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Abstract

Since the seminal works on the application of density functional theory (DFT) and

the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and

hydrogen evolution (HER), the modeling of both reactions has quickly evolved for

the last two decades. Formulation of thermodynamic and kinetic Linear Scaling Re-

lationships for key intermediates on crystalline materials have led to the definition of

activity volcano plots, overpotential diagrams, and full exploitation of these theoretical

outcomes at laboratory scale. However, recent studies hint at the role of morpholog-

ical changes and short-lived intermediates in ruling the catalytic performance under

operation conditions, further raising the bar for the modeling of electrocatalytic sys-

tems. Here, we highlight some novel methodological approaches employed to address

eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we

first show how ab initio and machine learning (ML) methodologies can partially repro-

duce surface reconstruction under operation, thus identifying active sites and reaction

mechanisms if coupled with microkinetic modeling. Later, we introduce the potential

of DFT and ML to interpret data from Operando spectroelectrochemical techniques,

such as Raman spectroscopy and Extended X-ray Absorption Fine Structure charac-

terization. Next, we review the role of electrolyte and mass transport effects. Finally,

we suggest further challenges for computational modeling in the near future as well as

our perspective on the directions to follow.
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1 Introduction

Electrocatalysis is a crucial process which “facilitates conversion between electrical and chem-

ical energy in fuel cells and electrolysis devices”.1 Conversion of chemical energy into elec-

trical energy takes place in a “galvanic” cell through spontaneous reactions occurring at

the two electrodes once connected through a conductor.2 Instead, exploitation of electrical

energy to carry out chemical reactions takes place in an “electrolytic” cell by applying an

external voltage across the electrodes greater than the open circuit potential.2 In this review,

we focus on electrocatalytic processes applied to electrolytic cells.

Due to the technological advances and consequent cost reduction enabled by the econ-

omy of scale of renewable energy within the last decades,3 sustainable storage technologies

as conversion of water to hydrogen (Hydrogen Evolution Reaction, HER) or electrochemical

reduction of carbon dioxide (eCO2R) will likely compete soon with the exploitation of fossil

fuels.4,5 The uptake of both processes has quickly evolved from pioneering outlooks at the

beginning of the last century,6 mainly as a result of key investigations,7–11 as well as practi-

cal breakthroughs.3,4,12 Over the last decade, most of the computational studies have been

centered in going beyond Linear Scaling Relationships (LSR) and Computational Hydrogen

Electrode (CHE),8 typically applied to estimate the thermodynamics and kinetics of well-

defined catalytic systems. In the present review we focus on the material gap between ideal

structural models and the in situ catalytic phases under reaction conditions.

Very recently, new challenges are arising from processes occurring across the electrocat-

alytic cell during operation,13–15 such as electric field, electrolyte, and mass transport effects,

thus requiring more complex methodological approaches to rationalize the overall perfor-

mance.16 Many heavy methodological developments have been introduced to consider sol-

vents either implicitly or explicitly and the effect of electric field (i.e the jDFTx scheme).17–19

These approaches aim at incorporating these terms into the Kohn-Sham DFT formalism in

an increasing self-consistent manner.18 In contrast, much less attention has been paid to

other modeling aspects, like the surface modifications induced at the electrode-electrolyte



interface or the impact of the current in restructuring the materials.

After a short preliminary discussion on the state-of-the-art research works, this review

aims at giving a subjective, yet accurate overview about the advances in modeling elec-

trochemical CO2 reduction which have occurred for the last five years. Across the article,

mentions to hydrogen evolution (competing reaction) and Oxygen Evolution Reaction (OER,

anodic process) will instead be limited to specific cases. We start by discussing the main

methodologies developed to rationalize eCO2R on crystalline materials under well-defined

reaction conditions (Section 2). Here we review approaches to reproduce the effect of electro-

chemical potential,20 solvation,21–26 and the concepts of network analysis and dimensionality

reduction inherent to Linear Scaling Relationships.27,28 Section 3 highlights new insights and

corresponding challenges from Operando studies of electrocatalytic processes. Moving from

catalyst to diffusion layer, we consider (1) reconstruction of active sites, (2) detection and

identification of key reaction intermediates, and (3) electrolyte effects. In the core of the

review, we discuss novel theoretical frameworks to tackle these experimental challenges. Ini-

tially, we focus on ab initio and machine learning techniques to model surface reconstruction

under eCO2R conditions (Section 4). Secondly, we underline the role of DFT vibrational

analysis and microkinetic studies to complement spectroscopy and kinetic data to define re-

action pathways for eCO2 up to n-propanol (Sections 5-6). After, we introduce the relevance

of multiphysics modeling and ab initio simulations to assess potential influences of pH and

electrolyte species in CO2 reduction activity and selectivity (Section 7). Section 8 offers a

short discussion over applications of machine learning to (1) the development of atomistic

potentials toward high computational efficiency and (2) the automatic extraction of struc-

tural properties from experimental data. Finally, we conclude the review by offering our own

perspective on future developments needed in the field of computational electrocatalysis, as

well as an outlook on relevant remaining research questions.



2 CO2 reduction on crystalline materials

2.1 Hori’s Milestones

The pioneering concept introduced by Giacomo Luigi Ciamician in 1912 − By using suitable

catalyzers, it should be possible to transform the mixture of water and carbon dioxide into

oxygen and methane 6 − is now a reality. In the field of eCO2R, research has advanced from

preliminary reports of polarization signals due to CO2 reduction on mercury cathodes,29

to production of added value C2+ products at high selectivities and current densities.4,12

Catalytic search and mechanistic studies carried out by Hori and collaborators during the

last forty years have elucidated the complexity of this reaction, thus providing key insights

and experimental data for posterior theoretical rationalization.9

Since many of the milestones in the field naturally derive from Hori’s work, we find it

adequate to recall the main findings below.7,30–37

1. Product distribution. eCO2R on Cd, Sn, Pb, In mainly accounts for formate. Zn

is selective to formate or CO, whilst Cu is the only material which allows formation

of C2+ compounds. Ag and Au catalyze CO2 reduction to CO, whereas Ni and Fe are

only active for HER.7

2. Cation effect. On a copper catalyst, cations with larger ionic radius promote CO2

(CO) reduction to ethylene to the detriment of CH4 production and eCO2R activity

correlates with cation ionic radius.32

3. CO as key eCO2R intermediate. pH effect (vs SHE reference). High CO

coverage (∼ 90%) is observed during CO2 reduction to hydrocarbons,33 suggesting the

relevance of adsorbed CO species. Ethylene and ethanol selectivity increases for bulk

alkaline pH, whilst acidic pH favors methane production.37 Thus, the rate-determining

step (RDS) to form methane is expected to depend on pH, whilst ethylene production

is pH-independent.37 Spectroscopic signals for adsorbed CO are observed between −0.8



and −1.0 V vs NHE,34 and are promoted by higher temperatures.30,31

4. Copper facet sensitivity. Cu(111) favors eCO2R to methane. Cu(100) enables

ethylene production, which is further promoted on (111) steps on (100). Conversely,

(100) planes with (110) steps are mainly selective to ethanol.35,36

5. Surface poisoning. Metals contaminants, such as Fe2+ and Zn2+, can poison copper

electrodes during operation, causing its deactivation.38

2.2 Computational modeling

Many of the observations of Hori et al. for eCO2R on well-defined catalysts (Section 2.1)

in addition to evidence on other electrocatalytic reactions have been elucidated during the

last decade through the introduction of the Computational Hydrogen Electrode9 and the

observation of Linear Scaling Relationships between CO2 reduction intermediates (Sections

2.2.4).11,39

2.2.1 The “Anderson” Electrode

Albeit typically overlooked, the contribution of Anderson and his research group has been

fundamental to the application of computational chemistry to electrocatalysis.20 Already in

1982, Anderson and Ray studied hydrogen evolution on a Fe5 cluster from H3O+ and H2O

reduction over a 4 V potential range simulated by shifting the Fe ionization potential.40

This elegant approach was one of the first strategies to explicitly include potential bias in

estimation of activation energies. Besides, the validity of this work is further highlighted

by the assessment of different proton sources for HER, topic which has recently become

very relevant in the field.41,42 Few years later, Anderson and Kang extended their previous

model by introducing an electron donor in the simulation cell to assess hydrogen evolution

on diamond.43 In this study, they employed H3O+ as proton source and CH4 as a model

molecule for the C-H bond (H on the diamond system). Besides, they placed a Li atom



coordinated to 1-2 water molecules 10 Å far away from the CH4 molecule. Since equilibrium

is assumed at the electron transfer, the electrochemical potential U of Li is given by Equation

1, where IP stands for the ionization potential of the alkali cation and 4.6 V represents the

potential vs SHE of the electron. Different applied potentials were then estimated by simply

tuning Li ionization potential. Remarkably, the use of alkali metals as electron donors

has been reintroduced in 2016 by Nørskov and co-workers to assess explicit field effects in

electrochemical CO2 reduction on Ag,44 and recently an analogous approach has allowed to

rationalize the key role of cations in eCO2R and HER on Au, Ag, and Cu.42,45

U = (IP/|e|− − 4.6) V (1)

One year later (1999), Anderson and Albu extended this framework to a general electron

donor entity, D, representing the working electrode.46,47 The chemical potential µ(D) of

electrons at the electrode is defined as their Fermi energy, EF, or equivalently as the nega-

tive of the electrode thermodynamic workfunction φ. On the standard hydrogen electrode

scale, the electrode potential is then given by Equation 2, where the formula can be further

simplified recalling the average value of 4.6 eV for φH+/H2
and that φ = −µ(D). The electron

transfer to a specific reduction entity R is assumed to take place when the electron affinity

of R, Eea, matches the chemical potential of the donor, µ(D). The electron affinity of R

can be estimated computationally as the difference between the energy of R and R− with

constant structure. Thus, different structures can be sampled and the ones which fulfill the

relation Eea ∼ µ(D) identified. Finally, U can be derived from Eea from the lowest energy

configuration, see Equation 2.46,47

U = φ− φH+/H2
= Eea − 4.6 eV (2)

The last generalization of the “Anderson” electrode was developed to assess Oxygen

Reduction Reaction (ORR) on a Pt3Cr(111) catalyst.48,49 First, Roques and Anderson con-



sidered the well-known relationship between the variation of Gibbs free energy ∆G0 for a

given reduction reaction and the reversible potential U0, Equation 3, where n is the number

of electrons involved in the reduction and F is the Faradaic constant.49 ∆G0 can be estimated

through the the reaction energy Er plus a constant k which includes enthalpic, entropic, and

solvation contributions. Equation 3 can then be further expanded as Equation 4, where

the 4.6 V factor is due to the electron energy at 0 V vs SHE. In the computational study,

Equation 4 allowed to determine the reversible potential for the reduction of OH radical

(i.e. the reactant) to water (i.e. the product) with significant accuracy: U0
theo = 2.99 V vs

U0
exp = 2.81 V.

Generalizing this approach, the reversible potential for a specific reduction reaction on

a given catalyst M can be estimated by computing reactant R and product P binding

strengths on the catalytic surface and correcting for the reversible potential given in aqueous

solution, U0
aq, see Equation 5.48,49 As pointed out in Ref. 20 the only real difference between

this methodology and the successive Computational Hydrogen Electrode formalism8 is the

choice of the OH radical as reference compound instead of H2. Otherwise, both approaches

are conceptually identical, since they include applied potential effects as linear corrections

on the intermediates adsorption energies.

U0 = −∆G0

nF
(3)

U0 = −
(
Er
nF

)
− 4.6 V + k (4)

U0(M) = U0
aq +

[Eads(P )M − Eads(R)M ]

nF
(5)

2.2.2 The Computational Hydrogen Electrode

Few months after the introduction of the “Anderson” electrode in February 2004,48,49 Nørskov

et al. introduced the Computational Hydrogen Electrode formalism to assess the effect of

proton-coupled electron transfers (PCETs) on the thermodynamics of the oxygen reduc-



tion reaction on Pt(111) (Figure 1a).8 This procedure is based on six steps and it is only

applicable for reaction routes which occur via PCETs:

1. Following the Standard Hydrogen Electrode (SHE) scale, at standard conditions (pH

= 0, 1 H2 bar, T = 298.15 K, U = 0 V vs SHE), we can relate the chemical potential

of a proton/electron couple to one half of H2 Gibbs free energy.

2. Solvation contributions must be included either through explicit consideration of water

molecules in the supercell,8,22,25 or through implicit continuum models based on solvent

dielectric permittivity.23,24,26,50–52 Mixed schemes with explicit and implicit terms are

less widely used than in homogeneous catalysis.

3. The Gibbs free energy of all the intermediates which involve an electron transfer (ET)

must be shifted by −n|e−|U , where n is the overall number of electron transferred (with

electric charge in elementary unit |e−|) and U the applied bias. Equation 6 reports

a practical example to calculate the Gibbs free energy variation for CO2 reduction to

COOH via 1 PCET.

∆G*COOH = Gproducts −Greactants = G*COOH − (GCO2 +
1

2
GH2 − |e−|U) (6)

4. Electric field effects are estimated as ~p · ~EEDL, where ~p is the dipole moment of the

adsorbate and ~E is the electric field within the Electrical Double Layer (EDL).

5. At pH 6= 0, the Gibbs free energy of the proton is linearly corrected via kB·T ·ln(10)·pH,

in line with the Reversible Hydrogen Electrode (RHE) standard.

6. Gibbs free energy of adsorption must account for zero point energies and entropic

contributions, including vibrational terms for adsorbed molecules).

The CHE formalism permitted the first mapping of experimental evidence to first prin-

ciples calculations, such as cyclic voltammograms for H on Pt surfaces53 and Pourbaix dia-

grams,54 thus allowing significant advances in the field.55 In the first application of the CHE



to CO2 reduction,9 overpotentials to form H2, HCOOH, CO, and CH4 obtained by DFT

showed excellent agreement with experimental data from Hori’s eCO2R studies on copper

(Section 2.1).30,31 After more than a decade of success, the CHE is considered the funda-

mental framework to model the role of potential in the thermodynamics of electrochemical

reactions under the assumption that activation energies can be initially disregarded.56 Nev-

ertheless, alternative approaches have been developed to include potential effects on reaction

kinetics, as nicely summarized in this recent Review.56

Figure 1: a, Determination of the Gibbs free energy diagram for oxygen reduction on
Pt(111) at U=0 V vs SHE, U = +0.78 V vs SHE, and U = +1.23 V vs SHE through the CHE
formalism. The energy profile at +1.23 V vs SHE for 0.5 ML oxygen coverage is highlighted
in blue.8 b,Interface energy vs USHE and URHE at pH = 0 calculated for different snapshots
of ab initio molecular dynamics simulations carried out on a water/Au(111) interface with
different number n of H+ added to the system. N denotes the number of surface Au atoms
(12).57 Figures respectively adapted with permission from Ref. 8 (Copyright 2004 American
Chemical Society) and Ref. 57 (Copyright 2016 American Chemical Society).

2.2.3 Beyond the Computational Hydrogen Electrode

Since the CHE formalism accounts for electric field effects only a posteriori from the dipole

moment of the adsorbate (step 4 in Section 2.2.2),8 recently Rossmeisl et al. developed a

generalized formalism (GCHE) to include explicit interactions between electric field, inter-

mediates, and solvent molecules.58 Along with postulating that the bulk electrolyte is in



equilibrium and that the interface is in equilibrium with bulk electrodes and electrolyte, the

GCHE assumes that the interface region is charge neutral and large enough to screen all

charges.57 Thus, a direct correlation exists between electron wave function, obtainable for a

metallic surface through DFT, and electrode potential vs SHE at the electrochemical equi-

librium. Additionally, the electrode potential can be referred to the RHE scale by correcting

for the different pH.

According to the GCHE formalism,58 the electrochemical potential of a proton/electron

couple, µH++e− , can be calculated from Equation 7, where ∆Gd is the dissociation energy

for 1
2

H2, ∆Gi is the H ionization energy, φe− and φ0
H+ are respectively the work functions of

electron and proton in solution (at pH = 0), measured with respect to the vacuum. Since

for U = 0 V vs SHE and pH = 0 the electrochemical potential of the proton/electron couple

is zero, Equation 7 can be simplified to Equation 8, where φe−(SHE) = 4.44 eV is the

work function of an electron in a metal at the standard hydrogen electrode potential. Thus,

µH++e− , φe− , and pH are related via Equation 8 for a given metal/solution interface. φe−

can be calculated from the electrode potential U , obtained from the interface dipole within

the simulated cell, Equation 9.

µH++e− = ∆Gd + ∆Gi − φ0
H+ − 2.3 · kB · T · pH− φe− (7)

µH++e− = φe−(SHE)− 2.3 · kB · T · pH− φe− (8)

USHE =
φe− − φe−(SHE)

e−
(9)

Since interface dipole, electrode potential, and electron work function are constant for a

given structure, the Gibbs free energy of a metal/solution interface normalized per surface

atom is defined at the electrochemical equilibrium (pH = 0) by Equation 10. n and N are

respectively the number of hydrogens and surface metal atoms within the systems, while

GN,n, GN,0, GH2 are the Gibbs free energies of metal/solution interface, clean surface, and

gas phase H2. These energies can be either calculated via DFT simulations or derived from



experimental data. Equation 10 can be extrapolated to account for pH 6= 0 as in Equation

11, where the proton/electron couple chemical potential can be obtained from Equations 8

and 9, knowing pH and estimating electron work function from the interface dipole.

Ginterface(µH++e− = 0, φe−) =
GN,n −GN,0

N
− 1

2

n

N
GH2 (10)

Ginterface(µH++e− , φe−) =
GN,n −GN,0

N
− 1

2

n

N
GH2 −

n

N
µH++e− (11)

Following the GCHE principles relevant electrochemical properties, such as potentials of

zero charge, Gibbs isotherms, and differential capacities as a function of pH, were estimated

from DFT simulations on a Au/water interface.57 Besides, the same methodology was applied

to a Pt/water interface to estimate OH coverage vs bulk pH.59 In Ref. 57, hydrogen atoms

were either added or removed from the solvation layer and the resulting systems underwent

ab initio molecular dynamics at 300 K with time step 0.5 fs to account for 90000 states

with different number of protons in the system. Thus, the authors estimated the Gibbs

free energy of the metal/solution interface as a function of applied potential and pH from

Equation 11, see Figure 1b. They calculated the Gibbs free energies of Au/water system,

the clean surface, and electron work function for all the AIMD snapshots with DFT. Finally,

static properties of the interface were derived from grand canonical Metropolis Monte Carlo

averages on the snapshots to define an ensemble with physical values of surface coverage and

proton excess at any given electrode potential and pH.

Further approaches to relate thermodynamics/kinetics and electrochemical potentials in-

volve the explicit insertion of electric field in slabs through an artificial dipole moments,44,60–63

or the self-consistent solution of the Poisson-Boltzmann (PB) equation and the Kohn-Sham

equations.64–66 We refer to Ref. 20 for an accurate review of these methodologies.



2.2.4 Linear Scaling Relationships

In agreement with the Brønsted-Evans-Polanyi relation, first derived from experimental evi-

dences,67,68 kinetic Linear Scaling Relationships (kLSR) were demonstrated between activa-

tion barrier and reaction energy for different reactions.69–73 Few years later Abild-Pedersen et

al. developed a set of scaling properties between adsorption energies for hydrogen-containing

molecules, the so-called thermodynamic Linear Scaling Relationships (tLSR), see Figure

2a.10 The rationale behind these dependencies can be traced back to bond-order conservation

theory and valence (octet) rules for light elements. As suggested by the d-band model,74,75

the reactivity of a transition metal is mainly given by its d-band and this property affects an

adsorbate depending on the bond order with the surface. When comparing the same metal

in two environments, the system characterized by higher d-band center is more reactive, due

to enhanced hybridization between the bonding and anti-bonding adsorbate states and the

metal electronic states.74

According to the tLSR,10 the adsorption energy for a given intermediate containing a

hydrogen atom correlates with the bond order and ∆Esp, parameter which depends on sp

contribution to binding energy. In the case of adsorption of CHx molecules on surfaces, tLSR

are mathematically described by Equation 12, where γ(x) = xmax−x
xmax

, ξ = ∆ECHx
sp −γ(x)∆EC

sp,

and xmax is the maximum number of H atoms which can bond to C.

∆ECHx = γ(x)∆EC + ξ (12)

Analogous tLSR were demonstrated for NHx, OHx and SHx intermediates,10 thus sug-

gesting their validity for other electrocatalytic reactions as well. In oxygen evolution reaction,

binding energies of the reaction intermediates (*OH, *OOH, and *O) fulfill universal tLSR

on both metallic76 and oxidic systems,77 thus leading to limitation of catalytic performance.

Such limiting effect has been nicely exemplified through volcano plots correlating activity

(or overpotential) for OER and energetic descriptors, as *O binding strength76–79 or energy



differences (e.g. ∆E*O − ∆E*OH ).80 Similar volcano plots were defined for hydrogen evo-

lution reaction, correlating *H binding and HER activity as first proposed by Trasatti.41,81

Three decades later, Nørskov et al. employed this concept to rationalize the outstanding

performance of Pt for HER, which is due to its thermoneutral *H chemisorption energy.82

In addition to tLSR based on electronic effects, analogous relationships were demon-

strated between adsorption energies and coordination numbers of the active species,83–85

predicting that surface defects exhibit stronger binding of cathodic reaction intermediates

due to their lower coordination and consequently higher localized electronic density. Whilst

the valence of the adsorbate (Equation 12) rules the slope of tLSR, both valence and local

coordination of the catalyst center provides the offset. Hence, proper synthetic guidelines

can tune the interplay of these effects to design systems with high performance by combin-

ing both electronic and structural dependencies of surface reactivity.85 The application of

this theoretical framework enabled the prediction of catalytic reactivity of defective surfaces

for ORR and the identification of product-specific active sites motifs for eCO2R on Cu.86,87

Apart from coordination environment, local strain affects binding properties on metals as

well, since lattice expansion leads to up-shift of the metal d-band and consequent stronger

adsorption of reaction intermediates. Such phenomenon was first introduced by Mavrikakis

and co-workers for *O and *CO on Ru and Au.88,89 We anticipate here that this strain effect

may be the physical foundation of the previously discussed coordination number-based linear

scaling relationships.83–85

Since both thermodynamic and morphological linear scaling relationships are based on

the d-band model, we here briefly mention a recent study from our group, highlighting the

shortcomings of this framework to rationalize the adsorption energies of group 12 metals,

such as Zn and Cd.90 The reactivity of these two metals cannot be entirely described by their

d-band center, suggesting the need for a second parameter. Hence, the authors introduced

a second physical descriptor, the reduction potential,91 to account for ionic effects on top of

solely covalent interactions ruled by the d-band center. A statistical Principal Component



Figure 2: a, Adsorption energies of CHx (x = 1, 2, 3 as crosses, circles, and triangles,
respectively) vs adsorption energy of C on transition metals. Molecules in vacuum and
clean surfaces were taken as energy references. Data points for close-packed and stepped
surfaces are colored in black and red respectively.10 b, ∆E*CO and ∆E*H as descriptors to
classify transition metals into H2 evolving catalysts (strong H binding), systems selective to
C2+ (weak H binding, mild CO binding), and metals evolving CO (no H binding, weak CO
binding) or HCOO− (no H neither CO binding).11 Black lines highlight boundaries for H (x-
axis) and CO adsorption (y-axis). Figures adapted with permission from Ref. 10 (Copyright
2007 American Physical Society) and Ref. 11 (Copyright 2017 Wiley-VCH) respectively.

Analysis (PCA) applied to DFT thermochemical data for 71 *H-, *O-, and *C-terminated C1-

C2 adsorbed species on 12 close-packed metal surfaces confirmed validity of both covalent and



ionic descriptors to determine surface reactivity. By enabling prediction of surface reactivity,

the developed framework enables quick screening of binding energy of intermediates and

consequently it is transferable to the assessment of any reaction of choice.92

Following the discussion on application of tLSR to eCO2R, Bagger et al. applied these

concepts to classify the selectivity toward C1-C2 for d- and p−block metals,11,93 observed

experimentally by Hori et al. (Section 2.1).7 A ∆E*HCOO vs ∆E*COOH LSR failed to differ-

entiate between catalysts selective to CO (Ag, Au) and HCOOH (Zn),11 thus they proposed

three other descriptors: ∆E*COOH, ∆E*H, and ∆E*CO, see Figure 2b.11 The authors noted

that metals which strongly bind *H are mainly selective to H2, whilst CO-producing cat-

alysts can adsorb both *COOH and *H. Besides, ideal systems for catalyzing eCO2R to

HCOOH must have endothermic *H adsorption. As for eCO2R to C2 products, a selective

catalyst must exhibit a intermediate CO binding to hinder its release to the electrolyte, yet

enabling C-C coupling.93 Thus, Cu sits at the sweet spot, since it exhibits strong enough CO

binding, but thermoneutral H adsorption. Finally, oxygen binding energy was proposed as a

descriptor for alcohol vs hydrocarbon competition and this prediction was later confirmed by

experimental reports on eCO2R to methanol or methane on Au, Cu, and Ag electrodes.11,94,95

As a crucial remark, we highlight that the above-mentioned descriptors are specifically tai-

lored to single metals, thus alloys or oxide-derived materials may have completely different

reactivity, see for instance eCO2R to C2 products (specifically ethylene glycol) on Fe2P96

and nickel oxygenates.97

In a following study, Bagger et al. included considerations on both thermodynamcs and

surface morphology to rationalize Hori’s results on copper single crystals (Section 2.1)35,36

Since CO and H binding energies did not vary adequately to account for the different eCO2R

selectivity, the authors considered surface coordination number (Ncoord) and adsorption en-

ergy (∆E) of an extended list of intermediates (*OH, *OCCOH, *O, *H, *COOH, *CO,

*C) as potential descriptors. By applying Principal Component Analysis on experimen-

tal Faradaic efficiencies, the authors demonstrated that structural properties can describe



C2+ compounds selectivity on copper better than binding energies:39 (111) facet promotes

methane, (110) acetaldehyde, (100) ethylene, whilst n(100)× (110) steps are responsible for

ethanol production.

3 Challenges from electrocatalytic processes under work-

ing conditions

As we have seen, computational simulations on purely crystalline models were very effective

in reproducing and rationalizing experimental observations on single crystals and under

well-defined conditions (Sections 2.2.2-2.2.4). Particularly, all the terms contributing to the

Gibbs free energies have been benchmarked extensively, demonstrating that the equations to

obtain the energies are robust and contain all the key elements to constitute an accurate first

order approach. However, limitations have been identified as the thermodynamic descriptor

inherent to the CHE approach might not be sufficient. For instance, in the HER process

the typically assumed ∆GH = 0 eV target of the volcano plot has been challenged due

to coverage, kinetic, and the explicit applied overpotential effects.98,99 In addition, new

challenges are arising from Operando characterization when electrocatalytic systems are ruled

by dynamic processes. This particularly affects the material gap between the prepared

catalyst and its state under reaction conditions along with mass transport and concentrations

at the interfaces between the electrode, electrolyte, and bulk solution.

3.1 Reconstruction of active sites during operation

Recently, many different observations of surface reconstruction towards optimized electrocat-

alytic performance were put forward. In the field of electrochemical CO2 reduction, copper

surface reconstruction has been discussed to a large extent during the last decades.14,63,100–103

Operando characterization via Electrochemical Scanning Tunneling Microscopy (EC-STM)

and Raman spectroscopy highlighted the reconstruction of polycrystalline copper (pc-Cu)



to (100) facets,102 and nanocuboids.63 Air-oxidized copper naturally reconstructed toward

Cu(100) facets at cathodic bias,104 as well as Cu(110) and copper materials including both

polycrystalline and (111) facets.105 Generally, product distribution and activity of copper

catalysts strongly depends on the synthetic procedures, thus suggesting a completely different

morphology on reconstructed surfaces than single crystals.35,36,106 Specifically, oxide-derived

copper mainly produce ethylene,107–114 ethanol,109 n-propanol,109,115 and traces of acetate

and ethane,109,116 in line with the eCO2R performance of copper nanoparticles at higher

overpotentials117–120

Recent studies further confirm the role of metastable or kinetically trapped phases, sur-

face reconstruction, and solvent molecules in tuning catalytic performance.14,107,112,114,121

Carbon isotopic labelling (12CO2 vs 13CO2) differentiated between three specific active sites

on oxide-derived copper (OD-Cu) catalyst, selective to (1) ethanol and acetate; (2) ethylene,

and (3) 1-propanol, whilst no difference was found for crystalline Cu.122 Furthermore, a

Cu2O-derived material showed an outstanding CO reduction selectivity toward ethanol and

acetate at very low cathodic bias (∼ 40% and > 10% Faradaic efficiency at −0.3 V vs RHE

for 0.1 M KOH respectively),109 suggesting residual oxygen or solvent water to take part

into CH3COO− formation.123,124 A successive study on C16O reduction in a H18
2 O electrolyte

on crystalline copper facets confirmed that around 65%, 80%, and 70% of ethanol, acetate,

and 1-propanol products had at least one oxygen from solvent molecules.125 The presence

of low amount of residual oxygen during CO2 reduction conditions has been demonstrated

by oxygen isotopic labelling (< 1% of the original content within 100 nm).119 Recently, an

independent study has detected the presence of residual oxygen under reductive conditions

through grazing incident hard X-ray Photoelectron Spectroscopy.126 The authors identified

those species as oxygen present at defects and/or vacancies on the surface and oxygen inter-

calated within metal layers. Arán-Ais et al. showed that C2+ products formation correlates

with the amount of surface defects and percentage of Cu(I) site during pulsed CO2 elec-

troreduction.14 In particular, the extent of Cu(100) terraces promotes ethylene selectivity,



whilst Cu(I)-Cu0 sites, together with defects, lead to higher ethanol production. An elegant

assessment of Cu(I) reducibility through pulsed eCO2R at different temperatures further

indicated that, when the kinetics of Cu(I) reduction is minimized (T = 278.14 K), ethanol

is the main C2 reduction product to the detriment of ethylene formation (Figure 3a).127

Finally, DiDomenico et al. proposed that pulsed CO2 electrolysis may have two-fold impact

on eCO2R: (1) “self-cleaning” of the catalysts from surface poisons (from Eanodic > −0.5 V)

and (2) enhanced C2+ selectivity due to electrolyte/electric field effects (from Eanodic > −0.1

V).128

Figure 3: a, Faradaic efficiencies of ethylene and ethanol for eCO2R in 0.1 M KHCO3 on
Cu at different cathodic bias and applied temperatures. Anodic pulse: +0.6 V vs RHE,
timesteps for anodic and cathodic pulses: 1 s.127 b, Product distribution on Cu, thin Cu2O,
and thick Cu2O for CO2 reduction in a 0.1 M K2CO3 electrolyte at −1.0 V vs RHE after 1
hour, 16 hours of continuous operation, and regeneration of the oxide layer by exposing the
catalyst to air for two weeks after operation.129 Figures adapted with permission from Ref.
127 (Copyright 2021 American Chemical Society) and Ref. 129 (Copyright 2021 National
Academy of Sciences) respectively.

Recently, it was highlighted that almost no CO2 reduction products are formed in ab-

sence of oxygen or surface defects.129,130 After 16 hours of operation at −1.0 V vs RHE in

CO2-saturated 0.1 M K2CO3 electrolyte, hydrogen evolution was the only electrocatalytic

reaction observed on both pc-Cu and a Cu/Cu2O catalyst, unless oxygen was reintroduced in

the system (Figure 3b). Since the authors demonstrated through in situ Raman spectroscopy

that Cu2O was fully reduced after only 1 hour at −1.0 V vs RHE, they highlighted the rel-



evance of disordered Cu0 for C2H4 production. Additionally, CO2 reduction performance

differs significantly depending on the pre-treatment of the catalyst, as shown in a recent

work on well-defined Cu(100) and Cu(111) facets. These catalysts were prepared by pris-

tine atomically flat Ultra-High Vacuum (UHV) specifically to reproduce Hori’s results.35,36

UHV-prepared, sputtered, electrochemically polished, and O2 plasma treated copper surfaces

presented similar eCO2R reduction current densities normalized by their electrochemically

active surface area,130 in line with a recent outlook.131 Higher Faradaic efficiencies toward

eCO2R products on electrochemically polished and plasma treated samples were entirely due

to suppression of H2 production,130 expected to happen due to variations of surface pH.131

Hydrocarbons were observed only for electrochemically polished or plasma-treated samples,

thus surface defects were deemed responsible for tuning CO binding energy, crucial property

to enable the C-C pathway. These features were observed by CO Temperature Programmed

Desorption (TPD) analysis.

Briefly extending the discussion to OER catalysts, a pristine SrIrO3 catalyst performed

better than IrOx and RuOx for OER due to strontium leaching during operation.13 The

resulting non-stoichiometric catalyst enables only 0.27-0.29 mV overpotential for 30 hours

of continuous operation. X-ray Photoelectron Spectroscopy (XPS) on Ir 4f and Sr 3d ob-

served a decrease of Sr signal to 25% of its original value after only 30 minutes and 20%

after 24 hours. Thus, a novel structure was entirely formed in situ and became extremely

active after 2 hours of electrochemical testing. Besides, the typically employed Ni materials

reorganize extensively to form oxyhydroxy-compounds132–135 which may be further doped by

iron coming from nonpurified electrolytes.54,136–138 Under operation, nickel catalysts evolve

from α-Ni(OH)2 at low potentials to γ-NiOOH at high potentials as indicated by Ni K-edge

X-Ray Absorption Spectroscopy (XAS) measurements.139 In addition to the morphologi-

cal evolution, the layer-layer stacking is typically enlarged by water insertion and all these

structural changes lead to improvements in the reactivity of the active sites as well as the

mass transport of the reaction intermediates. The complexity of the system increases when



Ni electrocatalyst are doped with Ir ions, since these dopants may coordinate with water

molecules in solution, adsorb on the surface, and/or intercalate across the NiOOH lattice.54

3.2 Short-lived reaction intermediates

Many computational and experimental mechanistic studies have been dedicated to disen-

tangle the key intermediates and elementary steps of catalytic reactions,9,37,140–142 toward

an accurate description of the reaction pathways for eCO2R reduction on transition met-

als.143,144 Steady adsorbates have been successfully identified through spectroscopic tech-

niques,145 thus confirming theoretical predictions on adsorbed species.9 However, short-lived

intermediates formed during reaction pose a new challenge to both spectroscopy,146 and

computational modeling. These species are typically crucial for differentiating mechanistic

routes and ruling activity, as in the case of OCCO− along the C2+ route,16 and their un-

equivocal identification needs an integrated approach involving experimental and theoretical

characterization.16,147

As a clear proof of the relevance of short-lived intermediates, lately new features have

been reported through Operando techniques.148–150 Surface-selective infrared spectroscopy

has been employed to sample CO adsorption configurations on copper.151 By integrating

the C=O vibrational bands associated to bridge adsorption site (1800-1900 cm−1) and top

adsorption site (∼ 2100 cm−1) at different cathodic bias, top-bound CO was indicated as the

only active species for both eCO2R and CO reduction (COR). Besides, the authors observed

that this specific adsorption configuration partially converts to unreactive bridge-bound CO

below CO saturation regime.151 An et al. further confirmed the presence of a reactive CO

configuration via Time-Resolved Surfaced Enhanced Raman Spectroscopy (TR-SERS) for

CO2 reduction on copper nanoparticles. They revealed a highly dynamic, short-lived CO

intermediate with low frequency C=O vibration (∼ 2060 cm−1, Figure 4a), appearing at

−1.0 V vs RHE, the sweet spot for ethylene formation (Figure 4b).152 Concurrently, an

independent work observed the increase in Cu-CO stretching band at the expense of Cu-



CO rotation band for high CO partial pressure and high negative potential and related this

feature to C-C coupling.153 Lately, two vibrational signals at ∼ 490 cm−1 and ∼ 530 cm−1

have been detected on Ag-decorated Cu2O catalysts using Operando SERS for potentials

more negative than −1.0 V vs RHE, with a concurrent increase in selectivity toward ethanol,

1-propanol, and acetaldehyde.154 A proper assignment of these bands may shed light on the

preferential selectivity of Ag-based catalysts toward oxygenates155,156

3.3 Electrolyte effects

Electrolyte, as well as mass transfer of reaction intermediates, are crucial parameters for

electrocatalytic reactions, as CO2 reduction,158,159 hydrogen evolution,42,160,161 and oxygen

evolution,162 since concentration profiles at the interface might severely depart from the

bulk electrolyte composition.2,16,162–164 For instance, alkaline pH at the surface is expected to

promote CO2 reduction to C2+ to the detriment of C1 products.165–167 Laser-microstructured

cavities on copper allowed the local tuning of surface pH and CO2 concentrations, confirming

high Faradaic efficiency (F.E.) toward ethanol, ethylene, and propanol for alkaline pH and

intermediate CO2 concentration.167 Further investigations with pulsed CO2 reduction proved

a two-fold effect of anodic bias in lowering the surface pH and stabilizing and/or generating

polarized sites.168 Whilst for a anodic bias of +0.9 V vs RHE the authors observed a 10%

enhancement of C2 selectivity with respect to the lack of anodic pulses, a more positive bias

(Eanodic = +1.2 V vs RHE) resulted in increased CH4 production due to consumption of

OH− at the surface and a consequently more acidic pH.141 Finally, ions in the electrolyte

are also crucial for cathodic reactions as eCO2R and HER. Cations are expected to interact

with reaction intermediates through local electric field effects,32,169–171 or inducing water

electrolysis from their solvation shell,172 whilst anions are mainly responsible for surface

poisoning due to specific adsorption.2,173–176 Besides, the impact of ions is not only limited to

transition metals, as demonstrated by observed cation effect for CO2 reduction on perovskite

oxides.177



Figure 4: a, Time-Resolved Surface Enhanced Raman Spectroscopy (TR-SERS) heat map
on anodized mechanically polished Cu at −0.9 V vs RHE, showing a low-frequency band due
to an highly dynamic CO intermediate. Raman spectra interval: 717 ms. b, Catalyst perfor-
mance at different applied potential in a CO2-saturated 0.1 M KHCO3. Figures adapted with
permission from Ref. 152 (Copyright 2021 Wiley-VCH under Creative Commons Attribution
4.0 International License157).



Whilst simulations on crystalline models successfully accounts for some of these phenom-

ena, the assessment of the interplay of cation, surface pH, and mass transfer effects is so far

limited. Recently, specific anion and cation contributions were employed in an empirical way

to promote long-term stability for CO2 reduction on continuous-flow electrolyzers.15 Since

flow cells undergo deactivation due to formation of salt at the cathode,176 Endrődi et al.

designed a novel Operando procedure, where fresh electrolyte solution (1.0 M CsOH) was

introduced into the CO2 feed every 12 hours to regenerate and activate the silver cathode.

Through this process, they achieved partial current density for CO up to 420 mA cm−2 for

more than 200 hours. They attributed the enhanced performance of this proof-of-concept

setup to physical interactions, such as removal of salt at the cathode from the fresh solution

and promoting effects from the cations. Besides, benchmark studies of the reaction con-

ditions indicated that CO Faradaic efficiency depended on bulk pH, peaking at pH = 13.6

(jCO > 200 mA cm−2), thus suggesting the concurrent influence of surface pH effects.178 Very

recently, a fundamental study demonstrated the triggering role of alkali metals in enabling

CO2 reduction on polycrystalline Au, Ag, and Cu in acidic media due to stabilization of

a short-lived *CO−2 intermediate.45 Such evidence was reported independently for eCO2 on

a copper Gas Diffusion Electrode (GDE) configuration, even though the authors observed

such effect only for nonacidic bulk pH.179 In fact, different pH regimes lead to variations in

cation concentration at the surface,180as rationalized by Goyal et al through fundamental

experiments and theoretical insights.161

Cation effects extend beyond eCO2, since they have been identified as well for HER, ORR,

and OER on different electrodes. Along the alkali group, as the ionic radius increases, higher

reduction activities are typically expected (Figure 5), however the mechanism underlying this

promotional phenomenon is widely debated. Gao et al. reported that the alkali-metal ions

significantly influence the oxidation state of Mn in MnOx OER catalysts.182 Specifically, Li+

ion stabilizes the Mn2+ species, which is OER-inactive, thus leading to low OER performance

for small radius cations.182 Instead, Garcia et al. postulated that the superior OER catalytic



Figure 5: Cyclic voltammograms of NiOOH at pH 13 during OER in different electrolytes.
Solid lines: unpurified electrolytes; dotted lines: purified electrolytes. Measurements were
performed under rotation of the working electrode (1600 rpm) and collected at 0.010 V
s−1.181 Adapted with permission from Ref. 181 (Copyright 2019 Wiley-VCH).

performance of larger cations M+ is due to specific interactions with Ni-OO− species to form

NiOO− · · ·M+ complexes, whose formation is increasingly stabilized as the cation radius

becomes larger.181

On top of cations, anions are relevant for OER as well, since they may accumulate

at the anode and form complexes on the surface. Eventually, these species may lead to

deactivation and/or degradation of the employed catalysts,162 thus considerable effort has

been devoted recently to tuning the chemical environment at the anode.183 Typically, these

anionic complexes generated on the surface are hard to identify since they evolve during

operation, converting to other chemicals depending on surface pH and applied potential.184

For instance, for a Pt(111) catalyst in sulfuric acid solution different anionic adsorbates

have been proposed such as sulfate,185 bisulfate,186 SO2−
4 · ··H3O+ ion pairs,187 or OH−.188

To further increase the complexity of these processes, mutual dependencies between cations

and anions are also expected, since cations may act as counterions and stabilize anions

species. Garćıa et al. proposed a similar mechanism for anions on Pt, suggesting a two layer

morphology with chemisorbed (bi)sulfate on the Pt catalyst and adsorbed cations on the



(bi)sulfate layers.189

3.4 Perspective for Operando modeling

Recent experimental challenges summarized in Sections 3.1-3.3 cannot be fully rationalized

through simulations on as-synthesized crystalline models,190 which in brief we here define

as “as-synthesized” modeling (Section 2.2). New approaches must be developed to repro-

duce electrocatalytic conditions, addressing the material gap and mass transport phenomena

within the diffusion layer2 toward the definition of an “Operando” modeling framework.123

Predictions achieved through this new approach must then be validated by ad hoc experi-

mental studies under well-defined conditions.190

This framework should aim at realistically assessing (1) electric field/adsorbate driven

surface reconstruction, (2) evolution of active sites and consequent changes in catalyst re-

activity, (3) electrolyte effects as cation/anion/solvation contributions to electrocatalytic

reactions, (4) mass transfer, and (5) surface/bulk pH effects. These five challenging phe-

nomena are certainly crucial in tuning the overall performance of electrocatalytic cells, thus

in our opinion the field of computational modeling should tackle these challenges, possibly

by integrating these processes into generalized, multiphysics models. While insights from

computational studies on as-synthesized catalysts (in brief, as-synthesized modeling, Figure

6) are only partially valid under operation, “Operando” modeling can properly tackle chal-

lenges from Operando characterization. Thus, by assessing more “realistic” conditions, this

novel framework could enable the identification of potential-, adsorbate-, and pH-dependent

actives sites and trigger a second step in the optimization cycle, Figure 6.



Figure 6: Catalyst optimization cycle and contribution from “as-synthesized” modeling
and “Operando” modeling. Characterization of pristine systems and Operando tracking of
structural changes and/or intermediates provide fundamental understanding of the role of the
active sites. After two decades of modeling of as-synthesized catalysts, theoretical methods
must now move toward the accurate modeling of the overall reaction environment during
operation.



4 Modeling reconstruction under electrochemical con-

ditions

Surface sensitivity, i.e. the contribution of surface morphology to catalytic activity and se-

lectivity, has been extensively assessed in the field of catalysis,191 leading to the development

of Linear Scaling Relationships correlating adsorption energies of reaction intermediates and

coordination number of the active sites (Section 2.2.4). Application of these concepts to

crystalline domains suggest that undercoordinated sites bind adsorbates more strongly,83–85

motivating both the high reactivity of defects for eCO2R reduction,14,129,192 and the raise of

competing HER for surface atoms with very low coordination number.117,193

Even though defined synthetic procedures and catalyst treatments have proved effective

to increase the density of surface defects,112,194–197 reconstruction phenomena occurring dur-

ing operation have prevented the reproducibility and scalability of these approaches.63,102,198–200

Additionally, poor modeling of reconstruction processes hinders the identification of active

sites during operation and thus prevents the definition of guidelines to maximize these re-

action centers. The material gap, important in thermal catalysis, is even more acute in

the context of electrochemistry, as the potential and electrolyte are thermodynamic sinks

to which the simulations are typically not coupled. Furthermore, thermodynamic consider-

ations alone cannot reproduce local morphologies originated from kinetic processes,201 such

as metastable and kinetically trapped ensembles which might be extremely active in electro-

catalysis.202–207 A comprehensive investigation of kinetic effects driving surface restructuring

through purely static DFT simulations is limited by the large configuration space of de-

tective surfaces, thus such studies can be performed only under well-defined mechanistic

hypothesis208 or through machine learning (ML).209 The ML strategy is promising, yet not

fully realizable to date. Besides, for suitable application to electrocatalysis it should be

generalized to include electrolyte species and adsorbates. As an ultimate consequence, ex-

perimental studies are not yet able to fully exploit theoretical insights from models based



only on thermodynamic contributions and crystalline materials.

In this section, we will discuss new methodologies to (1) assess the thermodynamics and

kinetics of adsorbate-driven surface reconstruction on crystalline facets,100,208 and (2) to re-

produce metastable phases formed during catalytic reactions.54,210,211 This second strategy

is particularly relevant, since application of molecular dynamics enables the assessment of

surface patterns which originate from non thermodynamic processes. Nevertheless, the ro-

bustness of such DFT-MD approach must be properly validated through ad hoc experiments,

as Korpelin et al. have recently highlighted.212 All in all, detailed computational characteri-

zation of these reconstructed surfaces allows to identify active sites responsible for improved

catalytic performance as well as local effects which tune activity and selectivity (Sections

4.3-4.4).166,210,211,213

4.1 Restructuring processes on “as-synthesized” models

Copper reconstruction has been observed through different characterization techniques and

under distinct conditions. Low-Energy Electron Diffraction (LEED) and Scanning Tun-

nelling Microscope (STM) have detected surface restructuring under ultrahigh vacuum condi-

tions in presence of O and H adsorbates,214–219 or graphene overlayers.220 Besides, this contin-

uous process occurs as well under electrocatalytic conditions, as reported through Operando

EC-STM for HER221,222 and with electrolytes typical of CO2 reduction.63,100,102,103,105,198,223,224

Overall, cathodic bias alone or surface modifications via adsorption of H or C species are

expected to be the main promoters of such reconstruction,224 nevertheless at very negative

potential specific cation adsorption may also play an active role.225,226

Researchers from the groups of Prof. Buonsanti and Prof. Marzari assessed the ex-

tent of morphological evolution in copper under CO2 reduction conditions and described a

potential-driven degradation mechanism due to CO and H adsorption via Grand-Potential

density functional theory simulations.100 Copper nanocubes with different sizes (16, 41 and

65 nm) were subjected to CO2 electrolysis in a 0.1 M KHCO3 electrolyte at −1.1 V vs RHE.



Although some cuboids were still observable after 6 hours, after 12 hours the nanoparticles

underwent a full degradation of the crystalline facets, which caused a marked increase of

HER. Nanoclustering was observed as well in a CO2-free electrolyte, thus suggesting the

instrumental role of applied potential for enabling this phenomenon. To assess the influence

of both adsorbates and applied potential, the authors employed DFT simulations on specific

crystalline facets of copper, either clean or covered by H, CO, and H+CO with solvation

included through a self-consistent polarizable continuum model.227

A grand canonical approach was applied to predict the potential-dependent equilibrium

shape of nanoparticles under electrochemical conditions.228 In case of adsorption of a proton,

the dependence of the free energy of a catalytic system versus the potential U at the RHE

scale is defined by Equation 13. ∆G is the Gibbs free energy for hydrogen adsorption, cor-

rected for entropic and zero-point energy contributions, obtained from DFT. The last term

accounts for the variation of configurational entropy of the surface upon H adsorption. Con-

tribution for the bulk pH is intrinsically included in the RHE dependence of the potential.

The electrode potential U is obtained from the variation of electrostatic potential between

vacuum and the Fermi energy of the metal, which was induced in the study by introducing

opposite charges localized respectively on the slab and at 3 Å from the surface, and then cor-

recting for the potential of zero charge. Hydrogen coverage θ at equilibrium can be estimated

as a function of applied potential U by solving Equation 13 for ∆Gtot = 0. Consequently,

the surface energy γ of a given system in presence of an adsorbed species is calculated from

the electrocapillary equation knowing θ and U . This method can be extrapolated to any

species involving an electron transfer from the surface, i.e. CO.

∆Gtot = |e−|URHE + ∆G(θ) + kBT ln

(
θ

1− θ

)
(13)

This methodology reproduced the well-documented thermodynamic stability trend of

copper facets without potential: γ110 > γ100 > γ111, which implies that the formation of



(111) facet requires less energy than (100) and (110) cleaving. However, at cathodic bias,

the adsorption of H and CO reduces the interface free energy, leading to negative surface

energies for potential more negative than −0.5 V vs RHE (Figure 7a-b). A negative surface

energy implies instability of the given facet and its degradation or evolution toward a stable

domain.229,230 Thus, the authors proposed that surface dissolution starts at the edges of the

nanocuboids and more negative potentials determine a stabilization of non cubic domains, i.e.

(111), to the detriment of cubicity. The predicted triggering effect of negative enough applied

potential to enable reconstruction was confirmed by experimental studies at more positive

voltages (−0.7 and −0.3 V vs RHE), for which no significant degradation was observed.

Figure 7: a-b, Grand potential interface energies calculated for H-covered and CO-covered
Cu surfaces in aqueous solution.100 Adapted with permission from Ref. 100 (Copyright 2018
Springer Nature under Creative Commons Attribution 4.0 International License157).

In a following study in collaboration with our group,63 the application of a graphene-

layer on top of polycrystalline copper accounted for a different reconstruction process. After

4 hours, polarization at −1.0 V vs SHE in a 0.1 M KHCO3 electrolyte, Operando EC-STM

and Raman spectroscopy revealed the evolution of pc-Cu to copper nanocuboids.63 Suggest-

ing a minor, likely kinetic effect of reaction intermediates due to the protective graphene

overlayer, the authors rationalized the nanostructuring process through sole electrostatic

considerations. In the modeling section, we explicitly induced electric field on the chosen

copper surfaces via a dipole correction,231,232 as described in the DFT datasets generated

and stored in the ioChem-BD database.233 Thus, by modeling the electrical double layer as



a parallel plane capacitor under the assumptions of high polarization and large electrolyte

concentration,2 we derived a dependence of copper surface energy γ on applied electric field

~E and solvent dielectric permittivity, εr.
63 The intensity of ~E, modulated by εr, determines

an increased electronic density at the surface, thus stabilizing the overall system. Open

facets as Cu(100) and Cu(110) can better accommodate electronic density than (111) due

to the lower coordination of their surface sites.232 Thus, upon application of high cathodic

bias, these domains are more stable than close-packed domains. Finally, surface morpholo-

gies with shorter radius of curvature experience a higher electric potential, thus boosting the

reconstruction even further.

Analogous thermodynamic considerations can be applied as well to assess the stability

of nanoparticles (NPs). According to the Wulff theorem, at standard conditions the most

abundant facet on a nanoparticle is the one which presents the lowest surface energy.234

Thus, by estimating surface energies of different crystalline domains, it is possible to repre-

sent nanoparticles through their Wulff construction.235 However, under reaction conditions,

Ostwald ripening and degradation mechanisms can occur along with the formation of com-

plexes at the surface. The window of stability of nanoparticles can be estimated following

the theoretical framework developed by Ouyang et al.236 For instance, considering the case

of Ni nanoparticles on N-doped supports under eCO2R conditions, the Gibbs free energy of

disintegration ∆Gdis
NP toward Ni(CO)x was computed depending on the nanoparticle radius,

temperature, and pressure, Equation 14.237 Ef
surf-nCO represents the energy of the Ni center

on carbon support coordinated to n CO molecules, ∆µ is the excess chemical potential of

CO, ∆E ′NP(R) is the energy of the CO-covered nanoparticle, R, T , p, and S are respectively

radius, temperature, pressure, and entropy. By comparing ∆Gdis
NP with the energy of an

isolated Ni adatom, Pršlja et al. concluded that at very high coverage (θ*CO = 1.00 ML)

and close to standard conditions (T = 300 K, p = 0.1 mbar), Ni nanoparticles smaller than

4 nm naturally disintegrate into Ni(CO2) complexes.237,238



∆Gdis
NP(R, T, p) = Ef

surf-nCO − n ·∆µCO(T, P )−∆E ′NP(R)− TS (14)

Extending those concepts to HER, a similar thermodynamic approach was employed to

elucidate the occurrence of the so-called “third hydrogen peak” in the cyclic voltammograms

on Pt electrodes at +0.22 V vs RHE.208 This feature has been linked to (110) steps sites, (111)

terraces, or (110)-(2× 1) domains through accurate studies on single crystal surfaces.239–241

McCrum et al. calculated the surface energies of Pt(553) and Pt(533) characterized respec-

tively by (111) terraces with (110) and (100) steps in presence of adsorbed hydrogen. The

onset potentials for hydrogen adsorption on the (110) and (100) edges was calculated as

+0.46 eV and +0.56 eV for Pt(553) and Pt(533) respectively. Overall, this process was

more favorable on steps rather that (111) terraces due to the lower coordination number of

these defects.83–85 The authors observed that by applying more negative potential, hydrogen

adsorption becomes thermodynamically favorable on the terraces as well and *H coverage

increases. Consequently, the surface energy of the overall system decreases and the gradient

of such effect depends on the number of electrons transferred per unit area, i.e. on hydrogen

coverage (Figure 8).208 The surface energy γ of the system in presence of H adsorption was

calculated through Equation 15. Gx are the Gibbs free energy of adsorbed hydrogen (*H),

clean surface (*), and 1/2 hydrogen molecule (1
2
H2), U is the applied potential vs RHE, Upzc

is the potential of zero charge, ~px are the electric dipole moments for adsorbed hydrogen

(*H) and clean surface (*), d is the thickness of the double layer, and A is the geometric

area of the surface.

γ(URHE) = γ(URHE = 0 V) +
G*H −G* −G 1

2
H2

+ |e−|U + |e−|(U − Upzc)
~p*H−~p∗

d

A
(15)

The surface energies of the roughened facets, labeled as Pt(553)-SER and Pt(533)-SER,

decrease as well under more negative potential. These systems were modeled starting from



Figure 8: Surface energy of the pristine and roughened (denoted as SER) Pt(553) facet
with (solid lines) and without (dashed lines) *H. Changes in surface energies slope are due
to variation in hydrogen coverage, as indicated as insets.208 Adapted with permission from
Ref. 208 (Copyright 2019 American Chemical Society).

a pristine surface, either Pt(553) or Pt(533), with 1/3 of the step atoms translated to the

minimum energy adsorption site close by. Thus, this corner at the edges showed opposite

crystalline facet than the pristine steps: (100) for Pt(553)-SER, whilst a (110) for Pt(533)-

SER. Since the (100) corner has lower coordination than the pristine (110) step-edges sites,

this site binds hydrogen stronger and thus Pt(553)-SER presents a lower surface energy

that Pt(553) from +0.20 V vs RHE (Figure 8). Thus, below this critical bias, the pristine

(533) facet naturally reconstructs to its roughened form, giving rise to the experimental peak

observed at +0.22 V vs RHE. Instead, this process is not favorable on Pt(533), since the

pristine (100) step-edges sites on Pt(533) adsorb H strongly than the reconstructed (110)

corner, thus Pt(533) is more stable than Pt(533)-SER for any applied potential. Kinetic

studies further confirmed the crucial role of hydrogen coverage to drive platinum reconstruc-

tion. The concerted translation of two neighboring Pt − the first to create the corner and

the second to fill the vacancy created − is kinetically hindered by a high activation barrier of

1.75 eV in absence of hydrogen. Instead, at high *H coverage such kinetic barrier decreases

to 0.93 eV and the reaction is exergonic. Thus, H adsorption leads to a reduction of the

kinetic barrier > 0.8 eV, yielding rates observable experimentally.



4.2 Modeling Operando surface reconstruction

Metastable phases or kinetically trapped ensembles stand at the core of electrocatalytic reac-

tivity.207 Albeit their thermodynamic instability, configurational entropy or kinetic processes

can locally stabilize these actives sites,204,242,243 leading to enhanced activity and selectiv-

ity.244,245 For instance, stability and role of polarized sites is a crucial dilemma in the field of

eCO2R, following the first observation by Kanan and Li of the enhanced activity of a Cu2O-

derived catalyst.108 Even though copper is expected to be fully metallic under cathodic

bias,246–248 many direct and indirect experimental evidences hint at the presence of either

kinetically trapped or metastable active sites under reduction conditions.14,111,202,206,249–258

Thus, further insights from theory are needed and DFT modeling on crystalline surfaces is

unable to fully reproduce the experimental data.205,259,260

We report here two possible approaches to mimic the complexity of copper surfaces under

eCO2R conditions, respectively (1) ab initio molecular dynamics (MD) modeling,261 and (2)

methodologies based on machine learning (ML) techniques (Section 8 ).262 The outcomes

from DFT-MD simulations must be properly validated by experimental evidences, since

commonly employed thermostats may lead to non physical temperature variations and large

temperature gradients within the simulation cells.212 Instead, the ML strategy will likely

play a determinant role in the future, as can be easily extended as well to the stability of

other components of electrocatalytic devices, such as membranes for fuel cells for instance.263

Besides, alternative methods can serve the scope, as effective medium theory264,265which was

recently employed to mimic surface roughening on copper electrodes derived from cuprous

oxide, phosphide, nitride, and sulfide precursors.266 As a last remark to guide the reader, in

this section we limit the discussion to methodology and structural properties, while we cover

the insights on active sites and local polarization effects in Sections 4.3 and 4.4 respectively.

The first study which aimed at reproducing reconstruction on an oxide-derived model

employed an ab initio molecular dynamics (AIMD) approach. Since subsurface oxygen was

calculated to be unstable on a crystalline slab system in contrast with experimental obser-



vations,202,203 Liu et al. assessed a disordered Cu2O-derived nanocube.205 By employing a

Self-Consistent Charge Density Functional Tight Binding scheme (SCC-DFTB),267 they ini-

tially built a (5×5×5) Cu2O supercell accounting for 1.7 nm width and composed of 500 Cu

atoms and 250 O atoms (Figure 9a). To simulate reduction processes occurring at cathodic

bias, the surface oxygens were fully depleted. Besides, oxygen atoms within the two outer-

most layers were removed ten at a time, and after each removal a structural optimization

was performed until no oxygen atoms were exposed. The resulting systems, which accounted

for 500 Cu and 91 O, underwent a minima hopping algorithm with an initial NVE molecular

dynamics temperature of 500 K for 50 cycles with 1 fs time step.268 Oxygen diffusion from

subsurface sites to the surface was tested within the SCC-DFTB framework, suggesting that

such process is hindered on the distorted nanocube geometry. Migration of oxygens to the

surface was possible only for edge and corner subsurface sites, however these configurations

were endothermic, thus confirming the overall stability of subsurface oxygens.

Recently, we applied a similar strategy, albeit in a more systematic manner.210 Since

OD-Cu is usually synthesized either through oxidation of copper foils or electrochemical

reduction of copper oxides,109,247 we built two classes of model to mimic these regimes, la-

belled respectively red-Cu2O and oxi-Cu (Figure 9b). The red-Cu2O class was derived from

a pristine (2
√

3 × 2
√

3)-R30◦ Cu2O(111) supercell with 2.1 nm lateral size. We fully de-

pleted the outermost oxygen layer (12/144) and we partially removed subsurface oxygens

(4-6/144). The elimination of subsurface oxygen was done following three geometric shapes,

rhomboidal (R), triangular (T), and linear (L) to enhance clustering, pitting, and forma-

tion of grain boundaries. The three resulting nS systems were characterized by equivalent

suboxide formation energy within 0.01 eV per Cu atom (n = number of subsurface oxygen

removed; S = elimination motif). The simulated O content, 30-31 at.%, was higher than

values reported experimentally (10-20%),111,112 due to contribution from the bulk oxide. Be-

sides, a 7 layers-thick symmetric slab (SY-red-Cu2O) was employed to model deep reduction

conditions, after having depleted all the oxygens within the three outermost Cu2O layers



from each side (120/168, O content of 13 at.%, Figure 9b). Finally, systems mimicking cop-

per oxidation were obtained by depositing three Cu2O layer on a (5
√

3×5
√

3)-R30◦ Cu(111)

matrix and removing surface and subsurface oxygens according to the protocol previously de-

fined (11 at.% O, Figure 9b). Analogously, these three systems were isoenergetic within 0.01

eV. The seven simulated models underwent AIMD simulations with the PBE density func-

tional (Ref. 269) for 10 ps at 700 K (3 fs time steps with a canonical ensemble, NVT, Nosé-

Hoover thermostat).261,270 The full AIMD trajectories are freely available on the open-source

ioChem-BD database.271 Benchmark tests with a Hubbard correction Ueff = U − J = 7− 1

eV on the d orbital of Cu,272–276 and different AIMD temperatures (300 K, 500 K) confirmed

the robustness of the computational setup. As a proof of agreement with experimental data,

simulated STM images of the reconstructed surfaces resembled experimental observations on

Cu2O/Cu(111) materials under CO autocatalytic reduction.277 Secondly, the overall atomic

roughness for our models was significantly higher than crystalline Cu (0.8-1.4 Å vs 0.32 Å,

respectively).210,278 Finally, both simulated Cu 2p and O 1s features,279,280 as well as Raman

spectra,281 agreed with the experimental reports.202,251,282–284

Previously, Huang et al. employed a different approach, which combined DFT with Grand

Canonical techniques and an artificial Neural Network (NN) to investigate Cu nanoparti-

cles.213 As-synthesized nanoparticles cannot be explicitly model through DFT simulations

due to computational limits, since 10 nm NP accounts for ∼ 200000 atoms and ∼ 10000

surface sites. Thus, the authors designed the copper nanoparticle through the reactive force

field framework (ReaxFF) developed earlier,285–287 and the semi-empirical embedded-atom

model to model interactions between copper atoms.288 To simulate chemical vapor depo-

sition, copper atoms were subsequently introduced in the computational system at a rate

of 3.2 atoms per ns for 30 ns. Later, 38 annealing cycles were simulated to optimize the

structure. Each cycle consisted of a temperature ramp from 300 K till 1200 K (5 ps), 5 ps

stabilization at 1200 K, cooling down to 300 K (5 ps). Finally, the resulting system was

relaxed through ReaxFF for 20 ps at 300 K. Up to 400 random sites were chosen from the



Figure 9: Molecular dynamics-based approaches to reproduce surface reconstruction occur-
ring for oxide-derived copper catalysts under operation. Depending on the oxygen content,
different surface motifs are reproducible. a, OD-Cu nanocube containing 250 unit cells ini-
tially, then manually reduced to 500 Cu (brown) and 91 O (red) atoms prior to apply minima
hopping.205 b, Partially oxidic phases for O-lean surfaces.210 Red and light/dark brown high-
light oxygen and oxidic/metallic copper atoms, respectively. c, Defective Cu facets for O-free
surfaces.211 Red and brown atoms represent O and Cu, respectively, whilst light blue atoms
highlight the surface oxygens initially removed. Adapted with permission from Ref. 205
(Copyright 2017 American Chemical Society), Ref. 210 (Copyright 2020 American Chemical
Society), and Ref. 211 (Copyright 2021 Springer Nature under Creative Commons Attribu-
tion 4.0 International License157) respectively.

final structure and the local environment of each site up to 8 Å was integrated into a neural

network. Each neighboring atom was transformed into a 12 two-body and 18 three-body

molecular descriptors for a 2-layer NN with 50 nodes in each layer. The 400 sites were further

partitioned into training, validation and test sets with an 8:1:1 ratio.

Later, Cheng et al. developed a framework integrating molecular dynamics and a neu-

ral network potential (NN-MD)289 to assess the reconstruction occurring on a oxygen-lean

copper material.211 Initially, the whole surface oxygen layer was depleted from a pristine

Cu2O(111), since previous studies suggested oxygens to be unstable at the electrode/electrolyte



interface under CO2R conditions (Figure 9c).247,290 Then, the resulting system underwent

NN-MD for 1 ns at 300 K to mimic the first stage of the reduction process. Since some

of the subsurface oxygens migrated to the surface, O atoms with lower vacancy formation

energy and coordination number 3 were removed, since they are expected to be the least

stable during reduction. An additional 1 ns NN-MD was carried out and the previous step

was repeated until no surface oxygen was present to derive six different OD-Cu models. The

surface morphology largely evolved, accounting for (111) facets (∼ 53%), square domains

(∼ 12%), steps (∼ 16%), and other defects (∼ 19%), see Figure 9c.211

The above mentioned methodologies are applicable as well to assess reconstruction pro-

cesses for other electrocatalytic reactions, as the effect of potential dopants on catalytic

performance for OER. For instance, in our group we have studied the formation of NiOxHy

phases under OER conditions.54,291 Based on computed Pourbaix diagrams, a NiOxHy cat-

alyst is expected to evolve to the γ-Ni(OH)2 phase when in contact with water solution.

Besides, a successive transition to γ-NiOOH is envisioned when a positive potential is ap-

plied.54,292 These phase transitions happen concurrently with water intercalation.293–295 In

fact, due to strong water adsorption and H-bonds, a NiOOH surface fully covered by water

molecules results in a negative surface energy. This indicates that the water will intercalate

between NiOOH layers, which agrees with the volume expansion observed in experimental

studies.293–295 When Fe is introduced in the system as dopant, the Fe2+/Fe3+ ions may also

penetrate into nickel layers further increasing layer-layer distance and active inner surface.

Consequently, the surface of a Fe-doped NiOxHy electrode in water solution is expected

to become gel-like under work conditions. Through AIMD simulations, we found that the

adsorption of iron ions on the NiOOH surface is stable. However, we observed that the

local chemical environment of Fe ions, such as the number of coordinated water molecules,

is dynamic, as shown in Figure 10. Water molecules coordinated with iron ions frequently

exchange their proton (coupled with electron) with oxygen at the catalytic surface. This

behavior dynamically changes the oxidation state of Fe and further enables more flexible va-



lence state of Ni ions, from Ni3+ to Ni2+, lowering the overall potential for oxygen evolution

to 0.23 V.

Figure 10: Evolution of coordination numbers (CNs) and oxidation states (OSs) of Fe
ion adsorbed and/or intercalated for different Ni-based (oxy-)hydroxide models (NiOxHy)
during AIMD simulations.54,291 Figures adapted with permission from Ref. 54 (Copyright
2020 American Chemical Society).

4.3 Identification of active sites

In addition to properly reproduce morphological changes at the surface, the methodologies

described in Section 4.2 enable the identification of crucial surface ensembles and active sites

responsible for the catalytic performance.205,210,211,213



The AIMD-based study on oxygen-lean Cu2O catalysts (Figure 9a, Section 4.2) high-

lighted the presence of copper in three well-defined structural and electronic states: metal-

lic Cu0, suboxidic Cuδ+, and oxidic Cu+, respectively coordinated with 0, 1, and 2 oxy-

gen atoms.210 Remarkably, suboxidic Cu2O0.5 ensembles have been observed experimen-

tally,206,255,256 and reported with an average Cu-O coordination number of 1.1 estimated

through EXAFS,256 confirming theoretical predictions. While metallic and oxidic copper

exhibited the typical oxidation states of bulk Cu and Cu2O, suboxidic Cu accounted for a

Bader charge between 0.1 and 0.4 |e−|, in line with experimental evidence of formation of

polarized Cuδ+ sites during thermal and electrochemical reactions.206,255,256 Besides, all the

three copper species were significantly undercoordinated if compared to surface atoms on

crystalline facets and each oxygen coordination further lowered Cu-Cu coordination number

by one unit. Thus, average N̄Cu-Cu of 4.9, 3.6, and 2.0 units for Cu0, Cuδ+, and Cu+ were

estimated from these OD-Cu models, showing good agreement with experimental character-

ization of OD-Cu (respectively 6.6, 3.08, and 2.21).256,296 The abundance of residual Cu+

species within the surface layers ranged between 10 and 40 at.% (for red-Cu2O and oxi-

Cu classes respectively), in line with recent experimental observations on Cu2O nanocubes

at −0.95 V vs RHE (20 at% Cu+)258 and Cu(100) under pulsed CO2 electroreduction (7-

11 at.% at −1 V vs RHE).14 Finally, sampling the occurrence of interatomic angles for a

given central species (Cu0, Cuδ+, Cu+, and O), we detected 14 recurrent ensembles. Darker

areas in the 2D histogram reported in Figure 11a correspond to higher density of similar

structural morphology. By mapping recurrent angles with geometric patterns visible on

the reconstructed surfaces, we characterized surface defects (4- and 6-coordinated copper

adatoms) and crystalline reconstructions toward (100), (110), and (111) facets, either fully

metallic or partially polarized. These observations closely agree with experimental reports

on surface reconstruction toward open facets,63,100,102,223 as well as high surface density of

defects.14,112,195,199 Finally, a remarkable Cuδ+3 O3 feature appeared at the surface, which was

characterized in an independent experimental work.255 As for oxygen species, subsurface



configurations adopted the bulk-like tetrahedral shapes, O4Cu,t as well as possible distorted

3- and 5-fold coordinations, O3Cu,d and O5Cu. Remarkably, few oxygens reconstruct toward

planar configurations near the surface, O3Cu,p and O4Cu,p, and may be the species found

stable as a Cu2O0.5 stoichiometry for a Cu(OH)2-derived electrode under CO2 reduction

conditions at −1.0 V vs RHE.256

Figure 11: Relevant ensembles identified on OD-Cu and Cu models. a, Recurrent surface
ensembles on O-lean OD-Cu structures (Figure 9a), defined by the local geometry of a given
Cu cluster.210 Oxygen atoms are shown in red, whilst copper is depicted in brown, from
dark (Cu0) to light (Cu+) depending on its oxidation state. b, Theoretically-designed FCC
copper containing (100) and (111) planes, as well as twin boundaries.213 c, On a O-free OD-
Cu surface (Figure 9c), step-square (dark yellow), planar-square (green), and convex-square
(light blue) domains were characterized and related to alcohols and ethylene formation.211

Adapted with permission from Ref. 210 (Copyright 2020 American Chemical Society), Ref.
213 (Copyright 2018 American Chemical Society), and Ref. 211 (Copyright 2021 Springer
Nature under Creative Commons Attribution 4.0 International License157) respectively.

To assess a small sample of their computationally designed copper nanoparticle (Section



4.2),213 scientists from Prof. Goddard III’s group selected 400 surface sites and calculated

CO binding energy on these active species through their reactive force field framework,

ReaxFF (Refs. 285–287). Further, they extrapolated the corresponding values for all the

10000 surface sites of their original NP via the NN trained during the study. As a result,

they identified specific active sites with stronger binding than low crystalline facets, i.e.

(100) and (211), in line with previous TPD experiments on copper.297 Then, applying the

formation energy of the protonated CO dimer, *OCCOH, as a potential descriptor for C2+

selectivity, they observed that square motifs similar to (100) accounted for favorable binding

of this intermediate. Assessing the local geometry of the favorable square domains, a specific

(100) terrace coupled to (111) was reported to further enhance this process, in agreement

with experimental observations on the promoting effect of Cu(S)[n(100)× (111)].35,36,298 As

a final guideline to catalytic design synthesis, the authors proposed a periodic FCC copper

structure with high surface density of this (111)-(100) motif as a promising active ensemble

for increasing C2+ formation (Figure 11b), since it showed the most favorable formation

energy for OCCOH (0.35 eV and 0.41 eV either on convex or concave sites). This devised

catalyst was predicted to grant 97% F.E. toward multi-carbon products, assuming a linear

correlation between density of twin boundaries and C2+ selectivity and no influence on HER.

Identification of the active sites on the O-lean OD-Cu developed with the NN-MD

methodology (Figure 9c, Section 4.2)211 and correlation with eCO2R selectivity was achieved

following a reductionist approach alike the previous study.213 The authors selected 155 sur-

faces sites out of the reconstructed slabs and calculated *CO and *COCO binding energy

for these active centers via the NN potential.289,299 The robustness of the NN potential was

confirmed by benchmark tests through single-points DFT simulations, which returned low

systematic offset of 0.08 eV and 0.13 eV for ∆E*CO and ∆E*COCO respectively. The CO

dimer was chosen since it is generally assumed as the RDS toward formation of multicarbon

products on copper.16 In line with the results from Huang et al.,213 square motifs exhib-

ited the strongest *COCO binding energy, accounting for an average energy cost for C-C



coupling of 1.27 eV. This conclusion agrees with an earlier theoretical study by Bagger et

al.39 and experimental insights from Hori et al. (Section 2.1).35,36 By further differentiating

between the squared domains, Cheng et al. characterized four surface motifs: planar-square

(p-sq), step-square (s-sq), concave-square (cc-sq), and convex-square (cv-sq) facets, which

were extracted as slab models to calculate the energetics of CO dimerization through ac-

curate DFT simulations. All structures allowed for a less endothermic C-C coupling in

comparison to (111) and (211) facets. Besides, p-sq, s-sq, and cv-sq sites permitted a facile

kinetics, with an activation barrier lower than 0.7 eV vs 0.85/1.19 eV on the crystalline

domains. C2+ selectivity of these ensembles was mapped according to their *CH2CHO ad-

sorption energy, since this adsorbate is expected to be the intermediate ruling competition

between ethanol and ethylene.16,143,300 The authors observed that planar and convex squares

promote the cleavage of the C-O toward ethylene, whilst step-square resembling Cu(S)-

[n(111) × (100)] motifs inhibit the hydrocarbon pathway (Figure 11c), in good agreement

with previous experimental and theoretical suggestions.35,36,39 The different surface reactiv-

ity was rationalized through considerations on the local morphology. p-sq and cv-sq can

stabilize *O after C-O bond breaking on 4-fold sites, whilst the s-sq cleaving presents the

lowest coordination number,83,83,84 thus the strongest binding of the acetaldehyde interme-

diate which enables its further protonation. Additionally, C-O bond length was employed

as descriptor for ethylene and ethanol selectivities. As expected, a shorter bond length is

representative of a stronger bond, which consequently hinders C-O breaking, favoring for-

mation of C2H5OH. Finally, the authors extended their theoretical framework by comparing

performance of experimentally annealed OD-Cu with models obtained with different AIMD

temperature ramps. Remarkably, C2+ current density correlated with the atomic ratio of

the three identified ensembles (p-sq, cv-sq, s-sq) estimated for the AIMD-annealed slabs.

eCO2R activity toward ethylene and alcohols exhibited a linear dependence on (p-sq+cv-sq)

and (s-sq) atomic contents respectively, confirming the selectivity of step-square domains

toward ethanol and planar/concave-square morphology toward C2H4. However, according



to both theoretical and experimental observations, the highest density of actives sites, and

consequently highest performance of the catalyst, was achieved for the non-annealed Cu2O

catalyst, whilst thermal treatments worsened both parameters.211

4.4 Surface polarization effects

As demonstrated through the d-band model,74,75 surface reactivity of transition metals de-

pends on their d-band center calculated with respect to their Fermi energy, i.e. a proxy of

the degree of filling of the d-band (Section 2.2). In general, the capability of a catalytic

center to bind intermediates is driven by its local electronic density. For cathodic reactions,

low-coordinated surface defects exhibit stronger binding of the reaction intermediates due

to their higher electronic density, resulting in tLSR based on average coordination numbers

(Section 2.2.4).83–85 In fact, the electronic density at the surface correlates with the effective

potential, i.e. applied potential vs the potential at the point of zero charge (PZC).2,63,171,208

Besides, undercoordinated sites are locally more charged due to their higher local curvature,

as predicted by Green’s theorem.63,301 In addition to local variations of surface electronic den-

sity, the applied potential leads to the build-up of the electrochemical double layer, so that

local electrostatic interactions can further stabilize or destabilize reaction intermediates.44

According to the Computational Hydrogen Electrode,8 electric field/adsorbate electric

dipole interaction can be estimated by a ~p · ~EEDL term which is added to the adsorption

energy of the intermediate (Section 2.2.2). Following this concept, average electronic density

at the surface, proxy of the effective electric field across the EDL, is a key factor to tune for-

mation energies of specific compounds, as shown in Figure 12a for *CO, *COOH, and *CO2

adsorption during CO2 reduction.166 On top of these average fields effect, local electrostatic

phenomena are expected to play a crucial role in triggering catalytic activity for eCO2R on

otherwise inactive catalysts.42,45,97 In fact, recent theoretical and experimental observations

pointed out that dopants may further tune the local polarization of surface sites, so that

limitations from tLSR can be overcome due to the formation of active sites with significantly



different electronic properties. For instance, we rationalized the enhanced eCO2R selectivity

of S-doped copper toward formate through local electronic effects.302,303 As an adatom, since

S is more electronegative than Cu, it withdraws electronic density from the neighboring

copper sites and thus acts as a tethering center to adsorb either CO2 or a hydride. Then,

adsorbed CO2 selectively reduces to formate upon protonation of the C atom, whilst the *H

pathway undergoes an Heyrovský-like mechanism to the same product (Section 5.2, Figure

15). The negative charges localized on S is instrumental to enable both processes and to

limit unselective eCO2R pathways on neighboring copper sites. Instead, positively charged

surface sites are expected to influence reactivity in an opposite manner. Snδ+ sites in Cu-Sn

alloys were predicted to weaken *COOH and *CO binding energy, thus leading to enhanced

selectivity toward formate and CO depending on Sn/Cu ratio.304–306 Cu+-Cu0 pair have

been deemed responsible for the enhanced C2+ selectivity of OD-Cu materials.307,308 Re-

cently, a joint experimental and theoretical study employed TPD, in situ Attenuated Total

Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR), and DFT to suggest that

strongly bound, bridge-adsorbed CO (COB) is a precursor for methane formation, whilst a

Cu+ site accounts for weaker binding of linearly adsorbed CO, enabling CO dimerization

to ethylene.257 A similar weakening effect of polarized sites on binding energy was reported

by Ismail et al.,309,310 on a Au/Pb interface, where subsurface oxygens dopants hindered

poisoning of the Pb surface, thus allowing formation of methane. An analogous electrostatic

repulsion between positively charged surface atoms and adsorbates has been mentioned for

a In-Pd solid solution, where In substituents weaken *H and *CO binding energy due to

their partial positive charge, +0.64 |e−| estimated through Bader charge analysis.311,312 Fi-

nally, similar tuning of eCO2R selectivity due to surface polarization were proposed for nickel

oxygenates.97

Recently, we have systematically assessed the influence of polarized sites on CO2 reduction

activity and selectivity on the AIMD-derived OD-Cu models discussed previously (Figure 9a,

Section 4.2).210,313 We observed Linear Scaling Relationships of *CO2, *OCCO, and 2*CO



Figure 12: a, Formation energies for *CO2 (orange), *COOH (blue), and *CO (green) on
Au versus the surface charge density, taking CO2, H2O, and clean metallic surface as energy
reference.166 b, 2*CO and *OCCO formation energies as a function of surface polarization
Q. An asymmetric OCCO dimer on metallic copper, deprotonated glyoxylate, and oxalate
intermediate are reported as red, dark red, and black insets respectively. Q is defined as the
sum of the absolute Bader charges of the active sites, Eqaution 17.210 Adapted with permis-
sion from Ref. 166 (Copyright 2020 Springer Nature under Creative Commons Attribution
4.0 International License157) and Ref. 210 (Copyright 2020 American Chemical Society).

formation Gibbs free energies vs surface polarization Q (Equation 16, Figure 12b). Q was

obtained as the sum of the absolute values of the Bader charges q of the active sites (X)

binding O or C, Equation 17. Overall, ∆G*CO2 , ∆G*OCCO, and ∆G2*CO exhibited different

dependencies on Q, with β < 0 for intermediates adsorbed via a η2
C,O configuration (*CO2,

*OCCO) and β > 0 for adsorbates solely bound through the terminal carbons (2*CO).

∆G = α + βQ (16)

Q =
1

NX(C)

∣∣∣∣∣∣
NX(C)∑
i=1

qXi(C)

∣∣∣∣∣∣+
1

NY (O)

∣∣∣∣∣∣
NY (O)∑
i=1

qYi(O)

∣∣∣∣∣∣ (17)

Overall, surface polarization strengthens the binding of η2
C,O configurations, whilst it leads



to a weaker binding of C-bound compounds. Following these principles, *CO2 adsorption is

increasingly stabilized by surface polarization, thus suggesting a triggering role of electrode

charging for the enhanced eCO2R activity of OD-Cu materials. Eventually, highly negatively

charged sites such as near-surface oxygens (Ons) can combine with strongly bond *CO2 ad-

sorbates to form carbonate species, which limit the overall activity of the system through

surface poisoning.121 On the contrary, adsorption of CO molecules as separate entities on the

surface is destabilized by increased surface polarization, whilst *OCCO formation is increas-

ingly promoted. Mildly polarized active sites, such as a Ons-Cu couple, makes C-C coupling

thermoneutral, thus enabling the possible formation of a deprotonated glyoxylate,314 charac-

terized by a low kinetic barrier (0.53 eV) (dark red inset in Figure 12b). This compound is a

well-known intermediate for prebiotic CO2 reduction,315 although it has never been reported

for the electrocatalytic counterpart.146 Finally, high surface polarization characteristic of a

Ons pair can lead to formation of oxalates at the surface, which passivate the catalytic layer

similarly as carbonate and may cause copper dissolution.

5 Reaction Pathways

The application of Operando techniques has evolved exponentially,150,316 providing theoreti-

cians with new challenges (Section 3.2), as only a direct mapping to computational structures

allows for real insights into active sites and intermediates. Whilst initially spectroelectro-

chemical techniques could only shed light on catalytic properties under well-defined condi-

tions or long-lived adsorbates on the surface, new advances have allowed to detect crucial,

yet metastable reaction intermediates,147–149,151 and to define complex reaction pathways and

mechanisms.151–153,317 In the incoming section, we review three recent works which highlight

how systematic integration of spectroscopic and computational studies enabled the rational-

ization of the eCO2 reaction mechanism (Section 5.1). Later, we describe the reaction routes

for CO2 reduction, hydrogen evolution, and oxygen evolution reactions (Sections 5.2-5.3.)



5.1 Spectroscopy-assisted identification of key reaction interme-

diates

A key step for deciphering the CO2 reduction pathway puzzle was the identification of the

RDS for C2+ formation, the OCCO− intermediate.16 As observed by Hori et al.,37 CO2 (CO)

reduction to ethylene is pH-independent, thus the rate-determining step for C2H4 formation

must involve an electron transfer (Section 2.1). Since methane production is instead pH

dependent,37,141 the reaction pathways toward these two hydrocarbons must bifurcate at

early stages. Whilst several studies suggested the formation of a negatively charged CO

dimer as the RDS,140,300 only a joint spectroscopic/DFT study could undeniably demonstrate

the existence of this intermediate on the surface.147 The authors observed two vibrational

bands on Cu(100) in a 13CO-saturated 0.1 M LiOH/D2O electrolyte from +0.1 to −0.15

V vs RHE, 1191 cm−1 and 1584 cm−1, through in situ Fourier transform infrared (FTIR)

spectroscopy, see Figure 13a. Transmission spectra of potential CO reduction intermediates

as formaldehyde, formate, methanol, acetaldehyde, and acetic acid did not show compatible

features, thus neglecting the assignment of these bands to other C-containing species. Finally,

DFT-based vibrational analysis was crucial in identifying C-O-H and C=O stretching modes

of a hydrogenated CO dimer (OCCOH) as responsible for the features observed (Figure 13b).

DFT vibrational analysis and Operando characterization can be further employed to pro-

vide mechanistic insights. In a recent collaboration with our group, computational modeling

correctly reproduced experimental observations from Operando Surface Enhanced Raman

Spectroscopy on CO2 reduction on Cu2O nanocubes. As introduced in Section 3.2, scien-

tists from Prof. Roldán-Cuenya’s research group observed a remarkable correlation between

C2H4 selectivity and intensity ratio between Cu-CO stretching and CO rotation bands (Fig-

ure 14a).153 By assessing different CO surface coverages on Cu via DFT and estimating the

related CO vibrational frequencies, we demonstrated a correlation between computationally-

estimated intensity ratio and theoretical CO surface coverage (Figure 14b),318 in line with



Figure 13: C-C coupling intermediate during CO reduction on Cu(100) observed and
identified via in situ FTIR spectroscopy and DFT-based vibrational analysis. a, Spectra
recorded on Cu(100) for a 13CO-saturated D2O electrolyte in 0.1M LiOH exhibits a 1145
cm−1 and 1584 cm−1 assigned to 13C-OH and 12C=O stretching bands. b, Among C1 and
C2 intermediates, a single(double)-hydrogenated CO-CO dimer presents analogous DFT vi-
brational frequencies as observed experimentally.147 Adapted with permission from Ref. 147
(Copyright 2017 Wiley-VCH).

experimental observations for different CO concentrations in the electrolyte. Furthermore,

the more intense Cu-CO stretching band was attributed to weakly-bond CO adsorbed on top

sites at high coverages, which showed the lowest activation barrier for CO-CO dimerization.

By assigning spectroscopic signals to adsorbed species on different catalysts, DFT-based

vibrational analysis can define complex reaction pathways and descriptors for catalyst per-

formance. Vibrational bands for CO2 reduction on Cu, Au, and Pt were detected through

in situ Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) at different applied

potentials and later attributed to key reaction intermediates.317 The authors observed a sin-



Figure 14: Unveiling reaction mechanisms and key intermediates with joint investigations
involving density functional theory and Operando SERS. a, eCO2 reduction to ethylene on
Cu2O-derived catalysts exhibits a peak at around U = −1.0 V vs RHE analogously to the
ratio between Cu-CO stretching (P2) and CO rotation (P1) bands. b, Comparable P2/P1
ratio are reproduced via DFT for CO adsorption on Cu(100) at high coverage, suggesting a
coverage driven C-C coupling mechanism.153 c, eCO2 reduction reaction mechanism on Cu
defined through a joint in situ SERS/DFT-vibrational study.317 Adapted with permission
from Ref. 153 (Copyright 2021 American Chemical Society) and Ref. 317 (Copyright 2019
American Chemical Society).

gle signal for CO2 reduction on Au, ∼ 2100 cm−1, which DFT ascribed to linearly-adsorbed

CO. In fact only CO was produced at low cathodic bias (F.E. > 50% at −0.3 V vs RHE).

Four vibrational bands were instead reported on Pt: 2074 and 1831 cm−1 for U < +0.2 V

vs RHE); 1620 and 1376 cm−1 for anodic bias. DFT analysis attributed these signals to

linearly-bond CO, CO on a bridge site, adsorbed COOH, and bidentate bicarbonate, respec-



tively. No eCO2R reaction products were detected, in line with CO poisoning expected for

Pt.7 Finally on Cu, adsorbed species varied depending on the applied potential. Bidentate

carbonate was indicated responsible for the band at 1495 cm−1 between +0.3 V vs RHE and

−0.2 V vs. RHE, in good agreement with DFT calculations on Cu(100) and Cu(111) (1510

cm−1 and 1533 cm−1 respectively). O-bound intermediates such as *OCH3 (1390 cm−1),

*OCH2CH3 (1340 cm−1), and bidentate *HCOO (1240 cm−1) were observed from +0.1 V vs

RHE until −0.9 V vs RHE. Besides, vibrational features for *CHO (1477 cm−1) and *CO

(∼ 1900 cm−1) were detectable from −0.3 V vs RHE and −0.6 V vs RHE, respectively.

With regard to the catalytic performance, mainly CO was formed at −0.3 V vs RHE (F.E.

= 30%), whilst CO2 reduction to formate (F.E. ∼ 15%) and ethylene (F.E. ∼ 20%) become

relevant from −0.9 V vs RHE at expenses of CO. Since only *CHO and *CO were detected

within this potential windows, these intermediates were deemed responsible for C-C dimer-

ization on Cu. Finally, the authors rationalized Pt, Au, and Cu reactivity assuming the

strength of M -O and M -C bonds (M = metal) as descriptor (Figure 14c). In the case of

copper, sites with stronger C affinity preferentially catalyze C-C coupling, whilst a weaker

C binding allows for CO production. Conversely, sites which absorb eCO2R intermediates

via a terminal oxygen are selective toward C1 products or alcohols in case of strong or weak

M-O bond, respectively.

5.2 Mechanism for CO2 reduction and hydrogen evolution

From very early reports by Hori et al., CO has been considered as the first key intermediate

toward formation of C1-C2 hydrocarbons such as methane and ethylene (Section 2.1).33,319

Thus, electrochemical CO2 reduction to CO is expected to occur either via (1) a proton-

coupled electron transfer (PCET) to form a *COOH species or (2) an electron-transfer (ET)

toward a metastable *CO−2 adsorbate, followed by a quick proton transfer (PT) toward

*COOH, see Figure 15a)9,143 The preferential pathway depends on the given catalytic sys-

tem.143,320 Weak to mild *CO binding elements as Cu, Ag, Au have been demonstrated to



favor the *CO−2 route,45 while strong binding elements as Pt and Pd and single atom cat-

alysts may prefer the *COOH pathway.320 As evidence of the *CO−2 route, experimentally

eCO2R activity was reported to be pH-independent (vs SHE) on mercury and gold.321–323

High CO2 reduction activity was observed on Hg in media with low proton availability

(dimethylformamide)321 , while CO partial current density was reported to be independent

from bicarbonate and proton concentration and first order on CO2 pressure on Au.323

Generalizing these evidences to other catalysts, the formation of adsorbed *CO−2 interme-

diate has been hypothesized as the rate-determining step for electrochemical CO2 reduction

on transition metals,16 while *COOH formation has been proposed to limit eCO2R activity

on single atom catalysts.320 Interestingly, recent works shows that alkali metal cations play

a significant role along the eCO2RR pathway.44,45,170,171 Specifically, Koper and co-workers

observed that no CO2 reduction products were catalyzed on Cu, Ag, and Au without an

alkali cation in solution,45 thus suggesting that explicit cation-CO2 interactions are needed

to stabilize adsorbed CO−2 on these metals. If instead *COOH formation via PCET from

CO2 were to be the first step in eCO2R, as generally assumed in studies employing the CHE

framework,8,9 then cation stabilization should be less relevant and CO2 reduction should

take place at large overpotentials even without cation.171

In addition to *CO−2 and *COOH formation, recently Chan and co-workers proposed

*CO2 adsorption prior to ET as the RDS for eCO2R on transition metals,166,320 since a

previous study suggested quick electron transfer kinetics for CO2 activation on Au. In

this work,324 Nørskov, Chan, and coworkers described a reaction scheme involving an initial

physisorption of the CO2 intermediate and a successive electron transfer only at the transition

state for CO2 activation, confirmed by Bader charge for activated CO2 of −0.35 |e−|. The

authors then indicated average electric field/CO2 dipole interaction as crucial to facilitate

CO2 adsorption.44 Since no proton transfer is involved in this step, this reaction mechanism

fulfills the experimental observation of no pH dependence of CO2R rate vs SHE. As a short

remark on this study, we observe that CO2 dipole depends on CO2 activation angles, thus



such dipole stabilization effect may become relevant only after CO2 activation (bending)

due to electron transfer. New studies should carefully assess this aspect, to verify whether

average field/dipole interactions are sufficient to stabilize *CO2 before its activation171,324 or

alternative promoters, as cations, are keys.44,45

Following the reaction route toward C1 (from center to left in Figure 15a), the *COOH

formed from CO2 via PCET or ET + PT then undergoes a successive proton-coupled elec-

tron transfer to form adsorbed *CO. Elements with weak *CO binding, as Au, Ag, and Zn,

can release this adsorbate in solution, thus leading to high selectivity toward CO. Instead,

for mild to strong *CO binding catalysts, the CO adsorbate can evolve toward other C1

reduction products, such as methanol and methane, via successive proton-coupled electron

transfers (Figure 15a)143 The pH dependence (in SHE scale) of methane formation was first

observed by Hori et al. for CO reduction on polycrystalline copper,37 and then confirmed for

both CO and CO2 reduction on Cu(100) and Cu(111) by Schouten et al.141 While methane

selectivity is remarkable on copper for cathodic bias more negative than −1.0 V vs RHE,

methanol formation on pure Cu is limited to Faradaic efficiencies lower than 1%.7,106 Both

products form either from a *CHO or *COH precursor via 5 and 3 proton-coupled elec-

tron transfers respectively (Figure 15a).143 Since the pioneering work of Peterson et al.,9,325

density functional theory simulations have reported the former intermediate (*CHO) to be

thermodynamically more stable, however recent kinetic analysis have indicated that methane

formation occurs through the COH* pathway.326 Generally, Cu(111) has been regarded as

selective toward methane141 due to an effective stabilization of key intermediates on fcc

sites.39,257 In fact, *COH/*CHO and further reduced species accommodate nicely on hollow

sites,39 which can effectively donate electronic density to the adsorbate.257

Formate (or formic acid depending on bulk pH) is the last major C1 product observed

during eCO2R106 This chemical is expected to originate either from (1) coupling of a hydride

with CO2 via sequential PCET and ET,16,143,302 or a (2) *CO−2 intermediate adsorbed in a

η2
O,O configuration via ET (see central mechanism in Figure 15a).141 Alternavely, the second



mechanism may proceed as well directly through a PCET to *OCHO.327Strong *H/*CO

binding metals as Pt and Pd favors the first route, while weak binding elements as Sn

and In exhibit endergonic *H binding, thus favoring the *OCO−/*OCHO route.11 Then,

the hydride-mediated pathway continues with an Heyrovský-step, where the *H− adsorbate

couple with a CO2 in solution leading to HCOO− (Figure 15a). On the other hand, the

*OCO− gets protonated to formate (Figure 15a).327 Evolution of HCOOH depends on bulk

pH and may occur as well as a chemical step in solution due to acid/base reactions.302

eCO2R to multicarbon products to date is limited to copper-based catalysts and is as-

sumed to occur from CO-CO dimerization via ET (Figure 15b),16 since the rate-determining

step to form these products is pH-independent (Section 2.1).37,141 The peculiar ability of cop-

per to catalyze this reaction has been attributed to its mild CO binding, which prevents CO

poisoning yet allowing the coupling reaction under fairly negative reduction potentials.11 CO-

CO dimerization takes place at high CO coverages and from activated CO adsorbed on atop

sites, as demonstrated by suppression of CO rotation band153 and dynamic C=O stretching

band lower than 2060 cm−1.152 The sluggish kinetics of C-C coupling (Ea > 1 eV)153 should

in principle involve poor C2 formation rates, while in contrast high rates are reported ex-

perimentally.12 Under experimental conditions, cations may stabilize the *OCCO− dimer328

and possibly facilitate the electron transfer, thus motivating this discrepancy between ex-

periments and simulations.45 In fact, short-lived adsorbates with vibrational frequencies at-

tributable through DFT analysis to hydrogenated dimer (*OCCOH) or cation-coordinated

dimer were spectroscopically observed under CO reduction on Cu(100), see Section 5.1.147

In addition to the CO-CO dimerization mechanism, other C-C coupling precursors have

been proposed, such as *CO-CH,155*CO-*CH2
37, *CO-*CHO144,329, *CO-*CHO65,329, and

*C-CO.326 However none of these species have been observed experimentally for eCO2R on

copper.5,16,330 These alternative C-C steps may be relevant instead for different catalysts

and CO coverage regimes.155,331 Recently, Buonsanti, Calle-Vallejo and co-workers proposed

a *CO-*CH coupling step on mixed Cu-Ag nanoparticles to motivate their enhanced selec-



tivity to ethanol.155 In line with this reaction route, Chang et al. employed CO adsorption

isotherms and electrokinetic data to demonstrate that under low CO coverage typical of

COR, CO-CO is unlikely to be the rate-determining step toward C2+ formation.331

Following the pathways toward multicarbon species, the transient OCCO− gets quickly

proponated to *COCOH, which then undergoes successive proton-coupled electron transfers

toward ethylene, ethanol, and n-propanol, the main C2+ products (Figure 15b).106,143 Spec-

troscopic techniques have not managed yet to detect the short-lived intermediates linking

*COCOH to reduction products.16,146,149 Thus, even though many potential species have

been proposed theoretically5,143,144,329we avoid here any detailed discussion on them and re-

fer the reader to other works.5,332 Instead, we address here reaction species and pathways

which were verified experimentally through spectroscopic or specific reduction experiments.

*OCHCH2, formed from *OCCOH via 5 proton-coupled electron transfers (Figure 15b), is

generally assumed as the selectivity-determining intermediate between ethanol and ethy-

lene.16 Schouten, Koper et al. reported fully selective reduction of glyoxal (OCHOCH)

and glycolaldehyde (HOCH2CHO) to acetaldehyde and ethanol on polycrystalline copper

on phosphate buffer by Online Electrochemical Mass Spectrometry (OLEMS).140 Since both

glyoxal and glycolaldehyde can undergo 3 and 1 PCETs to *OCHCH2 (Figure 15b),144

this intermediate is a precursor of ethanol. To further assess the relevance of this precur-

sor, Calle-Vallejo and Koper calculated the thermodynamic cost for further protonation of

*OCHCH2 either to (1) *OCHCH3 or (2) *O + C2H4.300 Both steps are exergonic, with the

ethylene selective route, (2), more favorable than the ethanol/acetaldehyde one, (1), by 0.2

eV.300 Since ethylene is the major C2 product and it is typically formed at higher rates than

ethanol,35,36,106 the authors concluded that *OCHCH2 should be the key reaction interme-

diate to rule selectivity toward ethylene and ethanol, so-called selectivity-determining step

(SDS).

Alternatively, other theoretical studies employed thermodynamic considerations to sug-

gest earlier bifurcation in the ethylene/ethanol route, with among others *CHCOH,329 *CO-



CHOH,144,329 and other ketenes as potential ethylene precursors (Figure 15b). These precur-

sors may then lead to formation of ethylene oxide adsorbed *(O)CH2CH2,329 which proved

to be fully selective to ethylene on copper in a phosphate buffer.140 While several sound

theoretical evidences confirm a *OCHCH2 → *OCHCH3 → ethanol route on copper and

OD-Cu,140,142,333 a *OCHCH2 mediated ethylene pathway seems at odds with the full se-

lectivity of glyoxal and glycolaldehyde to ethanol.140 Besides, an early bifurcation between

the ethylene and ethanol pathways would reconcile experimental and theoretical observa-

tions on the role of atomic oxygen to trigger C2H5OH formation.14,109,125,127,210 Recently, we

have proposed a subsurface oxygen-mediated deprotonated glyoxylate (Figure 15b) as the

precursor leading to ethanol formation on oxide-derived copper,210,314 where this alcohol is

reported as main reaction product (F.E. > 40% at −0.3 V vs RHE) without any trace of

ethylene.109 Otherwise, this intermediate could undergo one 1 PT and 5 successive PCETs

to acetate (Figure 15b), observed concurrently with ethanol at low overpotential on OD-

Cu (20% F.E. at −0.25 V vs RHE)109 Besides, competition between ethanol and ethylene

during pulsed CO2 electroreduction was reported to depend on the cell temperature, with

lower temperature (5 ◦C) favoring the alcohol while higher temperature (25 ◦C) promoting

hydrocarbon formation.127 This interesting result was attributed to Cu(I) (or equivalently

residual oxygen) reducibility.

As a further proof of the role of atomic oxygens from OD-Cu or solvation, more than

60% of oxygen contained in ethanol formed on crystalline copper facets arises from water

molecules, as demonstrated for C16O reduction in H18
2 O solvent.125 This evidece was con-

firmed also for acetate and 1-propanol, thus to rationalize this process the authors suggested

a OH− insertion mechanism on a *CCH backbone, which then reduce to the three prod-

ucts. Instead, successive theoretical and experimental studies attributed the observation

to oxygen exchange between acetaldehyde reduced from CO and water, thus disregarding

any role of solvation molecules in earlier reaction stages.123,124,335 In addition, analogous in-

sertion mechanisms of solvent or subsurface atomic oxygen were predicted. Heenen et al.



Figure 15: eCO2R pathway toward major a, C1 and b, C2+ products on metals. Exper-
imental observations are taken from Refs. 140 and 334. The CO-CO dimer bound to a
near-surface oxygen is the deprotonated glyoxylate geometry predicted on OD-Cu.210,314 n
is equal to 3 and 1 for reduction of glyoxal (OCHOCH) and glycolaldehyde (HOCH2CHO)
to *OCHCH2. c, Hydrogen evolution reaction mechanism on metals, as defined in Ref. 41.
The key role of cations in enabling CO2 adsorption, C-C coupling, and Volmer step for wa-
ter dissociation has been proposed in Refs. 44,45, 328, 42,160,161. Full arrows represent
confirmed routes.



employed an ab initio kinetic-transport model to describe the mechanism for acetate for-

mation on copper, proposing H2CCO coupling to OH− in solution as the main precursor

toward CH3CO−2 with ketene as common C2+ intermediate (Figure 15b, further details on

the mechanism in Section 6 ).336 Such analogy between acetate and ethanol reaction route

is further supported by 13CO2-12CO electroreduction experiments on OD-Cu copper. Differ-

ent 13C/12C ratios were detected in the reaction products, namely ethylene, ethanol, acetate,

and n-propanol.122 Ethylene and propanol showed an high 13C fraction (0.3-0.5 isotopic com-

position), thus suggesting a more favorable reduction from 13CO2 precursors, while acetate

and ethanol present an equivalent low 13C fraction (0.25-0.4), thus preferential formation

from paired 13CO2-12CO or 12CO. This led to the conclusion that the active sites on OD-Cu

involved in acetate/ethanol formation might be different from the ones enabling ethylene

and propanol formations

Experimental and theoretical insights into C3+ products are limited by the complexity

of the reaction mechanism and the low selectivity of these chemicals, which prevents spec-

troscopic observation of the potential intermediates and comprehensive screening of elec-

trochemical reduction experiments for key reagents. Even though sequential CO trimeriza-

tion has been proposed in the past,337 currently the expected coupling mechanism toward

C3 products involves a OC(H)CH2-C(H)O precursor,156,334 potentially involving allyl alco-

hol (CH2CHCH2OH) and propionaldehyde (CH3CH2CHO) at later reduction stage (Figure

15b).334 In fact, F.E. toward propanol, allyl alcohol, and propionaldehyde for eCO2R ex-

hibits similar dependencies on applied potential for a polycrystalline copper catalysts106 and

were equally promoted on Ag-decorated Cu2O nanocubes154 As for C4 products, to date

two main reaction pathways have been proposed for the formation of 1-butanol, the only

species observed at significant rate.94,338 Both reaction schemes highlight the key role of

an acetaldehyde precursor. Ting et al. have indicated that CO2 first reduces to acetalde-

hyde on OD-Cu under alkaline bulk pH.94 Acetaldehyde then undergoes a base-catalyzed

aldol condensation to crotonaldehyde, which is then reduced to butanal, 1-hydroxybutyl,



and finally 1-butanol. On the other hand, Choi et al. have highlighted a different reduction

mechanism on phosphorus-rich copper, involving formation of acetaldehyde from aldehyde

self-condensation of two formate precursors. Finally, acetaldehyde undergoes aldol conden-

sation and sequential hydrogenation to 1-butanol.338

Moving to the reaction competing with eCO2R, hydrogen evolution (Figure 15c), we refer

the reader to the nice perspective by Dubouis and Grimaud for a detailed discussion.41 In

short, HER first involves reduction of a proton via a proton-coupled electron transfer, the so

called Volmer step, Scheme 18. Then, this *H species can evolve molecular H2 either through

a second proton-coupled electron transfer from solution, Heyrovský step, or the coupling of

two adsorbed protons, Tafel step, Scheme 18. H3O+ and H2O in solution are typically

assumed as proton sources at acidic and alkaline surface pH (Figure 15c)41 Nevertheless,

under electrochemical CO2 reduction, HER is generally assumed to occur through water

reduction (H2OR), thus releasing OH− upon reaction,16 since proton reduction is diffusion

limited even at acidic bulk pH.339,340 Proton reduction does not typically exhibit cation

effect, while water reduction strongly depends on cation concentration and species.42,160,161

Such dependence is discussed in details in Section 7.1.

(Volmer) H3O+/H2O + e− + ∗ → H ∗+H2O/OH−

(Heyrovský) H3O+/H2O) + e− + H∗ → H2 + H2O/OH−

(Tafel) 2H∗ → H2 (18)

5.3 Mechanism for oxygen evolution

In acidic environments, the OER mechanism can be described as below, Scheme 19.77 In

the scheme, * is adsorption site, *OH, *O, and *OOH are adsorbed OH group, O atom, and

OOH group respectively. ∆Gi is variation of Gibbs free energy related for each step i.



H2O + ∗ → ∗OH + H+ + e−; ∆G1 = ∆G*OH −∆GH2O − |e−|U

*OH→ *O + H+ + e−; ∆G2 = ∆G*O −∆G*OH − |e−|U

*O + H2O→ *OOH + H+ + e−; ∆G3 = ∆G*OOH −∆G*O − |e−|U

*OOH→ ∗+ O2 + H+ + e−; ∆G4 = ∆GO2 −∆G*OOH − |e−|U (19)

The total energy increase in these four steps is 4.92 eV, which is the energy cost for water

splitting. The overpotential is defined by: ηOER =max[∆Gi]/|e|−−1.23 V. The ideal catalyst

should evenly divide the total energy cost, thus resulting in zero overpotential. Based on

this mechanism, the adsorption energies (Eads(X) = E(X∗) − E(∗) − E(X), X = OH,

O, and OOH) of OH, O, and OOH determines the OER energy profile. To some extent,

Eads(OOH) correlate with Eads(OH) through tLSR, as discussed in detail in Section (2.2.4)

On one hand, a strong O binding, i.e. large ∆G(Oads), leads to large ∆G3 (Scheme 19),

hence a large overpotential is expected. On the other hand, a weak O adsorption results in

large ∆G2 and ∆G4 (Scheme 19), leading equally to large overpotential. An optimal catalyst

is predicted to have ∆G(Oads) = 2.46 eV.

In alkali environments,77 OER process follows the Scheme 20. for which the considera-

tions reported for alkaline pH applies as well.

OH− + ∗ → *OH + e−

*OH + OH− → *O + H2O + e−

*O + OH− → *OOH + e−

*OOH + OH− → ∗+ O2 + H2O + e−

(20)



6 Microkinetic modeling

Mechanistic studies for the large reaction network involved in eCO2R couple well with multi-

scale methods like microkinetic modeling (MKM), as this technique can help delineate which

reaction pathways have the dominant rates for selective production of the target hydrocar-

bon or alcohol products. Even though microkinetic modeling is vastly used in heterogeneous

catalysis, its application to electrocatalysis is limited by the complexity embedded in esti-

mation of electrochemical activation barriers and potential contributions from electric field

and solvent.341–343 Nevertheless, in the past few years the use of microkinetic modeling has

picked up pace and several studies have used MKM to simulate polarization curves for se-

lective CO conversion from CO2.44,320,344–346 A few recent studies have also used MKM to

understand the complex reaction network for the formation of C1 and C2 hydrocarbon and

alcohol products (see for instance Ref. 347), thus the review mainly focuses on these works

which go beyond assessment of CO formation.

As discussed in Section 2.1, Hori’s work on Cu surfaces showed that the pH dependence

is different for C1 and C2 product formations,37 indicating that the RDS for methane and

methanol involves a proton-coupled electron transfer while the RDS for C2 products involves

an electron transfer.16,141,143 Further, the obtained Tafel slopes are usually smaller for C1

products as compared to the C2 products (see Figure 16a), even though Tafel slope analysis

may be not always statistically relevant due to physical non idealities, e.g. charge transfer,

electrostatic screening of adsorbates, etc.348 To explain the differences in Tafel slope and pH

dependence for the formation of C1 vs C2 products from CO, Chen and co-workers performed

microkinetic modeling for CORR on Cu(211).349 The insights on the rate determining steps

were used to obtain analytical expressions for polarization curves, which aided the interpre-

tation of the MKM results. Using free energy diagrams, the authors predicted that the first

proton-electron transfer of OCCO* intermediate is rate-determining for the formation of C2

products at low potentials (−0.5 V vs RHE), while the third PCET along CO reduction,

*CHOH formation, is rate determining for C1 products (Figure 16b). This led to a difference



in Tafel slopes for the two classes of products (C1 vs C2) based on Equation 21 , where n

here corresponds to the number of PCETs which occur before the RDS, U is the potential

vs SHE, and k is the reaction rate based on Butler-Volmer kinetics. At high negative poten-

tials (−1 V vs RHE), the RDS step changes from PCET to *OCCOH to CO dimerization

toward C2 products, while the first proton-electron step is defined as the RDS for C1 product

formation. This led to an increase in Tafel slope for C1 products, while for C2 products the

current density decreases, as the rate has second order dependence on CO coverage, which

depletes as the products are formed.

∂U

∂log(k)
= − 2.3kBT

(n+ β)e
(21)

Figure 16: a, Experimental polarization curves on polycrystalline Cu for CO reduction
toward C1 and C2 products at pH = 13. Data are taken from Ref. 350. b, Polarization curves
predicted by the full microkinetic model and the associated analytical approximation on
Cu(211) for CO reduction toward C1 and C2 products at pH = 13. Adapted with permission
from Ref. 349 (Copyright 2020 Springer Nature under Creative Commons Attribution 4.0
International License157).

In terms of pH dependence, experiments showed that there is a drastic decrease in onset

potential for formation of C2 products as we move towards alkaline conditions, while no

relevant impact is observed for C1 products.350 This was again rationalized by MKM-based

analytical expressions derived for current densities, which showed that the earlier the RDS



along the pathway, the larger the decrease in onset potential with pH. Since the RDS for

C2 products involves a PCET which occurs at an earlier stage than the C1 products, this

motivates the stronger impact of pH on overpotentials for C2 products. Finally, the authors

suggested as well depletion of C2 products at high potentials for alkaline conditions using

the microkinetic model.

Peng, Tang, and coworkers also performed microkinetic modeling on Cu(100) for CORR

to understand the dominant pathways that lead to the formation of methane and ethylene,

used in the study as proxy for C1 and C2 product formations.326 The major focus of the

paper was to build mechanisms for C1 and C2 formations using surface carbon (C*) as a

plausible intermediate. Through their MKM results, they found that for wide potential and

pH windows methane is formed through the COH* pathway, which followed through a *C

intermediate. As for the ethylene pathway, at neutral pHs and potential windows of interest

for C2+ products (from −0.4 to −1 V vs RHE), the OC-C* route is the dominant pathway,

which shifts to the traditional OCCOH pathway at alkaline pHs.

Furthermore, the MKM analysis at neutral pHs illustrated that the protonation of C* and

the C*-CO coupling are the bifurcation points which ultimately determine the competition

between C1 and C2 products. Using these insights, a simplified rate expression was derived

for ratio of rates for C1 vs C2 formations in terms of the barriers for C* protonation and

C*-CO coupling. This analytical expression was then used to delineate the trends across

different Cu facets. The trend in predicted C2/C1 products selectivities was calculated as

follows: Cu(511)>Cu(100)>Cu(211)>Cu(111), observation which is in good agreement with

experiments by Hori et al. on single crystal surfaces (Section 2.1 ).35,36

While microkinetic modeling only considers processes which occur at the surface, trans-

port equations need to be integrated to estimate the concentration of species near the elec-

trode. For pathways involving reaction intermediates in solution, these mass transfer effects

can ultimately determine which reaction pathways have the highest rates. In the following

lines, we focus on two studies where mass transfer has been proved to play a pivotal role



towards defining which reaction mechanism is favored among various plausible alternatives.

Singh et al. used multi-scale modeling approaches to look at CO formation from CO2

on Ag(110) surface by including mass transfer effects.351 They considered three reaction

mechanisms (RM) for the formation of COOH* and CO* in which the proton donor is

either H*, H2O*, or H2O in solution (denoted as RM-1, RM-2 and RM-3). Remarkably,

RM-3 was the only pathway which involved *CO−2 as a plausible surface intermediate in the

reaction mechanism. The DFT energetics were inputted into the microkinetic model and the

appropriate rate equations for the surface reactions were solved. Next, the current densities

from the microkinetic model and the diffusion coefficients of species in the electrolyte were

inputted into the continuum transport model and the equations were solved iteratively till the

bulk pH and CO2 concentration converged. Through this systematic approach, the authors

found that even though the RM-3 pathway had the highest activation energies for the CO

formation, only this reaction scheme could reproduce the experimental correlation observed

between current densities and CO2 partial pressure.352 Further, the most abundant adsorbed

species were found to be *COOH and *CO−2 which is in agreement with the spectroscopic

observations on silver catalysts. Finally, the authors concluded that explicit assessment of

mass transfer effects enable better reproduction of the experimental trends of CO and H2

partial current densities vs applied potential.

More recently, Chan and co-workers used a coupled microkinetic and transport model

to study the mechanism for acetate formation on Cu surfaces.336 The authors proposed a

reaction scheme where the surface intermediate ketene (CH2CO*) desorbs and reacts with

OH− in solution. Overall, two possible selectivity-determining steps (SDS) for acetate for-

mation were envisioned (Figure 17): (1) reaction of H2COO (aq) with OH− vs readsorption

of this species (SDS-1) (2) desorption of H2CO* into solution vs further proton electron steps

to form other C2 products (SDS-2). It is important to note that the SDS-1 only involves

chemical steps, while the SDS-2 involves both a chemical and a PCET step. Energetics and

initial concentrations of the reactants were then inputted in the integrated multi-scale model,



Figure 17: Schematic of the ketene pathway, including the two selectivity-determining
steps towards acetate, either via a reaction in solution (SDS-1), or further reduction of the
adsorbed ketene (H2CCO*) to form other C2 products (SDS-2). The excluded alternative
reduction steps are reported in the bottom left. Adapted with permission from Ref. 336
granted by the authors under Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.353

which showed that acetate selectivity followed a U-shaped dependence on applied potential

vs SHE, in agreement with experimental data. At low overpotentials, the PCET step towards

the formation of H2COO* from the ketene intermediate is limiting. As the potential shifts

to more negative values, this PCET step becomes more favorable, consequently leading to

decrease of acetate selectivity (SDS-2). Finally, at very high overpotential, H2COO* forma-

tion is now facile and acetate selectivity is now ruled by the competition between H2COO*

reduction or desorption and further reaction with OH− in solution (SDS-2). Thus, the for-

mation of acetate is now dependent on local OH− concentration (SDS-1), which increases

at more negative potentials due to water and CO2 reduction, leading again to a U-shaped

dependence on applied potential. Moreover, the effects of pH and surface roughness are

also confirmed by specific experiments. Intriguingly, this solution phase mechanism are at

odds with other proposed mechanisms for acetate formation125 (Section 5.2), consequently

the authors proved the power of an integrated transport/kinetic framework for finding the



dominant reaction pathways which drive the formation of a specific product.

7 Modeling electrolyte and bulk mass transfer effects

In addition to Faradaic processes at the surface, phenomena occurring within the diffusion

layer are crucial in electrocatalysis.2 As shown in Section 3.3, a proper understanding of local

electrolyte effects can be employed to enhance the performance of eCO2R and HER.15,42,161,354

Explicit cation effect are well-known to promote the overall activity and selectivity of these

reactions,32,161 whilst surface poisoning from electrolyte anions have the opposite effect.174–176

Besides, mass transfer within the diffusion layer is also instrumental for the industrial ex-

ploitation of eCO2, motivating the need for optimized configurations such as gas diffusion

electrodes.355,356 Lastly, chemical reactions within the diffusion layer must be properly ac-

counted, since they can limit the overall performance of electrocatalytic devices357 or tune

product distributions through chemical instead of electrochemical steps.94,358 For instance,

the conversion of CO2 and OH− to CO2−
3 is the main source of energy loss in CO2 reduction

under neutral to basic bulk pH.357 Consequently, industrially relevant single-pass CO2 uti-

lization and conversion/energy efficiency can be achieved only at acidic pH, as demonstrated

independently by Huang et al.179 and Monteiro et al.359 As further examples of chemical

steps within the diffusion layer, formation of carboxylic acids and alcohols during CO2 re-

duction conditions was demonstrated to occur through disproportionation of aldehydes due

to high alkaline surface pH instead of direct eCO2R.358 Besides, eCO2R to 1-butanol (F.E.

= 0.056%, j = −0.080 mA cm−2 at −0.48 V vs RHE) on a oxide-derived copper catalyst

was proposed to happen through a final chemical step, i.e. hydrogenation of 1-hydroxybutyl

formed from acetaldehyde reduction (for further details on the mechanism, see Section 5.2).



7.1 Cation effects

Electrolyte effects are known in eCO2R since the initial observations by Hori et al. illustrat-

ing higher activity for larger ionic radius alkali cations (Section 2.1).33,170,171,360 Following

Frumkin’s theory,361 the authors attributed this enhancement to modification of the local

electrostatic field within the electrical double layer through specific cation adsorption. In par-

ticular, weakly hydrated cations can better accumulate at the Outer Helmholtz plane (OHP),

thus leading to a more intense electrostatic field.33 However, the occurrence of specifically

adsorbed cations under CO2 reduction conditions is a topic of vivid debate in the field.362

Mills et al. employed density functional theory to estimate the equilibrium potential U0

for cation adsorption on fcc(111) facets of Ag, Au, Ni, Pd, Pt, Equations 22 and 23.363 G*cat,

G*, and Gcat+ are the Gibbs free energies for the metal/water/cation system, metal/water,

and solvated cation alone, respectively. Gcat+ was estimated from the free energy of cation

in gas phase, corrected by experimental solvation energy at 1 M solution. The term which

depends on potential at PZC (Upzc) and cation (system) electric dipole moment, |~p*cat| (|~p*|),

is included to account for the partial positive charge retained by the cation upon solvation,

which generates a dipole moment along the surface normal direction. Finally, d represents

the thickness of the electrical double layer.

∗+cat+
aq + e− → ∗cat (22)

U0 =
−G*cat +G∗ +Gcat+ + Upzc

|~p*cat|−|~p*|
d

|e−|+ |~p*cat|−|~p*|
d

(23)

By referring Equation 23 to the Normal Hydrogen Electrode reference and carrying out

benchmarks with different numbers of water molecules within the solvation layer, the authors

estimated equilibrium adsorption potentials for cations more negative than −0.80 V vs NHE

(Cs+ adsorption on Pt) and far from CO2 reduction conditions for Ag and Au (U0 < −2.0

V vs NHE) (Table 1).363 Although these equilibrium adsorption potentials are significantly

more negative than cathodic bias for eCO2R, we note that the role of near-surface solvent or



other electrolyte effects may further stabilize cation specific adsorption on metals. Thus, this

process should not be disregarded. In a successive study from the same authors, iodine and

potassium co-adsorption was suggested to occur on copper under CO2 reduction conditions

at low cation coverage (θ = 0.11 ML) and alkaline pH, leading to a preferential increase

of binding energy of O-terminated species.225 In line with such prediction, recently a Total

Reflection Surface Enhanced Infrared Absorption Spectroscopy (ATR-SEIRAS) study of

CO adsorption configurations on Pt and Au revealed that at low cathodic bias the band for

linearly-bond CO disappears, likely due to displacement by K+ at the OHP.364

Table 1: Estimated equilibrium potential U0 (V vs NHE) for cation adsorption on fcc(111)
electrode surfaces. Data taken from Ref. 363

system H+ Li+ Na+ K+ Cs+ Ba2+

Pt(111) −0.07 −1.30 −0.90 −0.98 −0.80 −1.31
Pd(111) +0.09 −1.63 −1.19 −1.35 −1.09 −1.43
Ni(111) +0.05 −2.06 −1.61 −1.85 −1.68 −1.86
Au(111) −1.29 −2.76 −2.40 −2.74 −2.64 −2.46
Ag(111) −0.65 −2.63 −2.11 −2.52 −2.44 −2.62

Following our overview on cation effects, an increasing number of experimental reports

attributed the trends on eCO2R activity and selectivity to non electric fields effects, such

as cation coordination with intermediates at the surface,365 or increased polarizability of

adsorbates.366 To unveil this phenomenon, Singh et al. employed a 1D mathematical model

for an electrochemical cell for eCO2R with anolyte, catholyte, Pt anode, Cu (and Ag) cath-

ode, a anion-exchange membrane to separate anolyte and catholyte, and different species

within the electrolyte: CO2, HCO−3 , CO2−
3 , H+, OH− and alkali metal cations (Li+, Na+,

K+, Rb+, Cs+).172,367 This model was solved using the COMSOL multiphysics software and

including ion migration, diffusion, acid-base equilibrium, gas-liquid transport of CO2, hy-

drolysis of cations, and kinetics for both OER and CO2.172 Since the pKa for an hydrated

cation represents the ease to undergo hydrolysis, the authors estimates this parameter in

the bulk electrolyte and in the proximity of the Cu and Ag cathodes at −1.0 V vs RHE,

respectively. Whilst cation pKa at the bulk increases following the ionic radius, since larger



ionic radius cations exhibit lower electrostatic interaction with neighboring water molecules,

this trend overturns near the cathode surface due to the higher electrostatic field generated

by weakly hydrated cations (larger ionic radius), Table 2. The authors derived an analytical

equation to estimate the pKa for cation hydrolysis at the cathode, which is proportional to

both cation/water and cation/cathode electrostatic interactions. These terms are shown in

Equation 24, where z is the effective charge of the hydrated cation, σ the surface charge

density, rM-O the sum of cation (M) and oxygen (O, from water) radii, and rH-El the distance

between hydration shell and cathode surface. Equation 24 was verified experimentally by

measuring the pKa of monovalent alkali metal cations through potentiometric titration, thus

A and B were calculated by fitting the analytical equation to the experimental data.

pKa = −A

[
z2

rM-O

+ 2πσzrH-El

(√
1 +

r2
M-O

r2
H-El

− 1

)]
+B (24)

Since pH at the surface is rather alkaline under CO2 reduction conditions in a neutral

bulk electrolyte,16 then K+, Rb+, Cs+, having low pKa,367 can undergo hydrolysis, thus

leading to pH buffering and consequent higher concentrations of CO2 at the surface. In ab-

sence of alkali cations, an alkaline pH at the surface involves rapid neutralization of CO2 by

a neighboring OH− to form carbonate, so that CO2 surface concentration decreases signifi-

cantly with consequent mass transfer limitations on eCO2R activity. Hence, the well-known

cation effect on eCO2R was solely rationalized through hydrolysis of electrolyte cations, sug-

gesting that weakly hydrated cations have a lower pKa at the surface, thus they allow for

an increased pH buffering and higher CO2 availability. The continuum model employed re-

sulted in remarkable agreement with experimentally measured current densities on Cu and

Ag at −1.0 V vs RHE for the different cations assessed. However, a recent study estimated

CO2 concentration at a Au electrode from ATR-SEIRAS measurements and demonstrated

a negative correlation of this parameter with cation ionic radius,368 since weakly hydrated

cations promote CO2 reduction to a larger extent, thus leading to higher CO2 consumption



and lower local concentration. Instead, the prediction of higher pH buffering for cations

with larger ionic radius was confirmed by ATR-SEIRAS characterization, where the authors

probed pH at a gold/electrolyte interface from the CO2/HCO−3 bands ratio.369

Table 2: pKa for cation hydrolysis in the bulk electrolyte (bulk) and at the surface layer of
copper (Cu) and silver (Ag) cathodes at −1.0 V vs RHE,172 obtained by solving Equation
24. Data taken from Ref. 172

cation bulk Cu (Surf) Ag (surf)
Li+ 13.6 11.64 13.16
Na+ 14.2 10.26 11.44
K+ 14.5 7.95 8.49
Rb+ 14.6 6.97 7.23
Cs+ 14.7 4.31 4.32

Some of the proponents of the hydrolysis hypothesis carried out a follow up study with

lower applied potentials, so that mass transfer contributions to eCO2R activity and selectiv-

ity could be neglected. Specifically, Resasco et al. demonstrated that Faradaic efficiencies

for eCO2R on Cu(100) vary by increasing the CO2 flow rate for potentials more negative

than −1.1 V vs RHE,170 thus suggesting the critical role of CO2 diffusion under the regime of

their previous study.172 Overall, production rates of formate, ethylene, and ethanol showed

a positive correlation with the ionic radius of alkali cations for Cu(100) and Cu(111), whilst

hydrogen, carbon monoxide, and methane formations were not affected. Similarly, both

CO and HCOO− partial current densities on Ag and Sn increased following the trend of

cation ionic radius. Small additions of larger size cations on a 0.1 M LiHCO3 electrolyte

with constant ionic strength suddenly changed the partial current density toward ethylene,

ethanol, and formate on Cu(100), suggesting that larger cations accumulate more at the sur-

face/electrolyte interface. To rationalize the last evidence, the authors employed a simplified

model for a Cu/electrolyte interface: a Cu(111) supercell with two ice-like water bilayers,

one solvated cation, 12 Å of vacuum, and explicit electric potential.44,170 Constrained min-

ima hopping (CMH)268 was carried out on the system to optimize cation solvation shell.

Finally, the thermodynamic driving force for each cation to accumulate at a distance of 6.25



Å from Cu(111) was estimated from the lowest energy configurations of the solvated cations

and the cation reduction potentials.91 In fact, the energy of the cation/electron pair in the

bulk electrolyte Gcat++e−,bulk can be derived by applying the CHE8 formalism to cation re-

duction (Equation 25), where cat and solv stand for cation and explicit solvent molecules

within its coordination shell. At the equilibrium potential for cation reduction, U0, both

processes are in equilibrium, thus the energies of products and reactants are equivalent.

Thus, Ecat++e−,bulk at a given potential U can be calculated from Equation 26. Since the en-

ergy of the cation/electron pair at the OHP, ECat++e−,OHP, can be estimated from the CMH

simulations, the thermodynamic driving force for cation accumulation is given by Equation

27.

cat+
solv + e− → cat + solv (25)

Ecat++e−,bulk = Ecat − |e−|(U − U0) (26)

∆Ecat,OHP = Ecat++e−,OHP − Ecat++e−,bulk (27)

The dependence of ∆Ecat,OHP on potential U (vs SHE) is derived from the work function φ

of the interface referred to the work function of the SHE electrode and it is scaled through the

partial electron transfer to the cation upon migration from bulk electrolyte to the OHP.170

Taking ∆Ecat,OHP for Li+ as a reference, accumulation is more exothermic for larger size

cations (Figure 18a), thus suggesting that cation trend on eCO2R is mainly due to larger

concentrations at the OHP of K+ and Cs+ versus Li+ and Na+, respectively. The hypothesis

of the preminent role of accumulation to drive eCO2R activity was further confirmed by an

almost equivalent cation-induced electric field near a CO molecule adsorbed on Cu(111),

independent from the cation species in the vicinity.170 Higher accumulation at the surface

for cations with larger ionic radius was confirmed independently in a recent theoretical study

solving generalized modified Poisson-Nernst-Planck equations for a CO2 reduction system.164

The mathematical details behind the model will be discussed in Section 7.3. For a cathodic

bias of −0.32 V vs PZC, Li+, Na+, K+, and Cs+ concentration at the OHP accounted for



∼ 4 M, ∼ 4.5 M, ∼ 6 M, and ∼ 6 M respectively.

As for specific cation effects, an earlier study by Chen et al. rationalized the local

stabilization of reaction intermediates through the dependence of adsorbate formation energy

on its electric dipole moment ~p and polarizability α, as well as on the electric field ~E, Equation

28.44 By calculating CO2 adsorption energy versus the applied electric field ~E, induced either

by an external dipole potential under vacuum,231 or insertion of solvated cations close to the

surface (K+ and 1-ethyl-3-methylimidazolium, EMIM+), the authors proved the correctness

of the former hypothesis.44 The presence of a solvated cation close to the surface leads to

very localized electric field in the order of −1.0 V Å−1, which quickly decays beyond a radial

distance of 5 Å (Figure 18b). The electric field at a given radial distance ~r from the cation

was derived from the variation of electrostatic potential due to charged species, Equation

29, where surf, solv, and cat stand for surface, solvent molecules, and cation respectively.

Hence, the cation-induced electric field, ~Ecat, is given by Equation 30, where ~rads and ~rcat

are the coordinates of adsorbate and alkali cation. The additional negative sign highlights

that the electric field is estimated for a negative unit charge.

E( ~E) = E( ~E = 0 VÅ
−1

) + ~p · ~E − α| ~E|2

2
(28)

U(~r) = Usurf/solv/cat − Usurf − Usolv − Ucat (29)

− ~Ecat = −
(
−U(~rads)− U(~rcat)

‖~rads − ~rcat‖

)
r̂ (30)

Recently, we applied the formalism mentioned above (Equations 29, 30) to demonstrate

that cation-induced electric field strongly depends on cation coordination shell and cation-

adsorbate distance (Figure 18c). In general, electric field is more intense for low cation-water

coordination numbers and short distances, in excellent agreement with a recent experimental

study of cation effect on eCO2R on Au.370 The employment of a more accurate model of the

catalyst/electrolyte interface revealed an additional chemical effect of the cation in addition



Figure 18: Role of metal cations in eCO2R. a, The thermodynamic driving force for cation
accumulation at the OHP of a Cu(111) electrode is stronger for alkali cations with larger ionic
radius.170 b, Cation-induced electric field on the z-plane corresponding to a CO2 adsorbed on
a (6×6) Ag supercell. K+ coverage account for 1

36
ML. Solvent atoms are indicated as dashed

circles, whilst cation, CO2, and Ag atoms are highlighted as black circles.44 c, Dependence
of alkali cation-induced electric field on solvation shell (x-axis) and cation-adsorbate average
distance (y-axis).45 d, Cation-water (filled area) and cation-CO2 (red line) coordination
number during 2 ps of AIMD simulations on a 4-layer (3

√
3× 3

√
3) Au(111) model with 72

water molecules and 1 alkali cation.45 Adapted with permission from Ref. 170 (Copyright
2017 Americal Chemical Society), Ref. 44 (Copyright 2016 Americal Chemical Society), and
Ref. 45 (Copyright 2021 Springer Nature) respectively.

to the mean-field electrostatic stabilization previously discussed (Equation 28).44,171 In fact,

we applied AIMD simulations on a (3
√

3 × 3
√

3)-R30◦ Au(111) supercell with 72 explicit

water molecules pre-optimized for a Pt(111)/water system (20 ps).22,45 The Au/water system

underwent an initialization of 2 ps AIMD simulation (1 fs time step) to optimize the solvation

layer, then an additional 2 ps upon introduction of an alkali cation (Li+, Na+, K+, and Cs+)

close to the surface, and a final optimization for 2 ps upon adsorption of a CO2 molecule in

the vicinity of the cation. The datasets related to this work are available on the ioChem-BD



database.371

By assessing the cation-oxygen radial distribution function and defining cation local co-

ordination shell during the AIMD simulations on the Au/water/cation/CO2 system, we

observed a local coordination between cation and adsorbate (Figure 18d), which was more

frequent for weakly hydrated cations, such as K+ and Cs+.45 Upon coordination, a short-

range cat+ · · ·O(CO2) interaction occurs, which accounts for a stabilization of CO2 adsorp-

tion by 0.5 eV. This promotional effect is rather independent of the cation species, thus this

evidence confirms that CO2 reduction activity trends must be attributed to accumulation

processes rather than distinct cation stabilization.170 While CO2 adsorption is endergonic by

∼ +0.8 eV for the cation-free case, this process becomes almost exergonic if facilitated by a

neighboring cation, thus supporting the experimental results from Prof. Koper’s group that

metal cations are key to enable eCO2R on gold, silver, and copper. The promoting effect of

cation is highlighted as well by (1) the decrease of the O-C-O angle, α ∼ 130◦, which indi-

cates activation of the CO2 molecules, (2) and the enhancement of the first electron transfer

from the surface. As a consequence of the theoretical and experimental evidences reported

in the study,45 an updated mechanism for CO2 reduction to CO was proposed, involving

the instrumental role of cation in stabilizing the CO−2 intermediate at the surface prior to

protonation to COOH. Besides, cation-CO2 coordination number was proposed as a unique

descriptor for eCO2R activity and very recently its validity was extended to bi- and trivalent

cations as well.42 In addition to CO2 adsorption, cation stabilization effect may be crucial

for C-C coupling as well.147

Overall, cation accumulation at the OHP,170 mean-field effects,171 and localized electro-

static stabilization44,45 are the three main phenomena ruling cation effect on CO2 reduction,

and must be properly accounted in theoretical modeling. While accumulation and mean-field

effects rule CO2 reduction activity and any trends based on cation ionic radius, local elec-

trostatic interactions are key for enabling the overall process by stabilizing crucial reaction

intermediates. These considerations support the accuracy of semi-quantitative predictions



on eCO2R activity trends from theoretical models based solely on concentration and mean-

field phenomena. For instance, Ringe et al. applied a 1-dimensional continuum electrolyte

model,171 the size-modified Poisson Boltzmann approach,372 to describe the induced charge

density at the density at a given cation concentration and applied potential, Equations 31, 32.

εbulk is the bulk dielectric permittivity, zi and Ci are respectively ionic charges and concen-

trations (negative sign for anions, positive for cations), F and R the Faraday and Ideal Gas

constant, T the temperature, and Φ the electrostatic potential within the electrical double

layer. χ0 represents the ion-occupied volume fraction given by 2Cbulka
3NA where NA stands

for the Avogadro constant and a is the lattice cell length in the statistical model, i.e. the

ion diameter in this case. Equation 32 can be solved applying Dirichlet boundary conditions

at the end of the diffusion later (Φ = 0 for x = x∞ = 80 µm) and Robin boundary condition

at the electrode surface, Equation 33, where σ is the cation-induced surface density, ΦM and

ΦM,PZC are respectively the electrode potential of the metal relative to the bulk electrolyte

and its potential at the PZC. Cgap stands for the interfacial Helmholtz capacitance. By

solving Equations 31, 32, and 33 the authors derived the dependence of surface density σ on

potential Φ and ion size a. The variation of Gibbs free energy of CO2 and OCCO adsorption

driven by the increased electronic density at the surface (Equation 28) was obtained through

density functional theory, so it was possible to estimate CO and C2 partial current density

as a function of σ. Finally, by coupling continuum model and DFT, the authors mapped

the dependence of eCO2R activity and C2 selectivity on the ion size a for silver and copper,

showing excellent agreements with experimental reports.171

εbulk
d2Φ

dx2
=
∑
i

ziCi[Φ] (31)

C±[Φ] = Cbulk
e±

ziFΦ

RT

1− χ0 + χ0 cosh
(
ziFΦ
RT

) (32)

σ = εbulk
dΦ

dx
= Cgap[ΦM − ΦM,PZC − Φ(x = 0)] (33)



In addition to CO2 reduction, cation effects have been reported as well for hydrogen

evolution at alkaline pH, albeit showing different trends depending on the catalysts. HER

has been observed to decrease following the alkali group for Pt and Ir, whilst this trend

overturns for Au and Ag.373 Prof. Koper and his research group recently proposed a novel

mechanism to rationalize such effect on transition metals, based on theoretical and funda-

mental insights.42,160,161,374,375 By increasing cation concentration at a constant bulk pH, a

reaction order ∼ 0.6 of HER on cation concentration was observed at bulk pH = 11 on a

gold electrode. However, such dependence turned negligible (reaction order ∼ 0) for pH =

12 and lead to a negative reaction order of around −1 at pH = 13. Besides, in situ SERS

detected a red shift of the vibrational band related to H adsorption on gold when the bulk pH

increases, thus suggesting changes in hydrogen binding energies. Thus, both evidences hint

at the occurrence of a convoluted effect between electrolyte pH and cation concentration,

where both parameters enhance water reduction to a certain extent.160 Overall, Goyal et al.

proposed cation to promote the rate-determining Volmer step for water reduction on gold,

Equation 34, by stabilizing the transition state associated with the reaction as in Equation

35. Later, McCrum et al. extended the validity of this scheme as well to Pt, for which Na+

enhances water dissociation as well.374 In the same study, the authors unveiled the role of

OH− binding energy to tune HER activity, predicting a 3-D volcano plot for HER activity

using ∆G*OH and ∆G*H as suitable descriptors.

To rationalize the convolution between cation and pH effects, Goyal et al. assumed

enhancement of HER at pH = 11, saturation of such effect at pH = 12 due to achievement

of maximum concentration of cations at the surface, and a site blocking effect for pH = 13,

motivating the negative reaction order of ∼ −1.161 Based on these hypothesis, the authors

derived a general empirical rate (ν) law, Equation 36, where k is the rate constant (we

employ here the standard notation, even though the rate depends on the temperature), α

the transfer coefficient, F and R the Faraday and Ideal gas constants, U the applied potential

vs the standard potential of the reaction, T the temperature, Γcat,surf and Γcat,max respectively



cation surface concentration and its saturation value, and γ an empirical reaction order of

HER on Γcat,surf. Hence, for low cation concentrations at the surface, i.e Γcat,surf � Γcat,max,

Equation 36 correctly reproduces en empirical reaction order of γ. Instead, the correlation

between pH and cation surface coverage can be described through the dependence of cation

coverage on the effective potential Ueff and the bulk cation concentration Ccat,bulk, assumed

to follow a Frumkin isotherm in Equation 37. In this equation, K is the standard equilibrium

constant for cation adsorption at the surface and g is the Frumkin interaction parameter,

higher than 0 in case of repulsion between adsorbates. Since experimental results were

obtained at constant potential U vs the RHE, the potential at the PZC for the Au electrode,

Upzc, shifts positively for increasing surface pH (pHsurf), thus Ueff exhibits a negative pH-

dependent offset, Equation 38. Recently, Monteiro et al. rationalized experimental evidences

of cation effects on Pt and Au by defining a generalized cation promotion/inhibition scheme

based on the interaction between specific transition metal and alkali cation.375

∗+H2O + e− → ∗H + OH− (34)

∗+H2O + e− + cat+ → ∗H−OHδ− · · · cat+ + (1− δ)e− → ∗H + OH− + cat+ (35)

ν = k

(
1− Γcat,surf

Γcat,max

)
e−

αFU
RT Γγcat,surf (36)

Γcat,surf

Γcat,max − Γcat,surf

= Ke

(
−F(U−Upzc)

RT

)
e

(
−g

Γcat,surf
Γcat,max

)
Ccat,bulk (37)

Ueff = U − Upzc = U − Upzc(pH = 0)− kBT ln 10pHsurf (38)

Finally, a collaborative experimental-computational study between our and Prof. Koper’s

research groups extended the previous insights on alkali cations to multivalent species, as-

sessing cation effects on both eCO2R and HER on polycrystalline gold at pH = 3. The DFT

datasets related to this work are available on the ioChem-BD database.376 Experimentally,

activity and onset for water reduction were observed to correlate with cation acidity, defined



Figure 19: a, Gibbs free energy for *H adsorption (diamonds) and H3O+ dissociation
(down-pointing triangles) vs cation acidity. b, Activation barrier for water dissociation (up-
pointing triangles) vs cation acidity. c, Normalized activity for water reduction estimated
from experimental data vs cation acidity. The qualitative fit decouples the contributions from
water dissociation kinetics (red) and cation accumulation (shades of blue) for alkali (1+),
divalent (2+), and trivalent (3+) species. d, Theoretical prediction of eCO2R performance
for different cationic species using cation-CO2 coordination number as activity descriptor. e,
Heat map of CO2 reduction (purple shades) and H2O reduction (red shades) performances
at high overpotential vs cation ionic radius and cation acidity.42 Adapted with permission
from Ref. 42 (Copyright 2022 American Chemical Society).

as the ratio of charge and ionic radius, while no effect was found on proton reduction. Thus,

significant eCO2R activity in presence of acidic cations was reported only at low applied

potential, for negligible water reduction, while Ba2+ and Cs+ accounted for the highest CO

formation rates at high overpotential. To rationalize these evidences, we applied a similar

computational framework as for our previous study,45,371 i.e. AIMD simulations at T = 300

K on a gold supercell with explicit solvation previously optimized and different cations (Li+,



Cs+, Mg+, Ba2+, Al3+). Electric field effects ( ~E = −0.3 V Å−1, roughly corresponding to

−0.7 V vs SHE) and realistic cation concentration (2 cations, 0.07 ML coverage, 1.0-1.6 M)

were assumed in the model, which was validated by comparing experimental and theoretical

values for cation coordination shell and hydrated radius.362,377

The explicit insertion of electric field effects enables the observation of electrostatic re-

pulsion among acidic cations, suggesting that nonacidic cations accumulate more at the

interface. Specifically, we observe that the gradient of the thermodynamic driving force for

cation accumulation correlates with cation acidity, which then acts as a proper descriptor of

cation trends among different species. As for the rationale behind specific cation promotion

of hydrogen evolution, we assessed the energetics related to the dissociation of H3O+ and

H2O, expected to be the proton sources at acidic and neutral/alkaline surface pH,41 and *H

adsorption, typically assumed as the key descriptor for HER activity.11 H3O+ dissociation is

kinetically barrierless and thermodynamically favored for any assessed cation, and the Gibbs

free energy related to this step scales linearly with cation acidity, Figure 19a. Instead, *H

adsorption is not affected by the change of cation (Figure 19a), thus both these evidences

motivate the absence of any specific cation effect on proton reduction. The activation energy

for water dissociation strongly correlates with cation acidity, ranging from Ea larger than

1.5 eV for Cs+ till negligible activation on acidic cation (Figure19b). Thus, cation acidity

rules water reduction due to its impact on cation accumulation and water dissociation ki-

netics, leading to the definition of a HER activity volcano plot (Figure 19c). Alkali and

bivalent cations exhibit similar HER activity since they account for low water dissociation

rate, thus cation accumulation at the interface has a negligible promoting role due slug-

gish kinetics. Instead, acidic cations enable high H2O dissociation rates, thus HER activity

is mainly driven by the cation accumulation trend within the trivalent group, motivating

the highest performance for Nd3+, present at higher surface concentrations than Al3+. In

addition to defining a general mechanism for cation effect on water reduction, this study

highlights the interplay between promotional effects on CO2R and HER and the need for an



integrated assessment of both contributions. In fact, even though the validity of cation-CO2

coordination number was here generalized to multivalent cations (Figure 19d) it serves its

scope only at low overpotential, where water reduction was negligible, Figure 19e.

7.2 Anion effects

Anion species in the electrolyte can poison the electrode surface under cathodic condi-

tions,174,175 limiting the performance of optimized devices such as Gas Diffusion Electrode

due to salt formation at the catalyst layer.15,176 Prof. Rossmeisl and his group have success-

fully employed the GCHE framework (Section 2.2)57,58 to quantify poisoning effects in CO2

reduction and identify the stability region of adsorbed species vs applied potential and bulk

pH,174,175 showing excellent agreement with experimental reports.378

Figure 20: Surface poisoning of anions during electrocatalytic reactions. a-b, Simulated
coverage for adsorbed species on Cu(100) at pH = 7 (left) and pH = 13 (right) derived
from interface phase diagrams estimated via the GCHE formalism.57,58 c-d, CO reduction
products on Cu(100) in a H3PO4 (pH = 7, left) and NaOH (pH = 13, right) electrolyte,
respectively measured by Online Electrochemical Mass Spectrometry (OLEMS).378 Adapted
with permission from Ref. 174 (Copyright 2019 American Chemical Society).

The first application of the GCHE to assess explicit electrolyte effects aimed at ratio-

nalizing the pH dependence of CO reduction on copper and its lower onset potential than

HER, reported in a previous experimental work for phosphate (pH = 7) and NaOH (pH



= 13) aqueous electrolytes.378 The authors carried out AIMD simulations on copper facets

with explicit water molecules, electrolyte species, and reaction intermediates.174 Different

*H and *OH coverages were sampled from zero to half coverages, while *HxPO4, *OCCO,

and *OCCOH were introduced individually in the supercell. The resulting configurations

generated by AIMD were then screened through a Boltzmann weighting of the energies,

thus allowing to estimate key parameters. In general, *OCCO was reported stable only

on Cu(100), because of large stabilization by the solvent. Besides, *OCCO protonation to

*OCCOH or *OCCHO was reported more favorable than *H adsorption, thus motivating

the lower onset potential for ethylene formation rather than HER. As for the dependence

of ethylene selectivity on bulk electrolyte pH, both pH and applied potential were included

in the energy of all the AIMD configurations through the GCHE scheme to define interface

phase diagrams of the adsorbed species (Figure 20a,b). Besides showing excellent agreements

with experimental results at pH = 7 (Figure 20c) and pH = 13 (Figure 20d),378 simulations

suggested that ethylene formation is limited by adsorption of anions (*OH, *HPO4, *PO4)

in the low overpotential region. Instead, at high overpotential, *OCCOH adsorption is ham-

pered by an increased *H coverage. In the same study, carbonate poisoning was suggested

to have a similar role for CO2 reduction, although carbonate blocked copper facets until

larger overpotential than that required for *OH adsorption, thus motivating the difference

in activity for CO and CO2 reduction.350 As a last conclusion from their study, the authors

proposed that the experimental difficulty in observing the OCCO− intermediates are due to

the very tiny potential window where this intermediate is stable before his protonation to

*OCCOH. Recently, the same authors carried out a similar investigation of the CO reduction

process on Cu(100) and Cu(111), combining voltammetric CO-displacement measurements

and AIMD to characterize the Cu/electrolyte interface and the role of phosphate poisoning

in tuning CO adsorption properties.175 *HPO4 and *PO4 were suggested as the predomi-

nants adsorbed species on Cu(100) and Cu(111) respectively, limiting CO adsorption to more

negative potentials.



7.3 Surface pH and bulk mass transfer

The Computational Hydrogen Electrode is a powerful tool to account for bulk pH effects,

since this term is explicitly accounted through a linear correction to adsorption energies of

intermediates (Section 2.2).8 Hence, this framework has proven effective in rationalizing ex-

perimental evidences from Tafel plot analysis379 and derive fundamental insights on reaction

mechanisms.349 However, recent technological and conceptual advances allow to measure ex-

perimentally the pH within the diffusion layer (the so-called “surface pH” or “local/localized

pH”),380 through the Scanning Electro-Chemical Microscopy (SECM) setup381,382 (even time

resolved),383 spectroscopic strategies (e.g HCO−3 /CO2−
3 vibrational bands),369,384 and Rotat-

ing Ring-Disc Electrode (RRDE) voltammetry.385 For cathodic reaction such as CO2 reduc-

tion, pH at the surface was reported to vary up to 5 units from the bulk value due to proton

consumption or OH− generation from eCO2R and HER,16 depending on the overall currently

density.384–386 Variation of pH at the surface is only one of the relevant mass transfer effects

occurring under electrocatalytic conditions,387,388 thus models based on solving numerically

the Nernst-Plack equations have been developed since the seminal work of Gupta et al.163

Currently, two main theoretical approaches are employed to assess mass transfer within the

diffusion layer and its influence on reaction activity and selectivity: (1) numerical solution

of modified Poisson-Nernst-Planck (PNP) equations,164 and (2) multiphysics modeling with

finite element methods.167,389

As an example of the first framework, Bohra et al. investigated the CO2 reduction process

on CO-producing catalysts, such as CO and Au, through a 1D model based on generalized

solution of modified PNP equations.164 Such generalization was needed to account for steric

effects happening at realistic electrolyte concentrations. The authors only accounted for

CO2 and H2O reduction as Faradaic processes at the surface, while water dissociation and

bicarbonate/carbonate/CO2 chemical equilibria reactions were considered within the diffu-

sion layer. The bulk concentration of electrolyte species was assumed constant and estimated

from experimental values. Three generalized modified Poisson-Nernst-Planck equations were



considered to model mass transfer within the diffusion layer, Equations 39-41. Ci, ~Ji, zi, Di,

ans ai are respectively concentration, flux, charge, diffusion coefficient, and effective solvated

diameter of the species i. Ri is the rate of production of species i from a p homogeneous

reactions between water dissociation and bicarbonate/carbonate/CO2 equilibria. R, F, NA

are respectively Ideal Gas constant, Faraday constant and Avogadro number, while Φ and

T stand for potential vs the point of zero charge of the electrode and temperature. ε0 and

εr are the vacuum and dielectric permittivity of the electrolyte, and εr is approximated by a

continuous function ranging from 80.1 (value for water at room temperature) to 6 (value for

water at dielectric saturation).16
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ziCi (41)

Equations 39-41 were then numerically solved, assuming the electric field at the OHP as

Neumann and Dirichlet boundaries conditions and the predictions from the GNPNP scheme

were benchmarked with state-of-the-art models (reaction-diffusion and Poisson-Nernst-Planck).

Several key parameters were calculated as continuous functions of applied potentials vs PZC

and distances from the OHP: the effective potential, pH, CO2, cation concentrations, etc.164

Overall, significant variations of pH were reported already for low current densities (j = 10

mA cm−2) together with very intense electric fields at the OHP (−0.7 V Å−1) and low water

relative permittivity (εr = 50) even at mild applied potential (−0.32 V vs PZC).164

Veenstra et al. mapped CO2 product distribution with surface pH and applied potential

through a joint experimental/computation study.167 First, they synthesized well-defined mi-

crostructured CuO electrodes, generating surface cavities with tunable length through Laser

ablation (L = 0, 20, 40, 60, 100, 130 µm). Using these cavities as micro-probes for surface



pH, they characterized CO2 selectivity in a 0.1 M KHCO3 electrolyte. Then, they employed

structural geometries and eCO2R performances as input data for multiphysics 3D modeling

through the COMSOL platform to target concentrations and fluxes of key intermediates

depending on the local morphology of the electrode. The computational scheme included

eCO2R and HER, chemical equilibria for carbonate species, and diffusion, as in previous

models.163,390 Besides, the model explicitly considered the buffering role of cation hydrolysis

suggested by Resasco et al.170 The simulation accounted for three regions: (1) the volume

of the surface cavity, (2) eight adjacent cavities to encompass potential contributions from

surrounding environment, (3) a diffusion layer with tunable thickness depending on the mass

transfer regime, initially set to 50 µm. Bulk concentrations and zero flux for non-reactive

species were imposed as boundaries conditions beyond the diffusion layer. Since CO2 and

pH did not show significant variation across the (x, y) planes, the initial 3D model was sim-

plified to a 1D setup, only considering the z-direction. A pH increase up to 3 units was

calculated at the end of the cavities, and this effect strongly depended on applied potential

and length of the micro-probes. By relating computational estimations with experimental

results for eCO2R selectivity, the authors generated selectivity maps for different reaction

products, unveiling the role of surface pH and average CO2 concentration at the electrode

(Figure 21a highlight the case of carbon monoxide and ethylene). These separate analysis

were later combined into a general selectivity maps, which lead to remarkable fundamental

insights on reaction mechanisms toward C1, C2 and C3 on copper.167

Kas et al. employed an analogous multiphysics framework to model CO2 reduction on

a GDE with Ag catalyst layer.389 The 2D model accounted for Butler-Volmer kinetics for

both eCO2R and H2O,2 as well as CO2/bicarbonate/carbonate equilibria reactions within

the electrolyte. The input parameters for modeling the GDE were retrieved from experi-

mental characterization.391 Overall, significant variations of CO2 concentrations and partial

current densities were estimated within the GDE area, both across (x-direction) and along

(y-direction) the flow channel (Figure 21b). Whilst the first variation is driven by concentra-



Figure 21: Surface pH and mass transfer effects in electrochemical CO2 reduction. a, Heat
maps for CO and C2H4 F.E. vs surface pH and CO2 concentration.167 White areas correspond
to pH/[CO2] pairs not allowed under the given reaction conditions. b, Heat plots of gaseous
CO2 mole fraction in the gas flow channel and gas diffusion electrode for different applied
potentials, 5 mL min−1 flow rate, and 1 cm2 electrode area. Data employed in the model,
(partial current density jCO and single-pass conversion XCO2) are defined below each panel,
whilst gaseous mole fractions of CO2 in the catalyst layer (CL) are reported in the inset.389

Adapted with permission from Ref. 167 (Copyright 2020 Elsevier) and Ref. 389 (Copyright
2021 American Chemical Society).

tion gradients due to CO2 consumption at the catalyst layer, the second is due to the forced

convective flow from the inlet. Instead, CO2 concentrations and partial current densities

were almost constant within the catalyst layer due to its small thickness (3 µm). Neverthe-

less, dramatic pH variations were calculated within the catalyst layer, leading to pH ∼ 13 for

current densities higher than 200 mA cm−2 and reduction of anions diffusion thickness from

200 µm to few µm. Finally, the COMSOL model highlighted the existence of an interplay

between applied potential, current density, and outlet concentrations. While high CO2 flow

rate leads to increased production rate due to enhanced mass transfer, it also determines

larger ohmic loss and operational costs and lower single-pass conversions, thus limiting the

industrial exploitation of such operating conditions.199



As a final remark in this section, we highlight that mass transfer effects can be crucial

under well-defined conditions and may determine selectivity shifts due to interplay between

different reaction precursors. Recently, Marcandalli et al. rationalized the Bell-shaped

Faradaic efficiency of eCO2R to CO by identifying three different HER regimes (Figure

22a).339 Through mechanistic investigations by a RRDE voltammetry, HER was suggested

to occur through carbonic acid reduction at very low overpotentials. At more negative

potential H2CO3 reduction is presumably diffusion-limited, hence bicarbonate becomes the

relevant proton donor. Until −0.5 V vs RHE, CO2 reduction to CO is increasingly promoted,

due to the higher kinetics for this process than for HER. Lastly, water reduction initiates at

more negative potentials and HER increases to the detriment of eCO2R, due to the higher

kinetics for HER in this regime. Thus, ideal catalysts for eCO2R should be optimized within

the low overpotential region (≤ −0.5 V vs RHE), where this process is significantly more

favorable than HER from bicarbonate and carbonic acid reductions.

In addition to this elegant work, the same research group demonstrated by Differen-

tial Electrochemical Mass Spectroscopy (DEMS) that HER can be entirely suppressed on

gold under mildly acidic pH due to proton consumption by OH− generated by eCO2R (Fig-

ure 22b).340 Hence, Faradaic efficiencies close to 100% can be achieved by carefully tuning

CO2 and H+ surface concentrations so that excess OH− from eCO2R is fully neutralized

by protons and does not undergo CO2/CO2−
3 homogeneous reaction. Both fundamental

approaches propose mass transfer optimization strategies which are scalable to industrial

devices, as demonstrated in Refs. 179,359, thus highlighting even further that these are

crucial parameters in electrocatalytic reactions and must be properly accounted for.

8 Application of Machine Learning

Since the advent of machine learning (ML) in the field of catalysis, over the past few decades

this technique has been been used to address shortcomings of atomistic simulations, such as



Figure 22: a, Bell-shaped Faradaic efficiency of CO2 reduction to CO on a gold electrolyte
versus applied potential on bicarbonate electrolyte. Depending on the cathodic bias, carbonic
acid, bicarbonate, and water are the main protons donors for HER.339 b, CO2 partial pressure
suppresses hydrogen evolution by consuming protons at the surface to form water, leading
to F.E close to 100% for CO2 reduction on gold in acidic pH.340 Adapted with permission
from Ref. 339 (Copyright 2021 American Chemical Society) and Ref. 340 (Copyright 2021
American Chemical Society).

quantum mechanical (QM) and molecular mechanics (MM) methods.392 On one hand, QM-

based simulations are accurate and transferable, yet they are applicable only to small system

sizes and short time scales. On the other hand, empirical MM-simulations are developed ad

hoc for specific systems and thus are typically not transferable. As defined by Morawietz and

Artrith in a nice recent review,392 QM-based machine learning aims at increasing the compu-

tational efficiency of QM-based methods, without losing their transferability. Applications

of machine learning to electrocatalysis usually falls into one of these four scopes:

1. Prediction of catalytic properties from datasets obtained through QM-based methods.

This strategy consists of the automatic generation and analysis of QM data through ML

or training of ML methods over QM data to predict relevant parameters and trends.

2. Extension of the range of applicability of QM-based methods to reach larger simulation

cell size and time scale. This approach is based on the development of machine learning

atomistic potentials to achieve analogous accuracy as QM-strategies.



3. Inverse Design, inversion of atomistic simulations (or experimental data) to extract

atomic structures from a given set of properties.

To date, application of ML in the field of eCO2R has been mainly devoted to pursuing

strategy (1), i.e. material discovery and data analysis, as we will briefly mention below. As

a successful example of integration of both approaches, we cite the work by Ulissi et al.,393

where thermodynamic/kinetic Linear Scaling Relationships and automatic identification of

rate-determining steps were applied to study reaction of syngas to CO2, water, methane,

methanol, acetaldehyde, and ethanol. For additional examples and a more in-depth review

over these topics, we refer the readers to two recent reviews by Zhang et al.394and Mistry

et al.262 Instead, we here focus on the development of ML potentials to enhance the space

and time scales of QM-simulations, strategy (2) discussed in Section 8.2), and data-driven

structural analysis, strategy (3) discussed in Section 8.2. Finally, in Section 8.4 we give a

short outlook on the future challenges in the field.

8.1 Material discovery and data analysis

In one of the first application of ML to eCO2R, Li et al. designed a framework to predict

limiting potential for CO2 reduction to C1-C2 products from ∼ 250 ab initio CO adsorption

energies on (100)-terminated multimetallic Cu catalysts.395 The properties of the adsorbing

sites were parameterized based on their electronegativity and generalized coordination num-

bers and these parameters plus ab initio data were employed as input for a neural network

with 75% of the dataset as training set and 25% for testing the model. Finally, linear scal-

ing relationships were used to estimate binding energies of other C1-C2 intermediates from

CO adsorption energy and consequently to define a list of promising alloys with mild CO

adsorption, as Cu-Ni-Cu3Y, Cu-Ni-Cu3Sc, Cu-Rh3Ti, Cu-Rh-Cu3V, and Cu-RH-Cu3Mo.395

The same research group applied a similar approach to screen over 1000 model alloys and

calculate *CO and *OH binding energies on these structures, which were later used to predict

reactivity towards methanol oxidation.396 Independently, Ulissi, Sargent, and co-workers ap-



plied ML methods to screen through large number of intermetallic alloy compositions using

CO binding energy as a descriptor for catalytic activity,397 and eventually predicted Cu-Al

alloys to contain multiple surface orientations with almost optimal CO binding energies.398

The proposed Cu-Al compositions were then tested under eCO2R conditions and showed

very high Faradaic efficiencies for ethylene, close to 85%.

8.2 Development of machine learning atomistic potentials

Since the pioneering works of Behler, Parrinello, and co-workers,399,400 atomistic potentials

generated through neural network have been successfully employed in electrocatalysis, as

nicely reviewed in Ref. 392. Representation through Neural network of potential-energy

surfaces as a function of the atomic positions has enabled faster assessment of different elec-

trocatalysts, such as supported metal nanoparticles,401metal clusters on oxides,400 Cu/Au

nanoparticles.402,403 This approach has been extended to fully ML-based211 or hybrid molec-

ular dynamics simulations,403 in which ML is employed on limited numbers of MD snapshots

to predict relevant properties of the system.404 In this section, we highlight one of the first ap-

plications of neural network atomistic potentials to large size ternary system as Cu/ZnO,400

while we refer the reader to two reviews by Behler for detailed insight into the mathematical

formalism.405,406

Cu/ZnO materials have been extensively studied due to their reactivity for thermal CO2

hydrogenation to methanol407 and selectivity for eCO2R toward ethanol.408,409 Nevertheless,

an adequate computational assessment of defects, atomic rearrangements, and local stoi-

chiometry is hindered by the large configuration space required and the low computational

efficiency of DFT simulations. Thus, Artrith, Hiller, and Behler developed a framework to

obtain neural network atomistic potentials from DFT energies of about 100000 well-defined

Cu and ZnO structures, such as clusters, bulk, and surfaces. Their approach was validated

first individually on Cu and ZnO. Surface energies estimated through NN-potentials for low

index Cu facets laid within less than 5 meV Å−2 from DFT values and bulk properties of



Figure 23: a, Snapshot of molecular dynamics simulation at T = 1000 K of Cu612 cluster on
ZnO(101̄0) surface. b, bottom-view of Cu cluster and selected sites at the Cu/ZnO interface.
c, Neural network forces acting on selected atoms at the Cu(111)/ZnO(101̄0) vs DFT forces
obtained for clusters centered at these atoms with radius of 6 Å and 9 Å respectively.400

Adapted with permission from Ref. 400 (Copyright 2013 Wiley-VCH).

ZnO were reproduced in excellent agreement as well. Besides, NN- and DFT-forces were

equivalent for both systems. After benchmarking the neural network model, the potentials

developed along the study were employed to simulate the interface between Cu and ZnO,

modeled as a Cu612 adsorbed on ZnO(101̄0), Figure23a. Since the overall system contained

7524 atoms, its assessment through standard DFT would have been prohibitive instead. Lo-

cal distortion was obtained through a NVT molecular dynamics simulation at 1000 K and five

atoms at the interface were selected for each species (Cu, Zn, O), as shown in Figure23b for

Cu. Comparison between NN-potential forces and DFT-forces for these sites confirmed once

more the robustness of the framework (Figure 23c), suggesting a potential generalization



beyond ternary systems toward the inclusion of adsorbates.400

8.3 Inverse Design to extract structural data

As introduced before, machine learning can assist the assignment of fingerprints from in

situ Operando characterization techniques and the consequent derivation of key structural

properties for disordered systems,410 thus is increasingly employed in materials science.411

To mention a meaningful example of this inverse design strategy, Timoshenko et al. applied

Figure 24: Time-dependent Zn-O and Zn-M (M=Zn-Cu) coordination numbers as ex-
tracted by neural network from time-dependent Zn K-edge EXAFS data for CuZn and Zn100

nanoparticles.412 Adapted with permission from Ref. 412 (Copyright 2020 The Royal Society
of Chemistry with Creative Commons Attribution 3.0 Unported Licence413).

neural network to a set of Extended X-ray Absorption Fine Structure (EXAFS) data to

extract structural information for CuZn nanoparticles under CO2 reduction.412 By training

the NN with theoretical spectra for a copper foil, Cu2O, CuO, and Cu(OH)2, the authors

could reproduce experimental radial distribution function with excellent accuracy. After

having validated the methodology, Cu-O, Cu-Cu, and Cu-Zn radial distribution functions

were extracted from experimental Cu K-edge EXAFS spectra recorded for as-synthesized



CuZn nanoparticles and catalyst after 1-7 hours of continuous CO2 reduction. The authors

tracked the variation of Cu-Cu/Zn distances over time as well as the coordination number

for Zn-Cu/Zn and Zn-O (Figure24). These structural properties were finally employed to

rationalize the overall performance of the catalyst.414

8.4 Outlook on machine learning

Even though ML techniques are certainly promising in the field of computational model-

ing of eCO2R reaction, its application is still limited. Thus, further efforts are needed to

employ these novel techniques within a consistent and benchmarked framework. Since the

development of a general set of protocols facilitates future potential advances, we endorse

here the list of best practices proposed in a recent perspective article by Artrith et al.415 For

simplicity, we report the main points below.

1. Data sources. The available data sources should provide high quality, quantity, and

diversity. Datasets should be stored on FAIR databases (see for instance ioChem-

BD416–418 the Materials Project419 and CatApp420).

2. Data cleaning. Data upload on accessible databases should involve cleaning steps to

ensure that all the stored data are reusable. The cleaning steps should be properly

described and preferentially applied through a semi/full automatic workflow.

3. Data representation. Different data representations should be considered to select

a model and the choice should be properly described, motivated, and validated vs

standard features sets.

4. Model selection. Since different approaches exist in ML, they should be properly

accounted for and the choice of the model should be validated through baseline com-

parisons with simpler schemes.

5. Model training and validation. Parameters for training, validation, and test of the



model should be clearly stated. Besides, data splitting into the three categories should

prevent data leakage.

6. Code and Reproducibility. The workflow should be reproducible, thus codes and

related materials should be freely available in adequate long-term archiving.

Further, in terms of the four scopes previously introduced, material discovery for selective

reduction of CO2 to C2+ hydrocarbons and alcohols should proceed hand in hand with de-

termination of reaction mechanisms through multi-scale methods as microkinetic modeling.

Successive high throughput screening studies should follow this preliminary assessment of

the key reactions steps and intermediates. In our opinion such multi-scale approaches can

greatly help the identification of generalized descriptors and increase the success rates to-

wards finding better catalysts and improving the Faradaic efficiencies of various hydrocarbon

products. As for the development of atomistic potentials, long-term MD simulations (of the

order of nanoseconds) play a crucial role in determining active sites evolving under reaction

conditions due to Operando restructuring of the catalyst (see Section 3.1). Since assessment

of this process through ab initio MD simulations is limited to simplified models,205,210 and

may be affected by intrinsic inaccuracies212 then accelerated ML-MD techniques will likely be

determinant. The work from Behler, Artrith, and co-workers towards using artificial neural

networks to simulate the potential energy surfaces is a major step in this direction.392,405,406

Finally, novel techniques from data extraction and inverse design will significantly lower the

impact of human biases in analysis of experimental data, thus increasing the overall accuracy

of the resulting insights.

9 Conclusion and future challenges

The increasing accuracy of experimental methodologies to characterize electrochemical pro-

cesses require significant progresses in computational modeling to mimic the full stack or

device operation. In line with a terminology previously introduced,123 the eCO2R field needs



the development of an Operando modeling framework.

On one side, the equations to obtain energies and chemical potentials from first principles

simulations need to be more general, including promotional effects as external magnetic

fields,421,422 local surface polarization,97,210 and specific stabilization from the electrolyte.45

On the other hand, several issues need to be addressed regarding the materials and operation

gap. In many cases, new techniques based on machine learning423 can help integrate the

different scales of the electrochemical processes and can provide strategies for dimensionality

reduction, allowing unambiguous determination of descriptors for activity.424

Reconstruction, phase transitions, dissolution, and re-precipitation of species evolving

from the as-synthesized compound requires the development of new computational models

that are able to describe the effects related to stability. Novel methods will certainly ben-

efit from the fast development of ionic potentials and artificial neural networks which will

be crucial towards large scale molecular dynamics. The initial results in this field are very

promising but the introduction of solvent and electrolyte has not been successfully imple-

mented yet. Moreover, the characterization of pattern distribution and ensembles through

graph theory and other ML approaches will be fundamental to identify the most active and

selective sites.

Detailed modeling of complex reaction mechanisms, as CO2 reduction to C3+ products,

requires significant computational advances toward the automatic generation of reaction

networks, through graphs and autonomous energy evaluations with robust workflows which

include human analysis of ambiguous calculations (from our own experience these ill-defined

datasets account for about 15% of the total). Such frameworks should be preferentially

integrated into multi-scale modeling techniques as microkinetic modeling to evaluate the

most abundant surface intermediates and selectivity determining steps. Rationalization of

pathways and fast evaluation of barriers linking key intermediates are crucial for further

analysis of complex reaction networks. ML-based dimensionality reduction schemes can

be employed to simplify the overall complexity and go beyond the standard definition of



catalytic descriptors.

Under electrocatalytic conditions, once the potential is applied, the material reacts and

the applied bias also affects the solvent/electrolyte. Apart from cathodic/anodic potential,

surface polarization is further influenced by the explicit interactions between cations and

anions in the electrolyte or by their crossover through the membrane between cathodic and

anodic compartments. Mass transfer phenomena both at the electrode/electrolyte interface

and at the bulk electrolyte need to be considered for an accurate modeling of the operational

device. In this area, microkinetic codes require a better standardization along with the fluid

dynamic approaches. However these two approaches currently are difficult to couple, since

the engineering programs lack a successful integration of first principles results.

Mapping experiments to computational results and establishing robust structure-activity

relationships can only be done through a much closer interplay between experiments and

theory, moving from qualitative or semi-quantitative analysis (e.g DFT vibrations for spec-

troscopy) to more adequate fingerprint identifications. Bridging technologies, like data pro-

cessing of both experimental and computational datasets through neural network, will be

instrumental to merge all the structural information in a seamless framework, thus enabling

a successful identification of the active sites.

All these developments can be further steered by storing theoretical and experimental

output on FAIR databases to promote reproducibility and reuse of the data. This is much

more advanced in the area of first principle modeling where our approach ioChem-BD416–418

and other initiatives such as the Materials Project,419 CatApp,420 etc. are getting momen-

tum, while FAIR storage of experimental data is currently lmited to few platforms (e.g.

Zenodo? Generated datasets can be reused for heavy calculations or fast estimates, as we

did for modeling the metal/electrolyte interface,22,42,45 and then further rationalized through

machine learning.28

Overall, the developments in the field during the last five years have been enormous and

yet the main core questions remain open. A multidisciplinary approach, supported by new



researchers educated in the converging areas of Physics, Chemistry, Data, and Materials

Sciences, will improve our understanding of the complexity of Operando electrochemical

processes, hence enabling a full exploitation of fundamental insights in industrial devices.
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DFT = Density Functional Theory

LSR = Linear Scaling Relationships

CHE = Computational Hydrogen Electrode

EXAFS = Extended X-ray Absorption Fine Structure

eCO2R = Electrochemical CO2 reduction

Cn+ = Chemical compounds from CO2 reduction with carbon number ≥ n.

HER = Hydrogen Evolution Reaction

OER = Oxygen Evolution Reaction

RDS = Rate-Determining Step

ORR = Oxygen Reduction Reaction

SHE = Standard Hydrogen Electrode

RHE = Reversible Hydrogen Electrode

PCET = Proton-Coupled Electron Transfer

ET = Electron Transfer

EDL = Electrical Double Layer

GCHE = Generalized Computational Hydrogen Electrode

ORR = Oxygen Reduction Reaction

PB = Poisson-Boltzmann

kLSR = kinetic Linear Scaling Relationships

tLSR = thermodynamic Linear Scaling Relationships

* = adsorption site

*molecule = adsorbed molecule

PCA = Principal Component Analysis

XPS = X-ray Photoelectron Spectroscopy

EC-ESTM = ElectroChemical Scanning Tunneling Microscopy

pc-Cu = Polycrystalline Copper



OD-Cu = Oxide-Derived Copper

UHV = Ultra High Vacuum

TPD = Temperature Programmed Desorption

XAS = X-Ray Absorption Spectroscopy

COR = CO reduction

TR-SERS = Time-Resolved Surfaced Enhanced Raman Spectroscopy

F.E. = Faradaic Efficiency

GDE = Gas Diffusion Electrode

LEED = Low-Energy Electron Diffraction

NP = Nanoparticle

ML = Machine Learning

NN = Neural Network

MD = Molecular Dynamics

AIMD = Ab Initio Molecular Dynamics

SCC-DFTB = Self-Consistent Charge Density Functional Tight Binding

NVE = Microcanonical ensemble with no changes in moles, volume, and energy

NVT = Microcanonical ensemble with no changes in moles, volume, and temperature

ReaxFF = Reactive Force Field framework

PZC = Point of Zero Charge

ATR-FTIR = Attenuated Total Reflection Fourier Transform Infrared

FTIR = Fourier Transform Infrared

SEIRAS = Surface Enhanced Infrared Absorption Spectroscopy

ATR-SEIRAS = Total Reflection Surface Enhanced Infrared Absorption

PT = Proton Transfer

SDS = Selectivity-Determining Step

H2OR = Water reduction

MMK = Microkinetic Modeling



CM = Quantum Mechanical

MM = Molecular Mechanics

CMH = Constrained Minima Hopping

OHP = Outer Helmholtz Plane

OLEMS = Online Electrochemical Mass Spectrometry

PNP = Poisson-Nernst-Planck

DEMS = Differential Electrochemical Mass Spectroscopy

FAIR = Findability, Accessibility, Interoperability, Reusability
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Luna Lopez, M.; Haase, F. T.; Roldan Cuenya, B. Operando investigation of Ag-

decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid

products. Angew. Chem. Int. Ed. 2021, 60, 7426–7435.

(155) Iyengar, P.; Kolb, M. J.; Pankhurst, J. R.; Calle-vallejo, F.; Buonsanti, R. Elucidating

the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu-Ag tandem

catalysts. ACS Catal. 2021, 11, 4456–4463.

(156) Raaijman, S. J.; Schellekens, M. P.; Corbett, P. J.; Koper, M. T. M. High-pressure



CO electroreduction at silver produces ethanol and propanol. Angew. Chem. Int. Ed.

2021, 60, 21732 –21736.

(157) Creative Commons Attribution 4.0 International License. http://creativecommons.

org/licenses/by/4.0/, Online; accessed 5 August 2021.

(158) Kim, C.; Bui, J. C.; Luo, X.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T.

Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products

on copper using bilayer ionomer coatings. Nat. Energy 2021, 6, 1026–1034.

(159) Moore, T.; Xia, X.; Baker, S. E.; Duoss, E. B.; Beck, V. A. Elucidating mass transport

regimes in gas diffusion electrodes for CO2 electroreduction. ACS Energy Lett. 2021,

6, 3600–3606.

(160) Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, M. T. M. Competition between

CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass

transport conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161.

(161) Goyal, A.; Koper, M. T. M. The interrelated effect of cations and electrolyte pH on

the hydrogen evolution reaction on gold electrodes in alkaline media. Angew. Chem.

Int. Ed. 2021, 60, 13452–13462.
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(237) Pršlja, P.; López, N. Stability and redispersion of Ni nanoparticles supported on N-

doped carbons for the CO2 electrochemical reduction. ACS Catal. 2021, 11, 88–94.
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(305) Pérez, L. C. P. et al. Determining structure-activity relationships in oxide derived

Cu-Sn catalysts during CO2 electroreduction using X-Ray Spectroscopy. Adv. Energy

Mater. 2022, 12, 2103328.

(306) Dattila, F. DFT datasets associated with “Determining structure-activity relation-

ships in oxide derived Cu-Sn catalysts during CO2 electroreduction using X-ray spec-

troscopy”. https://doi.org/10.19061/iochem-bd-1-211, 2021; Online; accessed 24

December 2021.

(307) Xiao, H.; Goddard III, W. A.; Cheng, T.; Liu, Y. Cu metal embedded in oxidized

matrix catalyst to promote CO2 activation and CO dimerization for electrochemical

reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685–6688.

(308) Sang, J. et al. A reconstructed Cu2P2O7 catalyst for selective CO2 electroreduction to

multicarbon products. Angew. Chem. Int. Ed. 2022, 61, e202114238.
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(321) Amatore, C.; Savéant, J. M. Mechanism and kinetic characteristics of the electrochem-

ical reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc.

1981, 103, 5021–5023.

(322) Hori, Y.; Murata, A.; Kikuchi, K.; Suzuki, S. Electrochemical reduction of carbon

dioxide to carbon monoxide at a gold electrode in aqueous potassium hydrogen car-

bonate. J. Chem. Soc., Chem. Commun. 1987, 728–729.

(323) Wuttig, A.; Yaguchi, M.; Motobayashi, K.; Osawa, M.; Surendranath, Y. Inhibited

proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci.

USA 2016, 113, E4585–E4593.

(324) Gauthier, J. A.; Fields, M.; Bajdich, M.; Chen, L. D.; Sandberg, R. B.; Chan, K.;

Nørskov, J. K. Facile electron transfer to CO2 during adsorption at the metal —

solution Interface. J. Phys. Chem. C 2019, 123, 29278–29283.

(325) Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to

methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

(326) Peng, H.; Tang, M. T.; Liu, X.; Lamoureux, P. S.; Bajdich, M.; Abild-pedersen, F.

https://doi.org/10.19061/iochem-bd-1-192


The role of atomic carbon in directing electrochemical CO(2) reduction to multicarbon

products. Energy Environ. Sci. 2021, 14, 473–482.

(327) Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, F. Theoretical insight

into the trends that guide the electrochemical reduction of carbon dioxide to formic

acid. ChemSusChem 2016, 9, 358–363.

(328) Liu, H.; Liu, J.; Yang, B. Promotional role of a cation intermediate complex in C2 for-

mation from electrochemical reduction of CO2 over Cu. ACS Catal. 2021, 11, 12336–

12343.

(329) Santatiwongchai, J.; Faungnawakij, K.; Hirunsit, P. Comprehensive mechanism of

CO2 electroreduction toward ethylene and ethanol: The solvent effect from explicit

waterCu(100) interface models. ACS Catal. 2021, 11, 9688–9701.

(330) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C.-T.; Seifitokaldani, A.; Sin-

ton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From

mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

(331) Chang, X.; Li, J.; Xiong, H.; Zhang, H.; Xu, Y.; Xiao, H.; Lu, Q.; Xu, B. CC Coupling

is unlikely to be the ratedetermining step in the formation of C2+ products in the

coppercatalyzed electrochemical reduction of CO. Angew. Chem. Int. Ed. 2022, 61,

e202111167.

(332) Kibria, M. G. et al. A surface reconstruction route to high productivity and selectivity

in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 2018, 30, 1804867.

(333) Ledezma-Yanez, I.; Gallent, E. P.; Koper, M. T. M.; Calle-Vallejo, F. Structure-

sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic

implications for CO and CO2 reduction. Catal. Today 2016, 262, 90–94.
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