between them is the combination among the ratios of 
the axial force, bending moment and the shear force with the corre-
sponding ultimate values, respectively, 

(
NL/Nf

)
, 
(
ML/Mf

)
, 
(
VL/Vf

)
, 

where Nf is the ultimate axial force, Nf = fy • Ab, Mf is the ultimate 
moment, Mf = fy • d3

b/6, Vf is the ultimate shear force, Vf = fy • Ab/
̅̅̅
3

√

Fig. 3. The model of shear deformation of the bolt in the bolt hole and the mechanical model assumed by (after Han et al., 2023b).  

Fig. 4. A calculation model of the bolt action considering the elastic foundation 
(Winkler approach) to simulate the interaction with the bolt hole (after Ma 
et al., 2018). 
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(based on Von-Mises criteria), fy is the ultimate axial stress of bolt. (Ma 
et al., 2019; Maekawa and Qureshi, 1996). 

The first type of the failure criteria considered the combination of the 
axial force and the shear force: 
(

VL

Vf

)2

+

(
NL

Nf

)2

= 1 (9) 

The second one is obtained on the basis of the bending moment 
together with the axial force: 

ML

Mf
+

(
NL

Nf

)2

= 1 (10) 

Based on the Von-Mises criteria, the failure criteria is defined 
considering the bending moment, the shear force and the axial force 
(Maekawa and Qureshi, 1996) in the following way: 
[

ML

Mf
+

(
NL

Nf

)2
]2

+

(
VL

Vf

)2

= 1 (11) 

However, there is a great difference between the bolt inserted in the 
segmental lining joint and the case of an embedded bolt, such as the bolt 
inside a rock mass or the bolt inside the concrete. For the convenience to 
install the bolt in the segmental lining joint, a gap between the bolt and 
bolt hole has to be foreseen, and the wrapping force in the bolt can be 
neglected. Furthermore, the shape of the bolt and the load condition are 
not uniform, such as for a straight bolt, a curved bolt, and a inclined bolt 
(Fig. 5). 

3. Analysis in the detail of the bolt deformation under a relative 
transversal movement between lining rings and the effects of the 
bolt-concrete contact 

Considering the bolt shape, the simplest case of a straight bolt is 
firstly analysed to evaluate the main influencing factors on the me-
chanical behaviour of the bolt in the circular joint. 

3.1. Shear deformation model of the straight bolt 

The locations of the straight bolt and the bolt hole before and after 
the lining dislocation are shown in Fig. 6a, where the potential 
compressive zones on the hole wall (contact zone) are marked by a red 
line. Due to the existence of the gap between the bolt and bolt hole, the 
compressive zone is not present along the whole bolt. For the interaction 
between the bolt and the bolt hole, Winkler springs are used to represent 
the reaction force of the compressed hole wall, and the spring works 
only when the bolt transversal displacement is larger than half of the gap 
(Fig. 6b), defined as the difference between the hole diameter and the 
bolt diameter. 

Using the Finite Element Method (FEM), the bolt can be regarded as a 
combination of beam elements. Due to the symmetry of the problem 
with respect of the joint, only one half of the bolt is simulated in the 
model. 

Based on the Timoshenko beam theory and the FEM, the stiffness 
matrix of bolt element [kb]i can be obtained: 

[kb]i =
E • I

l3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12
1 + Φ

6l
1 + Φ

6l
1 + Φ

4 + Φ
1 + Φ

l2

−
12

1 + Φ
6l

1 + Φ

−
6l

1 + Φ
2 − Φ
1 + Φ

l2

−
12

1 + Φ
−

6l
1 + Φ

6l
1 + Φ

2 − Φ
1 + Φ

l2

12
1 + Φ

−
6l

1 + Φ

−
6l

1 + Φ
4 + Φ
1 + Φ

l2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)  

where l is the length of the bolt element, Φ is the ratio between the 
bending stiffness and the shear stiffness of the bolt, and can be calculated 
by the following equation: 

Φ =
12 • (E • I)

(kb • Gb • Ab)•l2 (13) 

The sub matrix 
[
ki,a
]

of the matrix [kb]i is used to express the first four 
element of matrix, 

[
ki,a
]
=

E • I
l3

⎡

⎢
⎢
⎣

12
1 + Φ

6l
1 + Φ

6l
1 + Φ

4 + Φ
1 + Φ

l2

⎤

⎥
⎥
⎦ (14) 

Together with the sub matrix 
[
ki,b
]
, 
[
ki,c
]
, 
[
ki,d
]
, the matrix [kb]i can be 

written as follows: 

[kb]i =

[
ki,a ki,b
ki,c ki,d

]

(15) 

Therefore, the global matrix of the bolt [K] can be obtained based on 
the local matrixes of each element, assembling them along the diagonal: 

[K] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1,a k1,b 0 ⋯ 0 0
k1,c k1,d + k2,a k2,b ⋯ 0 0
0 k2,c k2,d + k3,a ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ kn− 1,d + kn,a kn,b
0 0 0 ⋯ kn,c kn,d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16) 

Furthermore, the external nodal forces vector can be represented by 
the nodal displacements vector and the global matrix: 

[F] = [K] • [S] (17)  

where 
[F] is the vector of the nodal forces, [F] =

[ F1 F2 F3 F4 ⋯ Fn Fn+1 ]
T; Fi (i = 1, 2, 3, ⋯, n + 1) are the 

external forces on nodes which include the transversal force Vi and the 
bending moment Ri of node i, Fi = [Vi Ri ]

T. 
[S] is the vector of the nodal displacements, [S] =

[ S1 S2 S3 S4 ⋯ Sn Sn+1 ]
T; Si (i = 1,2,3,⋯,n + 1) consists of 

the transversal displacement vi and the rotation angle θi of node i, Si =

[ vi θi ]
T. 

When considering the interaction between the bolt and the concrete 
hole, an adding term [Kc]i,a is supplemented in the global stiffness matrix 
[K] along the diagonal due to the reaction force of the hole wall produced 
by the bolt transversal displacement, (Oreste, 2007): 

Fig. 5. The connection types with bolts between segments in a circular joint of the tunnel segmental lining. Key: a) Straight bolt; b) Curved bolt; c) Inclined bolt.  
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[Kc]i,a =

[
kc • lav,i • db 0

0 0

]

(18)  

where lav,i is the average length of the elements bordering the node i; kc is 
influenced by the compressive strength of concrete and the diameter of 
the bolt based on Eq. (7) and Eq. (8) (He and Kwan, 2001; Matsunaga 
et al., 2021; Moradi et al., 2012; Sørensen et al., 2017); Eq. (7) is adopted 
in this paper, and the influence of concrete foundation modulus on the 
shear stiffness of joint is discussed on the next section. Whether the re-
action springs work depends on the transversal displacement of the 
nodes in the bolt on the cross section of bolt hole. When the nodes in the 
bolt reach to the hole wall, an additional force Fi,a should be added to Fi 

correspondingly, because an extra reaction force is added to the right 
side ([K] • [S]) of Eq. (17) based on Eqs. (16) and (18), which is equal to 
the spring stiffness multiply by half of the gap (the value is negative 
when the node move downward (Fig. 6)): 

Fi,a = ±kc • lav,i • db • dgap/2 (19)  

where dgap is the gap value, and is equal to the difference between the 
bolt hole diameter and the one of bolt. 

Since the deformation of the bolt and bolt hole on both sides of the 
joint is symmetrical, the moment in the bolt on the joint is equal to zero, 
and the shear force Vapply is applied on the midpoint A (Fig. 6b), where 
VA is equal to the total shear force Ftotal divided by the bolt number m, 
VA = Ftotal/m. The type of constraint at the endpoint O (Fig. 6b) in-
fluences significantly the bolt deformation (the effects of the constraints 
are discussed in the next section). 

Based on the shear deformation model (Fig. 6b), the equivalent shear 
stiffness of the circular joint can be obtained by the following equation: 

(k • G • AJ)eq =
m • ΔVA • Lb

2 • ΔvA
(20)  

where vA is the transversal displacement in the midpoint node A, vA =

vn+1, m is number of the bolts. 

3.2. Analysis of the critical parameters that influence the behaviour of the 
bolts in circular joints 

Based on a real case (Zuo et al., 2022), the straight bolt deformation 
is calculated under the application of a shear force on the circular joint 
of the segmental lining. The assumed diameter of the bolt is 30 mm and 
its length is 0.52 m. 16 bolts are located around the circumferential 
joint. The mechanical parameters of the bolt are: 206000 MPa and 0.3 
for the steel elastic modulus and Poisson’s ratio. The shear stiffness of 
the bolt is 49.64MN. The elastic modulus of concrete is assumed 34500 
MPa, and the Poisson’s ratio is 0.167. The gap between the hole wall and 
the bolt is 5 mm.  

(1) the bolt deformation and the forces distribution along the bolt 
and the effect of the constraint type at the endpoint O 

Due to the presence of the nut and the plate at the endpoint O, three 
different movement types may be observed. Therefore, the application 
of the three different constraints on the endpoint O are considered: no 
transversal displacements and no rotations (v = 0, r = 0), no rotations 
and transversal displacements free (r = 0), no constraints at the 
endpoint O (free). The transversal displacements, rotations, shear forces 
and moments along the bolt are shown in Fig. 7 to Fig. 10 when the total 
shear force acting on the circular joint is 5MN (the shear force acting on 
each bolt is 0.3125MN). The bolt is divided in the numerical model into 
30 elements. 

Due to the movement of the bolt in the transversal direction 
(perpendicularly to the bolt axis) near the endpoint O and the midpoint 

Fig. 6. The bolt deformation under the application of a shear force on the circular joint. Key: a) bolt deformation in the hole; b) assumed mechanical model of the 
bolt deformation and the interaction bolt-hole. 
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A, the hole wall is compressed (bolt goes into contact with the hole 
wall). Due to the type of constraint at the endpoint, the compressed hole 
wall zones are different: for v = 0, r = 0 constraint type the bolt nodes at 
the contact are 24–31, which is the node number from 0 on endpoint O 
to 31 on the midpoint A; for r = 0 constraint type are 1–7 and 25–31; for 
free constraint type are 1–6 and 24–31. From Fig. 7 it is possible to see 
how the transversal displacements of the bolt near the endpoint O can 
have a great difference on the basis of the type of constraint, while they 
are similar near the midpoint A. The maximum value of the shear forces 
in the bolt is reached at the midpoint A (Fig. 8). The ratio between the 
applied shear force on the circular joint (in the midpoint A) and the 
obtained transversal relative displacements of segments in the same 
point (obtained by the transversal displacement of the bolt in point A) 
permits to obtain the shear stiffness of the circular joint. 

Rotations of the bolt (Fig. 9) show an increasing trend from the 
endpoint O to the midpoint A. The moments increase from the endpoint 
and reach a negative peak value at a certain distance from the midpoint 
A (Fig. 10). The constraints have a significant influence on the value of 
rotations and moments: the constraint type v = 0, r = 0 has the 

minimum value of the rotation at the midpoint A among the three 
constraint types, but it has the maximum positive moment at the 
endpoint (Fig. 10). 

In order to know the relationship among the shear force acting on the 
circular joint, the relative transversal displacement of the lining rings 
(which is equal to 2 times the bolt displacement at the midpoint A) and 
the shear stiffness of the circular joint (calculated by Eq. (20)), the 
graphs of Figs. 11 and 12 are shown. 

The shear force is very small when the relative transversal 
displacement is lower than the gap between the hole wall and the bolt, 
and it increases noticeably after the gap. Although the differences of the 
shear force in Fig. 11 are small among different constraints, the shear 
stiffness shows an obvious difference (Fig. 12). Due to the large degrees 
of freedom of the system when the relative transversal displacement of 
segments is smaller than the gap, the equations with the constraints 
types of r = 0 and free cannot be solved, and only the one with the v =

0, r = 0 constraint type can be calculated (Figs. 11 and 12). 
The shear stiffness has a rapid increase when the relative displace-

ment is larger than the gap. When the relative transversal displacement 

Fig. 7. Transversal displacements of the bolt along its axial direction under the application of a shear force (transversal force) of 0.3125MN in the midpoint A on the 
circular joint. The dotted lines allow to identify the zones near the endpoint O and the midpoint A where the contact between the bolt and the hole wall is reached in 
the case of constraint type free. 

Fig. 8. Shear force of the bolt along its axial direction under the application of a transversal force of 0.3125MN in the midpoint A on the circular joint. The dotted 
lines allow to identify the zones near the endpoint O and the midpoint A where the contact between the bolt and the hole wall is reached in the case of constraint 
type free. 
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is larger than 10 mm, the values of the shear stiffness of the circular joint 
tend to be the same varying the type of constraint. 

Based on Eq. (1), the shear stiffness (49.64 MN) of the circular joint 
results to be overestimated with respect to that one that can be obtained 
by the detailed analysis shown in this section.  

(2) Concrete foundation modulus 

Based on Eq. (7) and Eq. (8), the concrete foundation modulus kc are 
obtained, and are equal to 74.87 MPa/mm (Eq. (7)) and 96.15 MPa/mm 
(Eq. (8)), respectively. The comparison between the shear stiffnesses 
calculated from these different kc values are shown in Fig. 13. 

From Fig. 13 it is possible to see how the increase of the concrete 
foundation modulus causes the improvement of the shear stiffness of the 
joint when the bolt reaches the contact with the hole wall. The results 
shows that the consideration of the contact between the bolt and the 
hole wall is very important for the determination of the shear stiffness of 
the segmental lining joint; on the other hand, it is proved that the con-
crete foundation modulus is the key parameters to resolve the shear 
stiffness of the joint. From Eq. (7) and Eq. (8), the concrete foundation 
modulus is influenced by the compressive strength of the concrete and 
the diameter of bolt. Although the concrete foundation modulus is very 

important, there is a few tested results in the literatures, where Sor-
oushian et al. (1987) test the value for the conventional concrete, and 
Khazaeeu and Ghalehnovi (2018) test the one for the ultra-high per-
formance concrete (UHPC). From the experimental results of Soroushian 
et al. (1987), the empirical equation (Eq. (7)) is widely used by the re-
searches (Caggiano et al., 2012; El-Ariss, 2007; He and Kwan, 2001; 
Prates Aguiar and Barreto Caldas, 2022; Sørensen et al., 2017). This 
paper focus on the development of an evaluation method for the shear 
stiffness of joint, and the Eq. (7) is adopted. However, a more detailed 
evaluation for the concrete foundation modulus based on a series of the 
experimental results is significant and valuable. 

Furthermore, in order to improve the joint shear stiffness and reduce 
the dislocation between the adjacent segmental rings, a high strength 
concrete or a special structure with a high concrete foundation modulus 
around the bolt hole can be adopted; experimental tests should be 
developed in order to understand the effective improvement in kc and in 
the shear stiffness of the joint for each special structure foreseen for this 
purpose. 

Fig. 9. Rotations of the bolt along its axial direction under the application of a transversal force of 0.3125MN in the midpoint A on the circular joint. The dotted lines 
allow to identify the zones near the endpoint O and the midpoint A where the contact between the bolt and the hole wall is reached in the case of constraint type free. 

Fig. 10. Moments of the bolt along its axial direction under the application of a transversal force of 0.3125MN in the midpoint A on the circular joint. The dotted 
lines allow to identify the zones near the endpoint O and the midpoint A where the contact between the bolt and the hole wall is reached in the case of constraint 
type free. 
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4. The effect of the geometry and shape of the bolt on the 
mechanical behaviour of the circular joint 

The shape of the bolt is not always straight (Fig. 5); inclined bolts and 
curved ones are widely used in tunnel engineering (Feng et al., 2018; Liu 
et al., 2020c). Therefore, the model which can be used to calculate the 
shear deformation of a curved bolt needs to be developed to be able to 
analyse the actual shape of the bolt. 

Although the shape of the bolt and the bolt hole is symmetrical, the 
curved bolt is not symmetrical after its deformation, and the total bolt 
(from node O to node B) needs to be simulated in the model (Fig. 14). 
Based on the model of Fig. 14, the shear force can be obtained when the 
right segment develops a transversal displacement vseg. 

Since the local stiffness matrix is more conveniently based on the 
local Cartesian reference system and the global matrix is generally based 
on the global one, a transformation of the reference system is necessary. 
The element stiffness matrix on the global Cartesian reference system is 
represented by the following equation:  

where C is cosαi, S is sinαi, αi is the angle between the bolt element and 
the horizontal axis, it also represents the angle between the local Car-
tesian reference system and the global one (Fig. 15). 

The sub matrix 
[
Ki,a
]

of the matrix [Kb]i is used to express the first 
nine elements; 

[
Ki,b
]
, 
[
Ki,c
]

and 
[
Ki,d
]

can be obtained by the same way. 

[
Ki,a
]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C2 •
EA
l
+S2 •

12EI
(1+Φ)l3 CS•

EA
l
− CS•

12EI
(1+Φ)l3 − S•

6EI
(1+Φ)l2

CS•
EA
l
− CS•

12EI
(1+Φ)l3 S2 •

EA
l
+C2 •

12EI
(1+Φ)l3 C •

6EI
(1+Φ)l2

− S•
6EI

(1+Φ)l2 C •
6EI

(1+Φ)l2
(4+Φ)EI
(1+Φ)l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22) 

The global matrix [K]g can be derived based on the element stiffness 
matrix positioned along the diagonal of the matrix: 

[K] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1,a k1,b 0 ⋯ 0 0
k1,c k1,d + k2,a k2,b ⋯ 0 0
0 k2,c k2,d + k3,a ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ kn− 1,d + kn,a kn,b
0 0 0 ⋯ kn,c kn,d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23) 

The external force on the node can be represented by the nodal 

displacements and the global matrix: 

[F]g = [K]g • [S]g (24)  

where 

[F]g is the matrix of the nodal force, [F]g =

[ F1 F2 F3 F4 ⋯ Fn Fn+1 ]
T; 
[
Fj
]

(i = 1,2,3,⋯,n + 1) are the 
submatrix of the external forces on j th nodes which include the force 
FX,j along the X-axis, the force FY,j along the Y-axis and the bending 
moment FZ,j of node j on the global Cartesian reference system, 

[
Fj
]
=

[
FX,j FY,j FZ,j

]T. 
[S]g is the matrix of the nodal displacements, [S]g =

[ S1 S2 S3 S4 ⋯ Sn Sn+1 ]
T; 
[
Sj
]

(j = 1, 2, 3, ⋯, n + 1) 
consist of the displacement SX,j along the X-axis, the displacement 
SY,j along the Y-axis and the rotation angle SZ,j of node j on the global 
Cartesian reference system, Sj =

[
SX,j SY,j SZ,j

]T. 

Let 
[
Kj
]

represent the submatrix along main diagonal on Eq. (23), 
such as [K1] =

[
K1,a

]
, [Kn] =

[
Kn− 1,d +Kn,a

]
. 

When considering the reaction force of the hole wall on the bolt, an 
additional term 

[
Kc,j
]

need to be considered in the submatrix 
[
Kj
]

of the 
global stiffness matrix [K]g along the diagonal: (Oreste, 2007): 

[
Kc,j
]
=

⎡

⎣
Kc,j • cos2βj Kc,j • sinβj • cosβj 0

Kc,j • sinβj • cosβj Kc,j • sin2βj 0
0 0 0

⎤

⎦ (25)  

where Kc,j is the reaction stiffness from the hole wall on the jth node, and 
can be calculated by the following equation: 

Kc,j = kc • lav,j • db • sin
(
βj − αi− 1

)
(26)  

where lav,j is the average length of the element around the jth node, lav,j =

(li− 1 +li)/2, li is the length of the ith element, βi is the angle of the spring 
with the horizontal axis (Fig. 15), and can be calculated by the following 
equation. 

βj =
αi− 1

2
+

αi

2
+

π
2

(27) 

For the 1st and n+1th node, the angle of the spring and the reaction 
force can be obtained based on the adjacent elements: β1 = α1 + π/2, 
Fc,1 = kc • l1 • db/2, βn+1 = αn + π/2, Fc,n+1 = kc • ln • db/2. 

In addition to the displacement boundary conditions illustrated in 

[Kb]i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C2 •
EA
l
+S2 •

12EI
(1+Φ)l3 CS•

EA
l
− CS•

12EI
(1+Φ)l3 − S•

6EI
(1+Φ)l2

CS•
EA
l
− CS•

12EI
(1+Φ)l3 S2 •

EA
l
+C2 •

12EI
(1+Φ)l3 C •

6EI
(1+Φ)l2

− S•
6EI

(1+Φ)l2 C •
6EI

(1+Φ)l2
(4+Φ)EI
(1+Φ)l

− C2 •
EA
l
− S2 •

12EI
(1+Φ)l3 − CS•

EA
l
+CS•

12EI
(1+Φ)l3 − S•

6EI
(1+Φ)l2

− CS•
EA
l
+CS•

12EI
(1+Φ)l3 − S2 •

EA
l
− C2 •

12EI
(1+Φ)l3 C •

6EI
(1+Φ)l2

S•
6EI

(1+Φ)l2 − C •
6EI

(1+Φ)l2
(2 − Φ)EI
(1+Φ)l

− C2 •
EA
l
− S2 •

12EI
(1+Φ)l3 − CS•

EA
l
+CS•

12EI
(1+Φ)l3 S•

6EI
(1+Φ)l2

− CS•
EA
l
+CS•

12EI
(1+Φ)l3 − S2 •

EA
l
− C2 •

12EI
(1+Φ)l3 − C •

6EI
(1+Φ)l2

− S•
6EI

(1+Φ)l2 C •
6EI

(1+Φ)l2
(2 − Φ)EI
(1+Φ)l

C2 •
EA
l
+S2 •

12EI
(1+Φ)l3 CS•

EA
l
− CS•

12EI
(1+Φ)l3 S•

6EI
(1+Φ)l2

CS•
EA
l
− CS•

12EI
(1+Φ)l3 S2 •

EA
l
+C2 •

12EI
(1+Φ)l3 − C •

6EI
(1+Φ)l2

S•
6EI

(1+Φ)l2 − C •
6EI

(1+Φ)l2
(4+Φ)EI
(1+Φ)l

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)   
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the previous section, a specific constrain of the nut and plate along the 
bolt axial direction at the two endpoints of the bolt (O and B), must be 
foreseen. 

Since a constrained force from nut and plate is relied on the nodal 
displacement, additional stiffness matrixes 

[
Ke,O

]
and 

[
Ke,B

]
need to be 

added separately to the first submatrix and to the last one 
[
Kj
]
, where j is 

equal to 1 and n + 1. 
[
Ke,O

]
can be obtained by the following equation, 

and 
[
Ke,B

]
can be derived in the same way: 

[
Ke,O

]
=

⎡

⎣
Ke,O • cos2α1 Ke,O • sinα1 • cosα1 0

Ke,O • sinα1 • cosα1 Ke,O • sin2α1 0
0 0 0

⎤

⎦ (28)  

where α1 is the angle of the first element (Fig. 15), Ke,O is the reaction 
stiffness from the end surface at the node O, which is compressed by the 
plate on the bolt head, and can be calculated by the following equation: 

Ke,O = kc •
π
4
•
(

d2
plate − d2

h

)
(29)  

where dplate is the diameter of the plate, dh is the diameter of the bolt 
hole, which is equal to db + dgap. 

During the installation of segments and bolts, a pretension force Fpre 

is applied on each bolt. Therefore, the additional force vector 
[
Fpre,j

]
=

[
FpreX,j FpreY,j 0

]T should be added to the nodal force vector, where 
FpreX,j and FpreY,j can be obtained by the following equation: 

FpreX,j = ±Fpre • cos
(
αj
)

(30)  

FpreY,j = ±Fpre • sin
(
αj
)

(31)  

where the pretension force is negative for the node O, and positive for 
the node B. 

Based on the bolt shear deformation model (Fig. 14), the shear force 

Fig. 11. Force-displacement law of the circular joint with different constraints on the bolt endpoint: correlation between relative transversal displacements and shear 
forces acting on the circular joint. 

Fig. 12. Shear stiffness of the circular joint with different constraints on the bolt endpoint, varying the relative transversal displacement.  
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at the midpoint A (Vbolt) of the bolt can be obtained: it is the maximum 
shear force along the bolt, when one segment has a relative transversal 
displacement vseg with respect to the other one. 

Considering the influence of the friction on the circular joint, the 
limit friction force (Vfri) can be obtained by the following equation: 

Vfri = N • tan(φ) (32)  

where φ is the friction angle on the joint, N is the normal force acting on 
the joint. 

Therefore, the equivalent shear stiffness of the joint can be obtained 
by the following equation: 

(k • G • AJ)eq =
Δ
(
Vfri + m • VA + Vtenon

)
• Lbp

Δvseg
(33)  

where Vtenon is the shear force acting on the tenon, Lbp is the projection 
length of the curved bolt along X-axis. 

Fig. 13. The shear stiffnesses of a circular joint varying the relative transversal displacement of the lining segments with different concrete foundation modulus kc.  

Fig. 14. The bolt deformation under the application of a shear force to the segment on the right side of the picture.  

Fig. 15. The relationship between the elements of the numerical model and the 
spring simulating the reaction force by the concrete on the hole wall applied to 
a node of the bolt. Key: sx, sy, sz are nodal displacements in the local coordi-
nate system. 
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5. Examples of the evaluation of the circular joint shear stiffness 
by the developed numerical model 

5.1. The deformation of a curved bolt, the force distribution along its axis 
and the effect of the constraint at the endpoints, varying the relative 
transversal displacement of segments 

The deformation of a curved bolt is obviously influenced by the axial 
force on the endpoint of the bolt; for this reason the situation is different 
from the straight bolt model, for which the axial force is neglected 
during the stress-strain state analysis. The constraints on the endpoint 
are divided into 4 different types, listed in Table 2. 

The basic parameters adopted in the calculation examples are based 
on a project where a shield TBM machine was used in a tunnel under the 
Yangtze river in China (Wang, 2020; Zuo et al., 2022); the geometrical 
and mechanical parameters of the segmental lining and the bolts are 
listed in Table 3 and Table 4. Based on the Standard from China, 2021, 
the minimum diameter of the bolt hole is about 33–36 mm. The gap 
between the bolt and the bolt hole is considered 5 mm. The bolt is 
divided into 61 numerical elements (30 elements in the right segment 
and 30 elements in the left one, while 1 element simulates the circular 
joint). The elastic deformation of the bolt and the concrete is analysed 
when the segments have a relative transversal displacement of 8 mm; 
the displacements and internal forces are shown from Fig. 16 to Fig. 21. 

When the segments have a transversal relative displacement along 
the circular joint, the transversal displacements of the bolt along the 
axial direction increase. In Fig. 16b, the displacements on the left 
segment along the transversal direction of the bolt are positive and in-
crease from the endpoint to the midpoint; the displacements on the right 
segment have an opposite direction (the trend is similar with the one of 
the straight bolt in Fig. 7). 

Due to the influence of the constraint at the endpoint of bolt, the 
length and location of the compressed zones have some differences: the 
constraint (No spring) does not have any compressed zones; the node 
numbers of the compressed zones for the constraint type (x = 0, y = 0, r 
= 0) and (x = Ke, y = 0, r = 0) are from 26 to 37; for the constraint type 
(x = K, y free, r = 0) from 28 to 35; for the constraint type (x = Ke, y & r 
free) are nodes 1, 2, from 27 to 36, 61 and 62. The marker lines of the 
nodes 27 and 36 of the bolt are shown in the figures from Fig. 16 to 
Fig. 21. Compared with the Case 0 (Fig. 16), the transversal displace-
ments of Case 1 (C1) and Case 2 (C2) are the same of the Case 0 (C0) at 
the endpoints and in the midpoint; however, the compressive forces 
from the hole wall limit the deformation of the bolt. 

From Fig. 17, it is possible to see how the compressive forces from the 
hole wall lead to a significant increase of the bolt shear force in the 
midpoint, and the absence of constraint in the endpoints along the 
transversal direction (Case 3 and Case 4) causes a smaller shear force in 
the midpoint than for the restricted deformation cases (Case 1 and Case 
2). From Figs. 16 and 17, we can note that the constraints on the rotation 
at the endpoints (comparison between Case 3 and Case 4) has a mini-
mum influence on the transversal displacements and also on the 
maximum shear force in the bolt. 

From Fig. 18, it is possible to note how for Case 0 (the concrete hole 
wall doesn’t influence the bolt deformation) the bolt has negative dis-
placements along its axis (local reference system) and reach a maximum 
value at the midpoint where segments have a relative transversal 
displacement. The type of constraint at the endpoint and the reaction of 
the concrete on the hole wall significantly influence the trend of the 
axial displacements along the bolt. In Fig. 19, the axial force of the Case 
0 has the maximum value at the endpoints and is equal to 0 in the 
midpoint; the bolt is compressed on the right segment and is stretched 
on the left segment, in function of the type of relative transversal 
displacement of the segments. When reaction forces are applied on the 
bolt by the hole wall (Case 1), the maximum axial displacement de-
creases, and the maximum axial force can be observed on the dividing 
line between the compressed and uncompressed zone. Considering the 

deformation along the axial direction (Case 2), there are positive axial 
displacements at the two endpoints, and the whole bolt is stretched, with 
a trend of the axial force along the bolt parallel to that of Case 1. 
Furthermore, the absence of any constraints for the transversal 
displacement and the rotation at the endpoints (Case 4) leads to positive 
axial displacements (local reference system) along the bolt and near a nil 
value at the midpoint. Due to the absence of constraints at the endpoints 
(Case 4), the axial force at the endpoint is close to 0 and the maximum 
value of the axial force is smaller than for the other examined cases. 
When only the rotation is prevented (Case 3), the bolt has everywhere 
positive axial displacements; in this case the axial force tends to be 0 in 
the uncompressed zone of the right segment, and the maximum axial 
force is reached at the right endpoint. 

Based on the developed analyses, the constraints type of Case 2 
produces the maximum axial force (at the dividing line, node N27), 
which should be considered in order to verify the ability of the bolt to 
withstand the induced stresses inside it without yielding. 

Compared with the standard case (Case 0), the compressive forces 
which are applied by the hole wall (Case 1 and 2), cause the increasing of 
the maximum rotation which is reached near the joint (Fig. 20), and 
move the maximum moment from the endpoints (Case 0) to the dividing 
lines of nodes N27 and N36 (Case 1 and 2) (Fig. 21). The moment for 
Case 4 is equal to 0 at the endpoints and the maximum value is smaller 
than for Case 1 and 2. When the rotation is restricted (Case 3), a sig-
nificant increase of the moment at the endpoints is detected; the mo-
ments of the bolt on the right segment in the uncompressed zone are 
constant, and the ones on the left segment in the uncompressed zone 
have an opposite trend compared with other types of constraint. 

On the basis of the performed analyses, the maximum shear force of 
each constraint type is reached at the midpoint, and the constraint of the 
transversal displacements (Case 1 and Case 2) leads to a higher 
maximum shear force. The maximum value of moments and shear forces 
are located at the dividing line when the endpoints are restricted (Case 
1, 2, 4), while are located at the endpoints when the transversal dis-
placements are not constrained (Case 3). 

When the right segment does not move and the left segment has a 
relative transversal relative movement, the corresponding maximum 
shear forces and the relative displacements of the segment are shown in 
Fig. 22: the slope of the graph represents the shear stiffness of the joint. 
The calculated values of the shear stiffnesses of the circular joint have 
been obtained and are shown in Fig. 23, varying the relative transversal 
displacements, considering only the contribution of the bolts and 
neglecting the influence of the friction and of the tenons. 

The graph of the maximum shear force of the joint varying the 
relative transversal displacement can be divided into two main sections, 
based on the gap between the bolt and the hole wall: when the 
displacement is lower than the gap, small and slowly increasing shear 
forces are detected; for displacements greater than the gap, high and 
rapidly increasing shear forces can be observed. Due to the low number 
of constraints, the shear force couldn’t be obtained from the numerical 
model when the relative displacement is smaller than the gap for Case 3 
and 4. From Fig. 23, the increase of the shear stiffness with the relative 
displacement can be divided into three phases: a) very low stable phase 
when the displacement is lower than the gap (the shear stiffness is very 
low); b) the increasing phase for displacements greater than the gap (the 
shear stiffness grows with the increase of the relative displacement); c) 
the high-stable phase (the shear stiffness reaches its maximum value). In 
the second phase, the shear stiffness for Case 4 is smaller than the ones of 
Case 1 and 2; and the shear stiffness of Case 3 results to be constant when 
the relative displacement is smaller than 8 mm and the bolt near the 
endpoints does not come in contact with the hole wall. 

Compared with the straight bolt, of which the length is equal to the 
projection length of the curved bolt, the maximum shear stiffness of the 
curved bolt (13.7MN on Fig. 23) is smaller than the one of the straight 
bolt (17.5MN on Fig. 12), but the increasing trends of the shear stiffness 
with the relative transversal displacement are similar. It means that the 
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curved bolt has a greater relative transversal displacement than the 
straight bolt under the same applied shear force, and the curved bolt 
joint is softer than the straight bolt one due to weaker restrictions on 
both endpoints along the direction parallel to the joint. 

During the installation, an axial pretension on the bolt is often 
applied at the endpoints, increasing the axial forces along the bolt and 
restricting displacements at the endpoints. Therefore, the type of con-
straints of Case 2 can be adopted to analyses the bolt deformation and 
the shear stiffness of the circular joint, when a bolt pretension is 
adopted. 

5.2. The yielding of the bolt and of concrete and the influence of the bolt 
pretension and the gap between the hole and the bolt 

The acting stresses σmax (maximum normal stress on the border of the 
bolt cross-section) and σid (the maximum ideal stress on the cross- sec-
tion axis) in the bolt can be determined by the axial force Nx’, the 
moment Mx’ and the shear force Tx’. 

σmax =
4

π • d2
b
• Nx’ +

32
π • d3

b
• Mx’ (34)  

σ2
id =

(
4

π • d2
b
• Nx’

)2

+ 3 •

(
16

3 • π • d2
b
• Tx’

)2

(35) 

Based on the Von-mises criteria, the yielding condition of the bolt 
can be defined by the following equation: 

σy ≤ σten (36)  

where σy is the yielding stress of steel, σten is the maximum tensile stress 
and can be obtained by the equation: σten = max(σmax, σid). 

For the limit stress of the concrete, Vintzēleou and Tassios (1986) 
divided the damage model of the concrete into model A and model B, 
described before. Therefore, the maximum compressive stress of the 
concrete in the limit condition can be determined by the following 
equation: 

f *
cc = min

(
f *
cc,A, f *

cc,B

)
(37)  

where the f*
cc,A is the maximum compressive stress of the concrete when 

the concrete damage follow the model A, which can be calculated based 
on the equation proposed by Vintzēleou and Tassios (1986): 

f *
cc,A = 5 • fcc (38) 

where the f*
cc,B is the one for the model B, Soroushian et al. (1986) 

suggested the following equation based on a test result: 

f *
cc,B = 37.6 •

̅̅̅̅̅
fcc

√

̅̅̅̅̅
db

3
√ (39) 

Considering the influence of the pretension and the gap, the 
maximum shear force, tensile stress of the bolt and compressive stress of 
concrete are obtained considering the type of constrain of Case 2 
(Figs. 24 and 25). The basic parameters of the example are the same of 
Sect. 5.1 (yielding stress of the bolt 640 MPa, compressive strength of 
concrete 60 MPa). In the calculation example the gap is considered 5 
mm, the axial pretension of the bolt at the endpoints 0 MPa, and the 
relative transversal displacement of the segments 8 mm. 

In Fig. 24, a small influence of the pretension on the maximum shear 
force of bolt and on the maximum compressive stress of the hole wall can 
be detected, while there is a significant influence on the maximum 
tensile stress σten in the bolt. When the pretension is larger than 60 MPa, 
the tensile stress of the bolt overpasses the yielding stress (a critical case 
for the bolt). Therefore, a high pretension can lead to the bolt yielding; 
furthermore, the high pretension has a small influence on the bolt shear 
deformation, but it can increase the normal force on the joint improving 
the friction on the lining segment faces. 

The gap between the bolt and the hole wall provides the space for the 
bolt deformation (Fig. 25): the maximum shear force in the bolt de-
creases with the increase of the gap, and the gap has a small influence on 
the maximum compressive stress of concrete on the hole wall. However, 
the maximum tensile stress σten decreases initially varying the gap and 
then increases again when the gap is larger than 7 mm. In this case, the 
value of σmax is larger than σid, and the maximum tensile stress in bolt 
depends on the axial force and the bending moment. 

The increase of the gap can soften the bolt shear stiffness, but it can 
also cause an earlier yielding of the bolt when the gap is larger than a 
limit value. In order to know the influence of the gap, the shear stiff-
nesses with different gap values (0, 3, 5, 7 and 9 mm) were calculated 
based on the type of constraint of Case 2 (Table 1, Fig. 26). The shear 
stiffness is constant (14.18MN) when the gap is nil; the maximum shear 
stiffnesses in the third phase with different gap values tend to the same 
values (about 13.5MN). However, the length of the first and second 
phases is not the same, because it tends to be longer with the increase of 
the gap. Therefore, the increase of the gap can reduce the shear stiffness 
on a limited range of the relative transversal displacement between 
segments (in the first and second phases of the curve). 

5.3. Comparison of the calculated results by the proposed numerical 
model with laboratory test results 

During laboratory tests on a circular joint (Zuo et al., 2022), it was 
possible to determine the shear force necessary to guarantee an upward 
displacement of the left segment varying the applied normal force to the 
joint (Fig. 27); the measured values were compared with the calculated 
results by the proposed numerical model. The tested segments included 
not only the bolt but also a tenon (circular, with height 30 mm, diameter 
105 mm, slope of lateral surfaces 72◦, gap 5 mm) on the joint. The 
geometrical and mechanical parameters of the bolt and of segments are 

Table 2 
Constraint types on the endpoint of the curved bolt considered in the study.  

Case No. Displacement axial direction Displacement transversal direction Rotation Sign 

0 0 0 0 No springs (C0) 
1 0 0 0 x = 0, y = 0, r = 0 (C1) 
2 Ke 0 0 x = Ke, y = 0, r = 0 (C2) 
3 Ke Free 0 x = Ke, y free, r = 0 (C3) 
4 Ke Free Free x = Ke, y & r free (C4) 

where Ke means that the constrained force along the axial direction is applied on the bolt head (ending point) considering an axial stiffness in that point; Free means 
that there are no constraints on the endpoint of the bolt; 0 means that the endpoint is fixed along that direction and no displacement is permitted.  

Table 3 
Geometrical and mechanical parameters of the segmental lining ring.  

External 
Diameter 
of tunnel 

Internal 
Diameter 
of tunnel 

Average 
Width of 
the ring 

Concrete 
class 

Elastic 
modulus 
of concrete 

Passion’s 
ratio 

7.6 m 6.8 m 1.5 m C60 34.5 MPa  0.167  
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shown in Table 3 and Table 4. The numerical results (blue line) refer to a 
case with only a bolt without the tenon on the circular joint. 

An initial sharp increase in the shear force during the laboratory tests 
(Fig. 27) can be referred to the presence of friction forces that depend on 
the applied normal force. Comparing the inclinations between the 
dotted red lines and the blue line it is possible to see a certain difference: 
it means a difference in the shear stiffness of the joint due to the presence 
of a tenon on the tested joint. The obtained shear stiffness by the 

numerical calculation without considering the presence of the tenon 
(21.88 kN/mm) is lower than the measured value by test results: 50 kN/ 
mm for an applied force of 500 kN till to reach 100 kN/mm for an 
applied force of 2500 kN, where the value of shear stiffness is the slope 
of the curves in Fig. 27, which is equal to the equivalent shear stiffness of 
joint over the projection length of bolt based on Eq. (33). 

In order to analyse the influence of the tenon on the developed 
laboratory tests, some interesting results from tenon shear tests by Xu 

Table 4 
Geometrical and mechanical parameters of the curved bolt.  

Type of 
bolt 

Class of 
bolt 

Diameter of 
bolt 

Radius of 
curved bolt 

Center angle of 
the bolt 

No. of bolts in 
the joint 

Elastic modulus 
of steel 

Passion’s ratio 
of steel 

Yielding 
Strength of steel 

Pretension stress of 
the bolt 

M30  8.8 30 mm 380 mm 87◦ 16 206GPa  0.3 640 MPa 64 MPa  

Fig. 16. The transversal displacement of the bolt along the axis direction. Key: (a) global reference system (x axis parallel to the tangent passing in the midpoint of 
the bolt, transversal displacement along y axis); (b) local reference system. 
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(2021) were considered. The shape of the tested tenons is rectangular 
plus two semicircles on the longer sides. The applied normal force is 200 
kN. Depending on the shear direction, the tenon showed a shear stiffness 
value varying from 23 to 29 kN/mm (Xu, 2021), similar to the difference 
between the experimental results by Zuo et al. (2022) and the numerical 
ones. It means that the proposed numerical model is able to correctly 
determine the mechanical behaviour of the bolt during a relative 
transversal displacement of segments on the circular joints and also to 
evaluate with a certain precision the contribution of the bolt on the 
shear stiffness of the circular joint. 

6. Conclusions 

When the tunnel segmental lining has a deformation along the lon-
gitudinal direction under the application of the jack thrust, the slurry 
buoyancy and others construction loads, the circumferential joints have 
a weaker stiffness than the segmental lining rings. The evaluation of the 
bending and shear stiffnesses of these joints become a fundamental 

Fig. 17. The shear force in the bolt along the axis direction.  

Fig. 18. The axial displacement of the bolt along the longitudinal direction (local reference system).  

Fig. 19. The axial force along the bolt for different types of constraint at the 
endpoints. Key: the positive value of the axial force means a compressive force, 
the negative value a tensile force. 
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aspect for the design and the safety evaluation of the segmental lining. 
This paper mainly focuses on the evaluation of the shear stiffness of the 
circular joints. 

The shear deformation process of the joint (shear force-shear 
displacement law) can be divided into three parts: a friction phase 
with a high shear stiffness, a shear deformation phase due to the pres-
ence of bolts and tenons along the circular joint, and a damage phase 
when the steel bolt yields or the concrete on the hole wall reaches its 
compressive strength. For the friction phase, the main influencing fac-
tors are the normal force and the friction angle on the concrete surfaces. 
Considering the shear deformation phase the bolt and the tenon can be 
analysed separately. By some specific experimental studies, the defor-
mation characteristic of a tenon depends on its shape, height, width and 
lateral surfaces slopes; the mechanical behaviour of the bolt under a 
shear deformation along the circular joint relies on the stiffnesses of the 
bolt and the concrete on the hole wall and the tensile and compressive 
strength of steel and concrete, respectively. 

In order to analyse in detail the bolt deformation under the con-
straints of the hole wall, a specific bolt shear deformation FEM model 

was developed based on the beam-spring approach. Considering the 
symmetry of the structure and loads, the half of the straight bolt was 
initially analysed. The constraints on the bolt endpoints were defined 
into three types based on the restrictions of the rotation and the trans-
versal displacement. From the calculation results it was possible to see 
how the constraint types have an obvious influence on the bolt defor-
mation along the bolt, while the effect of the constraint types on the 
transversal displacements, shear forces and moments at the circular joint 
is small. 

From the proposed numerical model was also possible to evaluate the 
shear stiffness of the circular joint of the segmental lining, varying the 
relative transversal displacement between adjacent segments, consid-
ering the effect of the bolting system. The increase process of the shear 
stiffness due to the bolting system with the increase of the relative 
transversal displacements can be divided into three phases: initially a 
stable phase with a low and constant value, then an increasing phase 
with a grow of the shear stiffness varying the relative transversal 
displacement, finally a stable phase with a constant and large value 
when the whole bolt contacts the hole walls. 

Fig. 20. The rotations of the bolt along its axial direction for the different types of constraint at the endpoints considered in the developed analyses.  

Fig. 21. The bending moments of the bolt along its axial direction for the different types of constraint at the endpoints considered in the developed analyses.  
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The developed model is able to determine the shear stiffness of a 
segmental lining circular joint considering the interaction between the 
bolt and the concrete hole walls. The existing simplified equations of the 
shear stiffness due to the bolting system give higher values than those 
obtained by the proposed specific model due to the fact that they don’t 
consider the interaction between the bolt and the hole wall during the 
second phase of the circular joint behaviour. 

Since the curved bolts are widely used in tunnel segmental linings to 
connect lining rings along the circular joints, the shear deformation 
model of a curved bolt was also studied in this paper using the specific 
proposed numerical model. Although the structure of the bolt is sym-
metric with respect to the circular joint, the reaction forces in the hole 
and the deformation of the bolt are different on the two sides (inside the 
two adjacent segments), and for this reason the whole curved bolt is in 
this case analysed. A relative transversal displacement is applied on the 
right segment in order to analyse the stress and deformative condition of 

the bolt. Also in this case it was possible to analyse the contribution of 
the bolting system to the shear stiffness of the circular joint, noting how 
now the maximum value of the shear stiffness of the circular joint 
reached for a certain relative displacement of two adjacent segments is 
lower than that obtained in the case of a straight bolt. 

The proposed model was then used to investigate the influence of 
two parameters that can be varied in the design stage of the tunnel 
segmental lining and also during its installation: the pretension force in 
the bolt and the gap between the hole wall and the bolt. It was verified 
that the pretension has a small influence on the shear force and can 
increase the maximum tensile stress developed in the bolt; instead, the 
increase of the gap leads to lower shear forces in the bolt, and extend the 
relative displacement value at which the maximum shear stiffness is 
reached. The results obtained by the proposed specific numerical model 
were compared with available laboratory test results, finding a good 
consistency between them and proving that the numerical model is 

Fig. 22. The maximum shear force in the bolts, varying the relative transversal displacements between the adjacent segments of a circular joint, for different types of 
constraint on the endpoints of the bolt. 

Fig. 23. The shear stiffness of the circular joint, varying the relative transversal displacements between the adjacent segments of a circular joint, for different types of 
constraint on the endpoints of the bolt. 
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adequate in evaluating the bolt shear deformation and the shear 
behaviour of the circular joints connected by bolting systems in the case 
of both straight and curved bolts. 

Finally, improving the compressive stiffness of the hole wall can 
effectively increase the shear stiffness of the circular joint, and the value 
of the joint shear stiffness can be evaluate based on the proposed model 
presented in this paper after a detailed test on the concrete foundation 
modulus of the hole wall. 

Additionally, adopting the curved bolt and increasing the gap be-
tween the bolt and the hole wall will make the joint more softening; 
applying a greater pretension on the bolt the friction force on the joint 
will be increased with a weak impact on the shear force of the joint (the 
bolt axial force is perpendicular to the joint). Considering that the 
stronger joint stiffness will lead to a higher stress-state of the joint, 
which has a higher damage risk during the construction stage, the bal-
ance between the strength of the segmental lining concrete and the 
deformation performance of the lining needs to be evaluated using the 

proposed calculation method. 
The proposed numerical model for the analysis of the behavior of the 

connection bolts of the precast concrete segments has proved to be a 
useful tool to be able to evaluate the mechanical behavior of circular 
joints and particularly to be able to determine the shear stiffness of this 
joint. This parameter is fundamental in order to obtain the stress and 
deformation state of the segmental lining and, therefore, to be able to 
carry out its correct sizing in the tunnel design phase. 
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Fig. 24. The maximum shear force in the bolt, the maximum tensile stress in the bolt, and the maximum compressive stress in concrete on the hole wall, varying the 
axial pretension of the bolt at the endpoints (gap 5 mm). 

Fig. 25. The maximum shear force in the bolt, the maximum tensile stress in the bolt, and the maximum compressive stress in concrete on the hole wall, varying the 
gap (axial pretension of the bolt at the endpoints 0 MPa). 
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Fig. 26. The shear stiffnesses of the circular joint varying the relative transversal displacements between segments on the circular joint, for different gap values (type 
of constraint of case 2). The curves of the graph can be shared in three phases: an initial phase with a very low value of the shear stiffness; a second phase, with an 
increasing value, varying the relative transversal displacement; a third one, with a constant maximum value. 

Fig. 27. The measured shear force values of the circular joint with different normal forces applied to the joint during laboratory tests (Zuo et al., 2022), compared 
with calculated results by the proposed numerical model (blue line). The dotted red lines refer to the measured average shear stiffness value during the labora-
tory tests. 
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