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Abstract Estimating a nonlinear model from exper-

imental measurements of a vibrating structure remains

a challenge, despite huge progress in recent years. A

major issue is that the dynamical behaviour of a

nonlinear structure strongly depends on the magnitude

of the displacement response. Thus, the validity of an

identified model is generally limited to a certain range

of motion. Also, outside this range, the stability of the

solutions predicted by the model are not guaranteed.

This raises the question as to how a nonlinear model

derived using data from relatively low amplitude

excitation can be used to predict the dynamical

behaviour for higher amplitude excitation. This paper

focuses on this problem, investigating the extrapola-

tion capabilities of data-driven nonlinear state-space

models based on a subspace approach. The

experimental vibrating structure consists of a can-

tilever beam in which magnets are used to generate

strong geometric nonlinearity. The beam is driven by

an electrodynamic shaker using several levels of

broadband random noise. Acceleration data from the

beam tip are used to derive nonlinear state-space

models for the structure. It is shown that model

predictions errors generally tend to increase when

extrapolating towards higher excitation levels. Fur-

thermore, the validity of the estimated nonlinear

models become poor for very strong nonlinear

behaviour. Linearised models are also estimated to

have a complete view of the performance of each

candidate model for each level of excitation.

Keywords Nonlinear system identification �
Extrapolation � Interpolation � Stability � Data-driven

1 1 Introduction

System identification is an essential tool for under-

standing and modelling the behaviour of engineering

structures, facilitating the mathematical description of

real-life structures based on measured data. Histori-

cally, this process has been used to estimate linear

models, taking advantage of linear theory based on the

superposition principle [1]. However, many engineer-

ing structures are only linear to a first approximation
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and some do not behave linearly at all. The develop-

ment of methods for system identification of such

structures has gained more attention in recent years,

driven by the need to capture inherent nonlinear effects

[2, 3]. They can be used to estimate a linearised model

for a specific working condition, or to estimate a model

to capture the full nonlinear characteristics of the

structure. The first case generally aims to determine an

equivalent linear model [4, 5], sometimes referred to as

the best linear approximation (BLA) [3, 6]. This kind of

model is generally reliable in the case of weak

nonlinearity and only under the conditions of the

training dataset, because the dynamical behaviour of a

nonlinear structure significantly depends on the ampli-

tude of vibration. A nonlinear model, however, has a

wider region of validity, and can provide greater

understanding of the system behaviour, including

potential bifurcations in the response.

Nonlinear system identification is still a challenging

task, even though several methods have been developed

by the research community [7]. The identification

process generally involves three steps: nonlinear

detection, characterisation, and estimation. The first

two steps can be addressed using ad-hoc methods or

prior knowledge of the system [2], while the last step

involves estimation of the model parameters from the

experimental data. Except for the theoretical case when

a perfect match exists between the actual structure and

the identified model, the outcome of this step is related

to the range of motion (vibration level) covered by the

data itself. The reason is twofold: (i) even in the case of

a successful estimation of a model structure, the true

nonlinear phenomena might change when moving out

of the training dataset; (ii) the estimated nonlinear

model itself can behave differently when extrapolated,

for instance in the case of a polynomial representations.

This is why extrapolation from nonlinear models is

generally not recommended [8]. Ideally, nonlinear

system identification should be performed using train-

ing data that covers the operational range of motion of

the structure under test. This is not always possible in

real-life scenarios, and knowledge of the limitations of

an identified model structure is crucially important

information. This topic was first investigated in [9], and

for extrapolated nonlinear models estimated using a

polynomial nonlinear state-space representation [10].

This paper further investigates this subject by

considering the extrapolation of data-driven state-

space models estimated using a subspace approach

[11, 12]. State-space formulations are widely used in

engineering applications, and the nonlinear problem

addressed in this paper derives directly from the

standard linear one. This makes the use of a subspace

approach to estimate the system matrices quite

convenient, since the essential definitions of classical

subspace methods remain valid. A cantilever beam

with geometric nonlinearity caused by the addition of

magnets, is excited using an electrodynamic shaker

with several levels of random excitation. This causes a

response ranging from quasi-linear to strongly non-

linear. Linearised and nonlinear models are estimated

from the measured data, and extrapolation (and

interpolation) issues are discussed in both cases. In

particular, linearised models show acceptable results

only for weak nonlinear behaviours and around the

selected working point, while they hugely fail in case

of stronger nonlinearity or when trying to interpolate/

extrapolate. Nonlinear models generally outperform

linear ones, but extrapolation remains an important

limitation. To the authors’ best knowledge, an exper-

imental investigation on this topic comprising several

excitation levels and a strong nonlinearity is not

present in the scientific literature yet. The investiga-

tion described in this paper offers a useful perspective

on experimental and methodological aspects. The

intention is to provide comprehensive insight on the

importance of accurately selecting an appropriate

range of motion when designing the experimental

setup. The results provide useful insight into the

reliability and the limits of the estimated models both

in the case of interpolation and extrapolation.

The paper is organised as follows. Section 2

presents the methods adopted in this paper and

describes the experimental test rig. Section 3 presents

the results obtained considering first linearised models

and then nonlinear models. Finally, the conclusions of

the present work are summarised in Sect. 4. Appendix

A provides a numerical demonstration of the proposed

methodology.

2 Methods

2.1 Nonlinear state-space modelling using

subspace identification

The nonlinear state-space approach is used in this

paper to model the dynamic behaviour of a nonlinear
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structure. Different formulations of this have been

proposed in the literature, such as [10–13]. In partic-

ular, the formulation in [11] is the cornerstone of the

Nonlinear Subspace Identification (NSI) technique,

and is adopted in this paper. NSI has been used

previously to estimate nonlinear models from exper-

imental measurements considering discrete [14–16]

and distributed [17] nonlinearities, as well as double-

well systems [18, 19]. NSI treats the nonlinear

restoring force of the system as a feedback force on

the underlying-linear system (ULS). Considering the

discrete case of a mechanical system with N degrees-

of-freedom, yields the equation of motion

M€y tð Þ þ Cv _y tð Þ þKy tð Þ ¼ f tð Þ � fnl y; _yð Þ ð1Þ

where M, Cv and K 2 RN�N are the mass, viscous

damping, and stiffness matrices respectively, while

y tð Þ and fðtÞ 2 RN are the generalised displacement

and external force vectors respectively. The nonlinear

part of the equation is described by the term

fnl y; _yð Þ 2 RN , which generally depends on displace-

ments and/or velocities. It is assumed that fnl can be

decomposed into J distinct nonlinear contributions

using a linear-in-the-parameters model, yielding

fnl y; _yð Þ ¼
XJ

j¼1
ljLjgj y; _yð Þ: ð2Þ

Each term of the summation is defined by a

coefficient lj, a nonlinear basis function gj y; _yð Þ and
a location vector Lj 2 RN . The elements of Lj define

the position of the jth nonlinearity, and can have values

of �1, 1 or 0 and. Introducing the extended-input

vector fe as

fe ¼ fT;�g1; . . .;�gJ
� �T

; ð3Þ

and the state vector x ¼ yT; _yT
� �T

, a discrete state-

space formulation can be written down as

x sþ 1ð Þ ¼ Ax sð Þ þ Befe sð Þ
y sð Þ ¼ Cx sð Þ þ Defe sð Þ;

�
ð4Þ

where s is the sampled time and matrices A;Be;C;De

are the state, extended input, output and extended

direct feedthrough matrices, respectively. These

matrices can be estimated by using a subspace

approach and assuming knowledge of the nonlinear

basis functions gj and the location vectors Lj of the

nonlinear terms. The reader is referred to [11, 20] for

extensive information on this process. Once the state-

space matrices are estimated, the model described by

Eq. (4) can be used to estimate both the underlying-

linear and nonlinear features of the system. The first

step involves:

• Estimating the modal parameters of the ULS by

eigenvalue decomposition of hte matrix A

• Estimating the FRFs of the ULS by first defining

the extended-FRF Ge xð Þ

Ge xð Þ ¼ De þ C zI2N � Að Þ�1Be; z ¼ eixDt;

ð5Þ

where I2N is the identity matrix of size 2N and i is

the imaginary unit. The matrixGe xð Þ has the same

structure of the extended force vector fe, so that its

first block G xð Þ is the FRF matrix of the under-

lying-linear system:

Ge xð Þ ¼ G xð Þ;G xð Þl1L1; . . .;G xð ÞlJLJ

� �

ð6Þ

Note that this step provides full knowledge of the

underlying-linear dynamics of the system without the

need for a linear measurement.

The next step involves the determination of the

coefficients of the nonlinear terms lj. They are

frequency-dependent and complex-valued, and are

determined from the remaining blocks of Ge. How-

ever, the true coefficients should be real numbers with

no dependence on frequency. This only occurs in

complete absence of noise and nonlinear modelling

errors. When real measurements are performed, there

are generally non-zero imaginary parts which are

much smaller than their corresponding real parts. The

reader is referred to [17, 19, 20] for detailed informa-

tion on this step.

Finally, the estimated state-space model of Eq. (4)

can be used to predict the response of the system to a

given input vector fðtÞ or initial state vector. This can
be carried out by propagating Eq. (4) over time, and it

must be performed recursively for each time step due

to the nonlinear nature of the problem. If the input

vector fðtÞ is from a validation set, the outputs

generated by the method ysim should replicate the

measurements yval. The deviation between the simu-

lated and measured outputs can be generally attributed

to noise and/or nonlinear modelling errors. The output
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simulation percentage error �n can be defined for each

output n as

�n ¼ 100
RMS yvaln � ysimn

� �

RMS yvaln

� � ; ð7Þ

which represents the capability of the estimated model

in predicting the system dynamics.

This work focuses on the last point—to understand

the limitations of this process due to the nonlinearity.

A numerical example is proposed in Appendix A:

numerical demonstration to validate the methodology

in a case where both the true underlying-linear FRF

and nonlinear restoring force are known. The numer-

ical example consists of a two-degrees-of-freedom

system with a non-smooth asymmetrical nonlinearity.

Monte Carlo simulations have been performed to

account for stochastic variations and model

uncertainties.

2.2 Experimental test rig

The test rig consists of a cantilever beam with total

length of 400 mm and rectangular cross-section

(width of 25 mm and thickness of 5 mm). There are

three small neodymium magnets located at the tip as

depicted in Fig. 1. Different nonlinear effects can be

obtained by changing the polarization of the magnets

such as hardening, softening, multi-stable or quasi-

zero-stiffness [21–23]. A repelling configuration was

considered in this work, generating a predominantly

hardening nonlinearity. The system was excited using

an electromagnetic shaker (Modal Shop – model

K2007E01) that provides brown noise to the structure.

This allows to have higher intensity at lower frequen-

cies so that the analysis can be focused on the first

mode. Six levels of excitation were considered from

0.08 NRMS to 1.16 NRMS following a geometric

progression, as listed in Table 1. The excitation level

was increased roughly by 70% from one level to the

subsequent. An accelerometer A1 (model PCB

352A24) was used to measure the response of the

beam at the tip, the sampling frequency was 2000 Hz

and each acquisition lasted 120 s. All the signals were

recorded using a NI USB-4431 acquisition board from

National Instrument. The last 20 s of the measured

data are used as validation set in all the identification

steps involved in the following sections, while the rest

is adopted as a training set.

The measured accelerations in the time domain are

depicted in Fig. 2a for each level of excitation. The

corresponding displacements are obtained by integrat-

ing twice the accelerations and depicted in Fig. 2b.

Fig. 1 Experimental test rig: photos in (a) and schematic representation in (b)
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Note that the overdots denote differentiation with

respect to time.

The experimental FRF obtained using the H1-

estimator and the corresponding coherence function

are depicted in Fig. 3 for each level. A clear shift of the

resonance peak to the higher frequencies can be

observed for higher excitation levels, which is a sign

of strong nonlinear hardening behaviour. Also note the

diminishing level of coherence as the excitation level

increases, which is an additional indication of the

presence of a strong nonlinearity.

3 Results

3.1 Best linear approximation (BLA) via subspace

identification

A linear state-space model is estimated for each level

of excitation using the linear subspace identification

technique [24] with a model order of 2. To ensure that

the estimated model is the best possible linear

candidate, an a-posteriori optimisation is carried out

using the validation set. This serves to estimate the

BLA of the selected data, and is used in the extrap-

olation process of Sect. 3.4 as a comparative measure.

To this end, the system output is generated using the

estimated linear state-space matrices (A, B, C, D) and

the measured forcing input. A least-square minimisa-

tion problem is defined to reduce the residual between

the measured output yval1 and the simulated output ysim1
by optimising the state-space matrices. The minimi-

sation problem is defined by

bh ¼ argmin
h

yval1 � ysim1
� �

; ð8Þ

where h ¼ vec A B C D½ �ð Þ and the vector oper-

ation vec �ð Þ stacks the coloumn of a matrix on top of

each other. The starting point of the optimisation is the

set of matrices obtained from the subspace approach

and the Levenberg–Marquardt algorithm is adopted

with a step tolerance of 10–8.

The system FRFs for the different excitation levels

of Fig. 3 are now depicted in Fig. 4 together with the

corresponding BLA. The estimated natural frequen-

cies, damping ratios and simulation errors are listed in

Table 2. The output simulation errors are computed

according to Eq. (7). It is clear that an increase in the

excitation level is associated with a decrease in the

BLA performance. The output simulation errors

become extremely high from level 3 (light green line

in the figure), denoting the inability of a linear model

to capture the system dynamics in the case of severe

nonlinear behaviour.

Since the model obtained using the BLA is a

linearisation for a specific working range, it is

generally not advisable to use this model away from

0 20 40 60 80 100 120
-0.02

0

0.02

Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

0 20 40 60 80 100 120
-200

0

200 a)

b)

Fig. 2 Measured accelerations in (a) and corresponding

displacements in (b)

a)

b)

Fig. 3 H1-estimator of the system FRF through several levels

of excitation in (a) and corresponding coherence function in (b)

Table 1 Levels of excitation

Level 1 2 3 4 5 6

Input RMS (N) 0.08 0.13 0.23 0.38 0.64 1.16
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the training data set when the system behaves nonlin-

early [3]. This is confirmed by the error matrix shown

in Fig. 5, obtained from the output simulation error �1
when extrapolating and interpolating towards higher

and lower levels, respectively. The values on the

diagonal correspond to those reported in Table 2. The

off-diagonal values dramatically increase when mov-

ing out of the BLA training set both in the case of

interpolation (blue background) and extrapolation (red

background). This result is expected for the latter case,

but it is not so obvious in the case of interpolation. The

reason can be seen by close examination of Table 2

and Fig. 4. The estimated natural frequencies and

damping ratios of the linearised models change with

the excitation level, and this occurs both when moving

towards higher levels (i.e. extrapolating) or lower ones

(i.e. interpolating). As an example, the error of the

model BLA3 at excitation level 3 is 25.5% (row 3,

column 3). The same model gives an error of 51.5%

when reducing the excitation to level 2 (row 3, column

2), while it gives an error of 64.4% when increasing

the excitation to level 4 (row 3, column 4).

Consequently, the minimum errors for each iden-

tification level are those on the diagonal, correspond-

ing to the excitation level at which the BLA is

calculated. A surface plot of the error matrix is

depicted in Fig. 6 to highlight this behaviour.

3.2 Qualitative nonlinear characterisation

The nonlinear behaviour of the system is first inves-

tigated using the Acceleration Surface Method (ASM)

[25] to get a qualitative data-based visualisation of the

system restoring force. Since the sensor is located

close to the source of the nonlinearity (i.e., the

0
0

0.02

0.04

0.06

0.5

0.08

12
10

81
6

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

Fig. 4 System FRF across the different levels. Dashed lines:

H1-estimator; continuous lines: BLA state-space model

Fig. 5 Error matrix on the validation set, BLA. The values refer

to the percentage errors defined in Eq. (7). The darkness of the

cells is proportional to the error level. Blue background (lower-

triangular matrix) indicates simulations with interpolation; red

background (upper-triangular matrix) indicates simulations with

extrapolation; bold type indicates same-level simulations

Table 2 Results of the

BLA
Level Model

name

Est. natural frequency

(Hz)

Est. damping ratio

(%)

Output simulation error �1
(%)

1 BLA1 6.54 1.85 8.48

2 BLA2 6.61 2.17 13.52

3 BLA3 6.86 2.27 25.54

4 BLA4 7.08 4.51 48.04

5 BLA5 7.66 5.92 59.31

6 BLA6 9.19 4.41 65.79
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magnets), and is quite far from the excitation point, its

restoring surface can give a rough visualisation of the

system characteristic. In particular, a qualitative

representation of the restoring force can be obtained

by slicing the acceleration surface around the low-

velocity region. The points of the restoring force are

therefore obtained as the ones that satisfy the condition

_y1j j � evmax _y1j jð Þ; ð9Þ

where the tolerance ev is set to 10�3. The result is

shown in Fig. 7. It can be seen that the system has a

hardening restoring force, and there is consistency for

the different excitation levels.

A polynomial representation of the nonlinear

restoring force is therefore used to apply the NSI

technique in the following section, considering the

nonlinear basis functions

gj ¼ yjþ1
1 ; j ¼ 1; 2; . . .; J ð10Þ

in which maximum exponent P ¼ J þ 1 is selected

independently for each excitation level to minimise

the errors over the output residual given in Eq. (7).

3.3 Estimation of the nonlinear model parameters

A nonlinear state-space model of order 2 is estimated

for each level of excitation using the nonlinear

subspace identification technique. The following

information is estimated for each level:

1. The modal parameters and FRFs of the ULS.

These are compared with the lowest level of

excitation (0.08 NRMS), which is the closest to

linear behaviour. The FRFs of the ULS are

depicted Fig. 8a, and the natural frequencies and

damping ratios are listed in Table 3.

2. The coefficients lj of the nonlinear basis functions
gj and the nonlinear restoring force of the struc-

ture. The final shape of the estimated nonlinear

restoring force is depicted in Fig. 8b for each level

of excitation.

3. The errors over the output residual �1 as in Eq. (7).

To this end, the last 20 s of each test are used again

as a validation set, and the estimated state-space

model is adopted to generate the outputs given the

measured forcing input.

The identification is repeated for each level

considering different sets of candidate basis functions

having the maximum exponent P Eq. (10) ranging

0

50

6

100

O
ut

pu
t s

im
ul

at
io

n 
er

ro
r 

(%
)

5

150

4

Excitation
level     

3
2
1

BLA6BLA5BLA4BLA3BLA2BLA1

Extrapolation

Interpolation

Fig. 6 3D surface of the output simulation error matrix, BLA

-15 -10 -5 0 5 10 15
-50

0

50

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 7 ASM, qualitative representation of the restoring force

6 8 10 12
0

0.02

0.04

0.06

-0.01 0 0.01

-0.2

0

0.2

0.4

Level 6
Level 5
Level 4
Level 3
Level 2
Level 1

a)

b)

Fig. 8 Nonlinear subspace identification: a Underlying-linear

FRF; b Estimated nonlinear restoring force. The colours refer to

the excitation levels reported on the legend
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from 3 to 7. The best set is then selected as the one that

minimises the error �1. The maximum exponents are

listed in Table 3 for each test.

The results of the identification show significant

consistency up to the fifth level (0.64 NRMS) on both

the underlying-linear parameters and the nonlinear

estimation. Residuals and errors increase noticeably at

level 6 (0.81 NRMS), suggesting that the selected

nonlinear basis functions are not appropriate when

describing the nonlinear behaviour of the system at

high-level responses. This is likely to be associated

with the occurrence of new nonlinear phenomena such

as geometric nonlinearity caused by large-amplitude

displacements [17], which are not well captured by the

polynomial functions used. The model estimated from

level 6 is therefore considered as erratic and marked

with the symbol �� in Table 3.

Interestingly, the output simulation error of lowest

excitation level (Level 1) is higher than the subsequent

ones. A possible explanation is that vibrations are so

low in this case that noise and/or boundary connec-

tions affect the result. A similar behaviour is observed

and discussed in Sect. 3.4.

3.4 Extrapolation, interpolation and model

stability

The estimated state-space models have been used

above to replicate the outputs of the system consid-

ering a validation set belonging to the same excitation

level of the training set. It is, however, interesting to

analyse the errors of the residuals when extrapolating

and interpolating towards higher and lower levels,

respectively. The results are illustrated in the error

matrix of Fig. 9. The best linear approximation (BLA)

is also reported for each level as a comparative

measure, considering the diagonal values of Fig. 5.

The linearised model shows similar performances

of the nonlinear models 1–5 when considering the

lowest excitation level (first column), confirming the

quasi-linear behaviour in this range of motion. Inter-

estingly, it outperforms nonlinear model 6 (marked

with ��), which proved to be poor as indicated in

Table 3. As for the nonlinear models, the errors tend to

increase when extrapolating towards higher excitation

levels (red background). This confirms the idea that

extrapolation from nonlinear models is generally not

advisable, especially in the case of polynomial

expansions. Cells with a cross correspond to the cases

Fig. 9 Error matrix on the validation set. The values refer to the

percentage errors defined in Eq. (7). The darkness of the cells is

proportional to the error level. Blue background (lower-

triangular matrix) indicates simulations with interpolation; red

background (upper-triangular matrix) indicates simulations with

extrapolation; bold type indicates same-level simulations

Table 3 Results of the nonlinear system identification

Lev P Model

name

Est. natural frequency Est. damping ratio Nonlinear rest. force

(NRMS)

Output simulation error �1
(%)

Value

(Hz)

Residual

(%)

Value

(%)

Residual

(%)

1 3 NSI1 6.49 –- 1.94 –- 1 9 10–4 7.54

2 3 NSI2 6.51 0.17 1.88 3.26 6 9 10–4 2.28

3 5 NSI3 6.49 0.03 1.82 6.13 3 9 10–3 2.12

4 5 NSI4 6.49 0.06 1.80 7.34 1 9 10–2 4.19

5 7 NSI5 6.48 0.25 2.01 3.60 3 9 10–2 7.35

6 7 NSI6* 7.05 8.62 5.97 207.68 7 9 10–2 22.70

The �* symbol indicates an erratic model
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when the simulation does not converge, making the

extrapolation process not possible at all. Assuming

that the underlying-linear state-space model is stable,

this may occur for two reasons: (i) the extrapolated

nonlinear restoring force becomes too large for

convergence at a certain time step; (ii) the extrapolated

nonlinear restoring force exhibits unstable behaviour,

thus making the nonlinear model unstable. The latter

case can be observed in Fig. 10 which shows the case

when extrapolating from level 3 towards level 5. The

origin of this behaviour is in the high polynomial terms

of the selected nonlinear basis functions and must be

carefully investigated when performing similar non-

linear data-based identifications.

It is worth highlighting that the estimated nonlinear

models outperform the linear models in all the other

cases, especially when no interpolation or extrapola-

tion is involved (diagonal values). An interesting

result can be observed by looking at the first column

(lowest excitation level). The errors are generally

higher than the subsequent columns for all the

valuable nonlinear models (NSI1 7 NSI5). As men-

tioned in the previous section, this is possibly caused

by a low signal to noise ratio, or to the occurrence of

low-amplitude nonlinear effects related to the bound-

ary connection of the beam, that are not included in the

model.

4 Conclusions

The extrapolation and interpolation behaviour of data-

driven state-space models from a nonlinear structure

has been investigated in this paper. Analysis was

carried out on a bench top experimental test rig

consisting of a cantilever beam in which magnets were

used to generate strong geometric nonlinearity. The

beam was driven by an electrodynamic shaker using

several levels of broadband random noise. Its

behaviour ranged from quasi-linear to strongly non-

linear, and the data collected were used both as

training and validations sets for subspace-based iden-

tification techniques (linear and nonlinear). The lim-

itations of the identification process have been

evaluated by comparing model predictions and mea-

surements across the different levels of excitations.

This was performed by defining first a measure of error

based on the RMS deviation of the predicted and

measured validation time histories. An error matrix

was assembled which presents interpolation and

extrapolation issues in one single view. This facilitates

a clear picture of the limits of the estimated models

when trying to simulate the behaviour of the structure

in conditions that exceed the range of motion of the

training data set. The results obtained with nonlinear

models are also compared with linearised ones to have

a complete view of the performance of each candidate

model for each level of excitation. It is shown that

nonlinear model predictions errors generally tend to

increase when extrapolating towards higher excitation

levels. The results are in accordance with the expec-

tations, and provide useful insight on the importance

of accurately selecting an appropriate range of motion

when designing an experimental setup. Furthermore,

the validity of the estimated nonlinear models

becomes poor for very strong nonlinear behaviour.

This is clear from the identification performed at the

highest excitation level, which can be related to the

occurrence of new nonlinear phenomena not included

in the model. Linearised models on the other side can

represent a valid modelling tool provided that the

nonlinear behaviour is weak and the operational range

of motion is covered by the validation set, making

them inadequate to both interpolation and extrapola-

tion processes.
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Appendix A: Numerical demonstration

The system considered for the numerical simulations

is depicted in Fig. 11. It has two degrees-of-freedom

and a mechanical stop positioned 2 mm away from the

second mass. This creates a strong, non-smooth

asymmetric nonlinear behavior of contact type when

the gap is filled.

The theoretical nonlinear restoring force is there-

fore given by the following relationship:

f nl ¼ k1 y2 � dð Þ þ k3 y2 � dð Þ3 if y2 � d
0 elsewhere

�
ð11Þ

The numerical example and the system parameters

are taken from [16], except for the gap value d ¼ 2mm

that is assumed to be known in this paper with a

stochastic uncertainty, as described later. The system

is excited at DOF 1 by a zero-mean Gaussian random

input considering 10 equally spaced levels between

0.5 N RMS and 5 N RMS. The outputs are corrupted

by 3% Gaussian noise and 100 Monte Carlo simula-

tions are conducted for each level of excitation. For

each simulation, the numerical integration of the

equation of motion is performed using the Newmark

method with a sampling frequency of 4096 Hz and

considering a time span of 60 s. The first 40 s of the

acquisition length are used to estimate the state-space

model with NSI and the last 20 s are used as validation

set. The uncertainty in the gap value is accounted for in

the selection of the nonlinear basis functions of NSI

that read:

g1 ¼
� y2 � d�ð Þ if y2 � d�

0 elsewhere

�
;

g2 ¼ � y2 � d�ð Þ3 if y2 � d�

0 elsewhere

�
; d� ¼ d þ n;

ð12Þ

where n is sampled from a zero-mean Gaussian

distribution having 3r ¼ 0:2mm. Therefore, the

adopted gap value d� is different for each Monte

Carlo simulation with a maximum variation of

	0:2mm from the nominal value (with a confidence

interval of 99.7%).

The errors on the estimated modal parameters and

nonlinear coefficients are listed in Table 4 for each

level of excitation. Results are averaged over the

Monte Carlo simulations, with standard deviations

written in brackets. The errors on the modal param-

eters of the ULS remain quite low among the

excitation levels and are generally higher for the first

mode of the system. The reason is that the nonlinearity

mainly affects the first mode. This is clear from

Fig. 12, showing the H1-estimator for several excita-

tion levels. As for the nonlinear coefficients k1 and k3,

errors and standard deviations are very high for the

lowest excitation levels, while they tend to stabilize

for higher levels. The first level (0.5 N) does not

provide any estimation of the nonlinear coefficients

because the output displacement y2 is not high enough

to cover the gap value d, therefore, the nonlinearity is

not activated. Moreover, it can be observed that errors

on k1 are generally higher than the errors on k3. This is

to be addressed to the uncertainty on the gap

estimation, that has a higher impact on the estimation

of the stiffness k1, especially at low levels.

The estimated state-space nonlinear model of each

Monte Carlo simulation is used to replicate the outputs

of the system for all the excitation levels. The output
Fig. 11 Scheme of the 2-DOF system with contact nonlinearity
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simulations error �1;2 (Eq. 7) associated with DOFs 1

and 2 are therefore evaluated and averaged across the

simulations. Since errors on the DOF 2 are always

2 4 6 8 10 12 14
0

1

2

3

2 4 6 8 10 12 14
0

0.5

1

1 N RMS
2 N RMS
3 N RMS
4 N RMS
5 N RMS

a)

b)

Fig. 12 H1-estimator of the system FRF (numerical example)

through several levels of excitation in (a) and corresponding

coherence function in (b)

Table 4 Errors on the estimated modal parameters and nonlinear coefficients. Results are averaged over 100 Monte Carlo simu-

lations, with standard deviations written in brackets

Level (N RMS) Model name Error on frequency

(%)

Error on damping

(%)

Error on k1
(%)

Error on k3
(%)

Mode 1 Mode 2 Mode 1 Mode 2

0.5 NSI1 0.01

(0.01)

0.005

(0.004)

0.22

(0.18)

0.05

(0.04)

–-

(–-)

–-

(–-)

1 NSI2 0.09

(0.07)

0.004

(0.003)

0.74

(0.61)

0.06

(0.04)

18.21

(15.29)

55.93

(86.16)

1.5 NSI3 0.13

(0.08)

0.005

(0.004)

1.15

(0.92)

0.06

(0.04)

11.21

(8.61)

4.64

(6.52)

2 NSI4 0.18

(0.06)

0.005

(0.004)

1.36

(1.06)

0.06

(0.04)

8.76

(6.68)

1.44

(1.56)

2.5 NSI5 0.21

(0.05)

0.006

(0.004)

1.85

(1.36)

0.06

(0.05)

9.96

(7.17)

1.60

(1.14)

3 NSI6 0.25

(0.03)

0.005

(0.003)

1.93

(1.33)

0.05

(0.04)

7.93

(5.58)

1.81

(1.37)

3.5 NSI7 0.26

(0.03)

0.005

(0.004)

2.78

(2.01)

0.06

(0.05)

7.41

(5.98)

1.97

(1.55)

4 NSI8 0.26

(0.03)

0.005

(0.004)

3.06

(2.27)

0.07

(0.04)

8.44

(6.80)

1.90

(1.34)

4.5 NSI9 0.27

(0.03)

0.005

(0.003)

3.61

(2.68)

0.06

(0.05)

8.08

(6.26)

1.85

(1.49)

5 NSI10 0.28

(0.03)

0.005

(0.003)

4.58

(3.04)

0.06

(0.04)

8.72

(5.98)

2.09

(1.43)

Fig. 13 Error matrix on the validation set of DOF 2 averaged

over MC simulations. The values refer to the percentage errors

defined in Eq. (7). The darkness of the cells is proportional to the

error level. Blue background (lower-triangular matrix) indicates

simulations with interpolation; red background (upper-triangu-

lar matrix) indicates simulations with extrapolation; bold type

indicates same-level simulations
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higher than 1 for the considered system, only the error

matrix of �2 is depicted in Fig. 13. The values on the

diagonal correspond to the same-level identification

and generally correspond to the lowest error for each

model, as expected. Errors tend to increase when

extrapolating (red background) or interpolating (blue

background), with the exception of the first excitation

level (first column). The reason is that it behaves

linearly, therefore a good estimation of the ULS is

enough to achieve acceptable errors. For the same

reason, the model NSI1 generates huge errors when

extrapolated towards every other excitation level.
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