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ABSTRACT

The remarkable proliferation of deep learning across various industries has underscored the impor-
tance of data privacy and security in AI pipelines. As the evolution of sophisticated Membership
Inference Attacks (MIAs) threatens the secrecy of individual-specific information used for training
deep learning models, Differential Privacy (DP) raises as one of the most utilized techniques to
protect models against malicious attacks. However, despite its proven theoretical properties, DP can
significantly hamper model performance and increase training time, turning its use impractical in
real-world scenarios. Tackling this issue, we present Discriminative Adversarial Privacy (DAP), a
novel learning technique designed to address the limitations of DP by achieving a balance between
model performance, speed, and privacy. DAP relies on adversarial training based on a novel loss
function able to minimise the prediction error while maximising the MIA’s error. In addition, we
introduce a novel metric named Accuracy Over Privacy (AOP) to capture the performance-privacy
trade-off. Finally, to validate our claims, we compare DAP with diverse DP scenarios, providing an
analysis of the results from performance, time, and privacy preservation perspectives.

1 Introduction

The burgeoning interest and application of deep learning across diverse industries and domains has been remarkable in
recent years. This surge can be ascribed to several pivotal factors including the accessibility of massive data volumes,
the enhancements in computational resources, and the evolution of neural network architectures and optimization
algorithms. However, with the widespread use of deep learning models and their increasing influence on society and
daily life, the security and protection of the sensitive data used to train such models have become an essential concern.
In an era of stringent data protection legislations like the European General Data Protection Regulation [1] and the
Chinese Cyber Security Law [2], threats and potential data security breaches evolve at a pace that is often faster than
legislative response. One such threat is a class of attacks known as Membership Inference Attacks (MIAs) [3], which
aim to deduce whether certain individual-specific information was part of the training dataset of a machine learning
model. Such attacks pose a formidable challenge and lay the ground for more sophisticated and potentially harmful
breaches. Despite their recognition in the literature, no formally effective countermeasure is widely adopted in the deep
learning development community.

Among the different solutions to increase the resistance of machine learning models to MIAs, the incorporation of
Differential Privacy (DP) within training optimisers has stood out for its potential. DP is frequently considered the
go-to mechanism for guaranteeing privacy due to its theoretical properties and robustness [4]. However, research has
shown that the high level of privacy offered by DP comes at a cost, as adopting a high level of DP usually results in
severe performance loss and increased learning time. This makes DP not practical for many real-world applications and
sometimes not even for simple simulations [5, 6].

In this paper, we introduce a novel privacy-preserving learning technique, called Discriminative Adversarial Privacy
(DAP). DAP leverages the structure of MIAs to accomplish multi-objective adversarial learning. By using our approach,
the training process of deep learning models is faster than training with DP and the final model has higher performance
with a comparable privacy level. Specifically, DAP employs a discriminator trained via the MIA technique of shadow
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models and a novel loss function minimising the prediction error while maximising the attacker’s error. This approach
results in models that offer privacy competitive to those achieved by DP, yet with significantly reduced performance
loss and faster training time.

With this work, we provide the following contributions:

• We propose a novel learning technique called Discriminative Adversarial Privacy or DAP, that combines
adversarial learning and membership inference attack principles. This technique is designed to ensures an
optimal balance between model performance, speed, and privacy.

• We introduce a novel loss function for DAP that is specifically tailored to simultaneously minimise the
prediction error while maximising the attacker’s error.

• We define a novel metric, namely Accuracy Over Privacy or AOP, to efficiently capture and handle the
performance-privacy trade-off.

• We substantiate our claims with rigorous empirical validation, providing extensive experimental results that
demonstrate DAP’s comparative advantage over DP in terms of performance, training time, and privacy
preservation.

2 Related Works

Membership Inference Attacks. The family of attacks known as Membership Inference Attacks (MIAs) is one of
the biggest threats to deep learning models. MIAs are incredibly versatile and effective, leading to a growing research
interest both in terms of the development of new attack algorithms and defensive countermeasures [7]. MIAs consist of
determining, given a machine learning model, whether or not a given record was included in its training dataset. In
practice, a MIA model is a binary classifier that can distinguish whether or not a record belongs to the training set of an
already trained target model. The challenge is to carry out the MIA in the real world with little useful information for
the attacker, such as in machine-learning-as-a-service scenarios. Shokri et al [3] pioneered one of the first and, still to
this day, highly effective MIA algorithms, based on the assumption that over-parameterised models could memorise
information about individual training samples beyond the generalisation of the problem for which they were trained.
Assuming the structure and learning algorithm of the target model are known to the attacker, Shokri et alpropose a
training technique that trains several models – called shadow models – to emulate the target model’s behaviour. In this
way, the attacker can leverage the predictions of such models to build a MIA discriminator, able to identify whether a
sample has been used or not in the training procedure of the target model.

Numerous studies extended this technique and expanded the attack surface. For instance, Chen et alused data poisoning
to enhance the MIA precision while hiding the attack traces by minimising test-time performance degradation [8].
He et aldemonstrated the feasibility of MIA against models trained via self-supervised learning, and explored early
stopping as a potential countermeasure, albeit at the expense of the model’s utility [9]. Recently, researchers evaluated
the effectiveness of MIAs against Generative Adversarial Networks (GANs) [10, 11], diffusion models [12, 13],
recommender systems [14, 15], semantic segmentation [16, 17], and text-to-image [18].

Differential Privacy. Historically, Differential Privacy (DP) has been the primary defence against MIAs. It is a
procedure designed to provide robust protection for individual-level information in a dataset [19]. The application of
DP ensures that the inclusion or exclusion of any individual sample in a dataset does not significantly alter the results
of statistical analyses or machine learning models trained on that dataset. DP is frequently presented in its relaxed
form, referred to as (ε, δ)-DP. Formally, a randomised mechanism denoted as M: D → R, with domain D and range R,
satisfies (ε, δ)-DP if the following inequality holds for any two adjacent inputs d, d’ ∈ D and any subset of outputs
S ⊆ R:

Pr[ M(d) ∈ S ] ≤ eεPr[ M(d’) ∈ S ] + δ. (1)

In Equation (1), the ε parameter, known as the privacy budget, denotes the maximum allowable information leakage,
with a lower ε value indicating stronger privacy. Conversely, the additive δ term represents the probability of privacy
preservation being violated.

In a machine learning context, the DP framework achieves its goal by introducing randomness into the data analysis
process, in a manner that obscures the contribution of any single individual’s data. Usually, this randomisation is
implemented as additive noise summed to the original data, to the intermediate matrices of the training algorithm, or
through ad-hoc subsampling of the dataset. Abadi et al [4] pioneered the concept of Differentially-Private Stochastic
Gradient Descent (DP-SGD), which has been affirmed as one of the most prevalent differentially-private optimisers
within the deep learning literature. DP-SGD introduces Gaussian noise to the gradient computation with a standard
deviation controlled by ε. This step ensures that the gradients are sufficiently randomised, thereby hindering an
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Figure 1: Overview of the Differentiable Adversarial Privacy (DAP) framework.

attacker’s ability to infer information about individual data points from the model’s parameters. This approach has been
successfully applied across various domains, particularly in federated learning applications [20, 21, 22].

Alternative Privacy Preserving Techniques. While DP offers numerous advantages such as increased trust in
data analysis results and enhanced fairness in decision-making processes that rely on data, it does come with its
own set of challenges. These primarily revolve around the trade-off between privacy protection and data utility and
the computational complexity that arises while implementing DP mechanisms [5, 6]. Given these constraints, the
literature has seen the emergence of alternatives to DP and its variants. Chen et alproposed an alternative to DP, called
RelaxLoss [23]. The key concept of this training framework is the relaxation of the entropy loss function, with the goal
of reducing the generalisation gap and privacy leakage in machine learning models. Kaya and Dumitras [24] evaluated
the efficacy of data augmentation mechanisms against MIAs in image classification tasks. Their study encompassed
seven different mechanisms, including differential privacy. They found that augmenting data to improve model utility
did not mitigate the risk of MIAs. Furthermore, they delved into why the commonly utilised label smoothing mechanism
amplified the risk of MIAs. Webster et alintroduced a general-purpose approach to tackle the issue of membership
privacy in machine learning. Their solution involves the generation of surrogate datasets using images created by
Generative Adversarial Networks (GANs), which are labelled with a classifier trained on the private dataset. They
demonstrated that these surrogate datasets can be utilised for various downstream tasks and provide resistance against
membership attacks. In their study, different GANs proposed in the literature were evaluated, revealing that GANs of
higher quality yield better surrogate data for the given task [25]. Lomurno and Matteucci [5] presented a comparison
of the effectiveness of the DP-SGD algorithm against standard optimisation practices with regularisation techniques.
They compared the utility of the resulting models, their training performance, and the efficacy of MIAs against the
learned models. Their empirical findings highlight the often superior privacy-preserving properties of dropout and
l2-regularisation, given a fixed number of training epochs.

3 Method

Discriminative Adversarial Privacy. With this work, we introduce a novel learning framework for privacy-preserving
deep learning, called Discriminative Adversarial Privacy (DAP). DAP is a learning framework to efficiently train
high-performing deep learning models with strong resilience against MIAs. DAP uses a deep neural network classifier
as a baseline, referred to as Cbase, and trained using the hold-out technique on dataset Data. Similarly, K shadow
models, denoted as CS,k, are trained using the hold-out technique, as prescribed by the MIA from Shokri et al [3]. For
each shadow model produced this way, ground truth, prediction, and loss are stored for each of its training and test
samples, associating a binary label according to whether it belongs to the first or second set. Of these samples, only the
miss-classified ones are retained, as they are the most empirically informative in a discriminative context and, from the
ablation studies, lead to the most performing results. These data are used to build the adversarial binary classification
dataset DataMIA to train the binary discriminator DMIA. Once trained, the weights of this model are frozen.
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Figure 2: From left to right, interpolation plots of AOP(λ) for λ = 1, 2, 5, and 10.

At this point, adversarial training is performed using DMIA and a new classifier CDAP with the same structure of Cbase.
In DAP, CDAP is trained to minimize the categorical crossentropy loss as usual, i.e. to maximize the probability of
assigning the correct class label to training examples. This error is used to update all the classifier’s weights. Then, for
each batch of data, the miss-classified predictions from CDAP are collected together with their corresponding ground
truth and loss. This secondary batch is fed through DMIA and its prediction error is computed maximising the error of
the discriminator as in the standard min-max adversarial training [26]. This secondary error is used to update the last
fully connected layer of CDAP , with the goal of reducing the probabilities that its outputs can be easily discriminated by
the attacker. The optimisation procedure of DAP can be described as

min
C

max
D

L(C,D, t) = Ex∼p(x)[log(C(x, t))] + βEx,y∼p(x,y)[log(1−D(C(x, t), y))]. (2)

In Equation (2), x and y are respectively the training inputs and the ground truth labels, t is the current epoch, and β is
a dynamic loss balancing parameter. β is crucial to ensure learning stability. In fact, the different nature of the two
losses makes them not directly comparable in terms of magnitude depending on the training epoch and the specific data
distribution. β is dynamically adjusted during training and it is computed as

β(C,D, t, r) =

{
E[log(C(x,t−1))]v

E[log(1−D(C(x,t−1),y))]v
· r if t > 0

1 otherwise
. (3)

According to Equation (3), the value of β at time t is proportional to the ratio of the classification loss and the
discrimination loss on the validation set at the previous step t− 1. Then, β is scaled by a hyperparameter r that weighs
the contribution of the discriminator. As a final note, β is always set to 1 for t = 0. The overall DAP framework is
described in Figure 1.

Accuracy Over Privacy. When evaluating machine learning models in a privacy-preserving setting, it is vital to
contemplate both model performance and the privacy of the underlying training data. However, measuring the trade-off
between these two facets is a complex task. Quantifying privacy itself is nontrivial, and comparing metrics across
different domains can be particularly challenging. For these reasons, we propose a novel metric called Accuracy Over
Privacy (AOP), which provides a concise measure of the accuracy and privacy of a target model. Within the realm of
MIAs, the efficacy of the attacking model is often measured using the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve of the attack. Instead, when the model is a classifier, its performance can be
assessed utilising the Top-1 Accuracy (ACC). Therefore, given the classifier ACC and the AUC of a MIA model
(AUCMIA), the AOP is computed as

AOP(λ) =
ACC

(2max(AUCMIA, 0.5))λ
. (4)

Equation 4 summarizes the effects of ACC and AUCMIA in a single metric. λ ≥ 1 weighs the importance of privacy
when measuring the AOP.

The AOP metric exhibits several properties. Concerning its range, it is constrained in the interval [0, 1]. For highly
inaccurate models or models susceptible to MIAs, the AOP approaches 0. Conversely, the AOP is closer to 1 when
models exhibit high accuracy and strong resilience against MIAs at the same time. The λ parameter is a key factor in
the AOP metric, as it is controls the impact of the privacy component. Figure 2 shows that increasing values of λ cause
the AOP metric to shrink towards 0. Concerning the denominator, the max operator ensures that the AUC is never lower
than the AUC of a random guessing model, which is equal to 0.5. Moreover, the denominator allows for obtaining AOP
values equal to the classification accuracy for models that perfectly preserve privacy.
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Figure 3: The neural network architectures involved in the experiments. From left to right, the CNN used for each
analyzed classifier and shadow models, the residual block specially designed for the DAP discriminator, and the overall
architecture of the DAP discriminator.

4 Experimental Setup

In order to guarantee the transparency and reproducibility of the study, this section provides a comprehensive description
of the experiments conducted and their setup. Our proposed algorithm, DAP, operates in two different settings. In the
first one, referred to as test DAP or DAPt, shadow models are trained with the test set, simulating a situation where an
external dataset, potentially public, is accessible to both the attacker and victim. DAPt allows deep learning engineers
to proactively prevent potential attacks by employing the same dataset that could be used by the attacker. In the second
setting, validation DAP or DAPv , the shadow models are trained using the validation set. This situation mimics a typical
scenario where the attacker’s data distribution differs from that of the victim. In both of these modes, we maintained 10
shadow models, and optimize the parameter r over a uniform range from 0 to 1 with increments of 0.025.

To ensure a fair evaluation, we compared DAP against several alternative approaches. We initially establish a Baseline
model, constituting of the base classifier without any protective measures. Subsequently, following the methodology of
Lomurno et al [5], we include a model, called Reg, that applies dropout regularization to each intermediate classifier
weight and l2 regularization to the model output. The dropout probability is tuned between 0.2, 0.33, and 0.5, while
the l2 weight over 0.1, 0.01, and 0.001. Furthermore, we extend our examination to incorporate models with (ε,δ)-DP,
retaining a constant δ value equal to 10−5 while adjusting the ε budget by modifying the number of training epochs.
Specifically, we test four models with ε values of 0.5, 1, 2, and 4.

To limit the free parameters of the experiments, we maintained the same architecture for each classifier across all
configurations, as illustrated on the left side of Figure 3. This selection was motivated by the intricate spatial complexity
involved in DP training. The residual architecture of the discriminator employed in both the DAPt and DAPv models is
depicted in Figure 3, where the proposed residual block is situated in the middle, and the overall structure is positioned
on the right. All models are trained using the Adam optimizer with a learning rate chosen between 10−5, 10−4, and
10−3 and a batch size of 32. Each model is trained to convergence with early stopping – with a patience of 25 epochs –
on validation accuracy except for DP models, where the number of training epochs is fixed and proportional to ε.

The proposed models are evaluated with respect to classification Top-1 Accuracy, AUC of MIAs – performed using the
toolkit provided by the TensorFlow Privacy library – and training epoch time. Furthermore, we employed our novel
metric, the AOP, with λ = 2, to assess the trade-off between performance and privacy, with a particular emphasis on the
latter. The study covers eight datasets: Cifar-10 [27], Cifar-100 [27], FMNIST [28], EuroSAT [29], TinyImagenet [30],
OxfordFlowers [31], STL-10 [32], and Cinic-10 [33]. The experiments are conducted on a machine equipped with an
Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz CPU and an Nvidia Quadro RTX 6000 GPU.

5 Results and Discussion

In this section, we comment on the results obtained from the set of experiments comparing DAP to regularization and
DP for defense against MIAs. Table 1 collects the accuracy metrics for each model and dataset. As anticipated, the
models incorporating DP yield the lowest accuracy scores, even with a high privacy budget (ε = 4). Conversely, the
regularized (Reg) model achieves consistently high accuracy, even occasionally outperforming the baseline model. Our
proposed method, DAP, guaranteed an accuracy boost over the DP counterparts. A notable example of this is with the

5



Discriminative Adversarial Privacy: Balancing Accuracy and Membership Privacy in Neural Networks

Table 1: The Accuracy metric on the test sets. Results improving the baseline are coloured in green, while results worse
than the baseline are red. The best results among them are in bold, while the second best are underlined.

Dataset Baseline Reg ϵ = 0.5 ϵ = 1 ϵ = 2 ϵ = 4 DAPt DAPv

Cifar-10 0.784 0.811 0.313 0.374 0.417 0.418 0.624 0.613
Cifar-100 0.481 0.532 0.039 0.083 0.090 0.072 0.315 0.276
FMNIST 0.932 0.926 0.605 0.701 0.736 0.774 0.866 0.871
EuroSAT 0.958 0.950 0.308 0.588 0.681 0.646 0.900 0.893
TinyImagenet 0.365 0.378 0.031 0.032 0.032 0.025 0.260 0.217
OxfordFlowers 0.566 0.659 0.031 0.051 0.087 0.139 0.290 0.257
STL-10 0.655 0.650 0.084 0.142 0.250 0.289 0.480 0.384
Cinic-10 0.673 0.709 0.280 0.341 0.391 0.405 0.577 0.586
Average 0.677 0.702 0.211 0.289 0.336 0.346 0.539 0.512

Table 2: The AUC metric of the MIAs. Results improving the baseline are coloured in green, while results worse than
the baseline are red. The best results among them are in bold, while the second best are underlined.

Dataset Baseline Reg ϵ = 0.5 ϵ = 1 ϵ = 2 ϵ = 4 DAPt DAPv

Cifar-10 0.648 0.631 0.505 0.526 0.519 0.503 0.507 0.505
Cifar-100 0.603 0.621 0.501 0.515 0.507 0.506 0.516 0.506
FMNIST 0.552 0.562 0.502 0.502 0.504 0.505 0.507 0.506
EuroSAT 0.544 0.528 0.505 0.502 0.500 0.502 0.501 0.501
TinyImagenet 0.603 0.592 0.514 0.501 0.521 0.504 0.516 0.509
OxfordFlowers 0.761 0.765 0.543 0.537 0.526 0.532 0.538 0.521
STL-10 0.604 0.563 0.502 0.524 0.505 0.501 0.508 0.506
Cinic-10 0.572 0.614 0.501 0.514 0.511 0.507 0.513 0.507
Average 0.611 0.609 0.509 0.514 0.511 0.507 0.513 0.508

EuroSAT dataset, where the DAPt and DAPv settings result in accuracy gains of 22% and 21% respectively, compared
to the best-performing DP model. Concerning classification accuracy, in summary, the Reg model attains the highest
accuracy performance on average, followed by DAPt and DAPv .

Table 2 collects the results concerning MIAs conducted on the target models. Here, DAPt and DAPv exhibit average
AUCs of 51.3% and 50.8%, respectively. This indicates that both approaches effectively safeguard against MIAs,
rendering the attacks nearly akin to random guessing and achieving performances competitive with DP models. The
Reg model, instead, nearly matches the privacy level of the baseline. This discrepancy between our results and the
findings of Lomurno and Matteucci [5] is due to the different experimental conditions. In particular, our experiments
run until convergence without fixing a specific number of epochs. In summary, DAP proves to be an effective training
framework that produces models resilient against MIAs.

Table 3 collects the outcomes concerning the proposed AOP metric. These findings highlight the ability of DAP
to produce private models that, at the same time, demonstrate competitive performance. In fact, DAPt and DAPv

outperform DP and regularization in terms of the accuracy-privacy tradeoff. Concerning the Reg model, despite its
susceptibility to MIAs, it is still a viable intermediate choice due to its superior accuracy. Conversely, DP models
are extremely effective in MIA prevention but this advantage comes at the expense of the final accuracy, resulting in
underperforming models. Notably, the AOP follows the trend of the privacy budget ε. In fact, the most private model
(DP with ε = 0.5) is also the least performing due to the impactful addition of gradient noise.

Lastly, Table 4 collects the time per epoch required to train each model. Here, the Baseline and Reg models emerge as
the fastest, while the DP models require about 8 times as long. DAP, on the other hand, manages to produce strong
results both in terms of privacy and accuracy, requiring only twice the time of the baseline model.

Summarizing the results in terms of accuracy, privacy, AOP, and training time, DAP offers a better tradeoff than
DP and regularization. Specifically, the DAPt setting produces high-performance models, albeit less private. In
contrast, the DAPv setting produces models with strong privacy at a slight accuracy expense. Both settings handle the
performance-privacy tradeoff far more effectively than DP in significantly less time.
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Table 3: The AOP metric on the test sets. Results improving the baseline are coloured in green, while results worse than
the baseline are red. The best results among them are in bold, while the second best are underlined.

Dataset Baseline Reg ϵ = 0.5 ϵ = 1 ϵ = 2 ϵ = 4 DAPt DAPv

Cifar-10 0.467 0.509 0.307 0.338 0.387 0.413 0.607 0.601
Cifar-100 0.331 0.345 0.039 0.078 0.087 0.070 0.296 0.269
FMNIST 0.765 0.733 0.600 0.695 0.724 0.759 0.842 0.850
EuroSAT 0.809 0.852 0.302 0.583 0.681 0.641 0.896 0.889
TinyImagenet 0.251 0.270 0.029 0.032 0.029 0.025 0.244 0.209
OxfordFlowers 0.244 0.281 0.026 0.044 0.079 0.123 0.250 0.237
STL-10 0.449 0.513 0.083 0.129 0.245 0.288 0.465 0.375
Cinic-10 0.514 0.470 0.279 0.337 0.386 0.399 0.552 0.570
Average 0.479 0.497 0.208 0.280 0.327 0.340 0.519 0.500

Table 4: Training time per epoch required for each experiment, measured in seconds. Results improving the baseline
are coloured in green, while results worse than the baseline are red. The best results among them are in bold, while the
second best are underlined.

Dataset Baseline Reg DP DAPt DAPv

Cifar-10 5.6 5.9 46.5 17.8 17.7
Cifar-100 8.9 9.5 48.2 17.9 17.9
FMNIST 12.1 11.7 53.2 23.4 23.5
EuroSAT 4.7 5.5 72.7 10.2 9.5
TinyImagenet 31.7 32.6 338.5 62.4 61.4
OxfordFlowers 1.2 1.8 20.8 2.3 2.4
STL-10 1.7 2.5 34.9 2.5 2.8
Cinic-10 30.0 22.1 106.5 41.2 42.8
Average 12.0 11.5 90.2 22.2 22.2

6 Conclusion

In this work, we introduced the Discriminative Adversarial Privacy (DAP) framework and the Accuracy Over Privacy
(AOP) metric. The goal of DAP is to produce deep learning models resilient to Membership Inference Attacks
(MIAs), while the AOP summarizes the privacy-accuracy tradeoff in a single value. As shown in the experiments,
DAP demonstrated superior ability in maintaining a beneficial balance between model performance and privacy,
outperforming models based on Differential Privacy (DP). The AOP metric has effectively encapsulated these results,
providing a concise yet robust evaluation criterion. On top of that, DAP required considerably less computational
overhead, thus accelerating the training process with respect to DP. Collectively, our contributions offer a promising
approach to the development and evaluation of deep learning models resilient against MIAs, providing an optimal
balance between execution time, accuracy, and privacy.
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