POLITECNICO DI TORINO Repository ISTITUZIONALE

Influence of Cations on HCOOH and CO Formation during CO2 Reduction on a PdMLPt(111) Electrode

Original

Influence of Cations on HCOOH and CO Formation during CO2 Reduction on a PdMLPt(111) Electrode / Ye, Chunmiao; Dattila, Federico; Chen, Xiaoting; López, Núria; Koper, Marc T. M. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 145:36(2023), pp. 19601-19610. [10.1021/jacs.3c03786]

Availability: This version is available at: 11583/2981890 since: 2023-09-11T07:43:16Z

Publisher: American Chemical Society

Published DOI:10.1021/jacs.3c03786

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Influence of Cations on HCOOH and CO Formation during CO₂ Reduction on a $Pd_{ML}Pt(111)$ Electrode

Chunmiao Ye^{†, ||}, Federico Dattila^{‡, §, ||}, Xiaoting Chen[†], Núria López[‡], Marc T.M. Koper^{*, †}

[†] Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands

[‡] Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain

[§] Present Address: Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.

^{II} C.Y. and F.D. contributed equally to this work.

Supporting Information

Figure S1 a. Cyclic voltammogram of Pt(111) in 0.1 M HClO₄. Scan rate: 50 mV s⁻¹. **b.** Cyclic voltammograms for Pt(111) in 0.1 M H₂SO₄ + 0.1 mM PdSO₄, recorded in successive stages during Pd deposition experiment. Scan rate: 50 mV s⁻¹. Arrows indicate the evolution with time.

Figure S2. Linear Sweep Voltammetry of $Pd_{ML}Pt(111)$ in argon-purged pH 3 electrolytes in the absence (black) and presence of 1 mM KClO₄ (red). Scan rate: 10 mV/s.

Figure S3 a. CO stripping voltammograms on $Pd_{ML}Pt(111)$ after CO₂ reduction at different vertex potentials in CO₂-saturated pH 3 electrolyte without metal cations, measured at 10 mV s⁻¹. **b.** HPLC data before and after chronoamperometry at -1.2 V_{RHE} for 10 min in CO₂-saturated pH 3 electrolyte without metal cations.

Figure S4. CO stripping voltammograms on $Pd_{ML}Pt(111)$ after CO₂ reduction at different vertex potentials in CO₂-saturated pH 3 with 1 mM KClO₄ electrolyte, measured at 10 mV s⁻¹.

Figure S5 a. CO stripping voltammograms on $Pd_{ML}Pt(111)$ after CO₂ reduction at different vertex potentials in CO₂-saturated pH 3 with 5 mM KClO₄ electrolyte, measured at 10 mV s⁻¹. **b.** HCOOH formation and the calculated CO coverage as a function of potential.

Figure S6 a. CO stripping voltammograms on $Pd_{ML}Pt(111)$ after CO₂ reduction at different vertex potentials in CO₂-saturated pH 3 with 10 mM KClO₄ electrolyte, measured at 10 mV s⁻¹. **b.** HCOOH formation and the calculated CO coverage as a function of potential.

Figure S7. CO stripping voltammograms on $Pd_{ML}Pt(111)$ after CO₂ reduction at different vertex potentials in CO₂-saturated pH 3 with 99 mM KClO₄ electrolyte, measured at 10 mV s⁻¹.

Figures S3a, S4, S5a, S6a and S7 show oxidative stripping voltammograms of adsorbed CO obtained during CO₂RR by increasing the vertex potential in steps of 0.1 V from -0.4 V_{RHE}. With the positive going scan, decreasing peaks (peak at 0.31 V_{RHE} decreasing first) in the potential region between +0.05 and +0.35 V_{RHE} suggest adsorbed CO. CO_{ads} oxidation peaks are observed in the potential region between +0.65 and +0.9 V_{RHE}, the peaks varying under different conditions. These different CO oxidation peaks may result from different *CO coverage or changes of local electrolyte after CO₂RR. After oxidation of *CO, the typical CV features in pH 3 electrolyte are again observed in the negative going scan. In some voltammograms, CV features of Pd_{ML}Pt(111) slightly deviate from the standard, which might be due to minor loss of Pd atoms during CO₂RR. Moreover, peaks in the potential region between +0.05 and +0.35 V_{RHE} decreases with increasing of *CO obtained from CO₂RR, which leads to more CO oxidation current in potential region between +0.65 and +0.9 V_{RHE} and corresponding higher CO coverage.

Figure S8. A summary of CO and formic acid generation during CO₂RR in CO₂ saturated pH 3 electrolytes in the presence of 0, 1, 5, 10, 99 mM KClO₄.

Figure S9. Electrostatic potential (Φ) profile across the simulation cell (*z*-direction, reported on top) for the cation-free (gray line) and near-cation ($d_{K+-surf} = 4 \text{ Å}$) systems with and without excess electron (magenta and purple line respectively).

Figure S10. Electrostatic potential (Φ) profile across the simulation cell (*z*-direction, reported on top) for the cation-free (gray line) and far-cation ($d_{K+-surf} = 9 \text{ Å}$) systems with and without excess electron (magenta and purple line respectively).

Figure S11. Bader charges for adsorbed CO_2^- on Pd(111) (3×3), Pd_{ML}Pt(111) (3×3), and Pt(111) (3×3). The gray column reports the baseline case for the adsorbate without K⁺, while the near-K⁺ system (with excess electron) is indicated in magenta. Solvated K⁺ was here simulated with three water molecules within its coordination shell.

Figure S12. **a**. Correlation between $H^{\delta-}$ Bader charges and cation-induced electric field, proportional to q^{K+}/r^2_{K+-H} . **b**. Cation-induced electric field vs cation acidity for alkali, bi-valent, and tri-valent cations. Cation acidity affects cation accumulation, while electric field favors the formation of hydrides on the surface. The distance between cation and hydrogen is here taken as the state-of-the-art cation-water distance reported for solvated cations (see Table S3).⁵⁻⁶

Figure S13. a. DFT energy on $Pd_{ML}Pt(111)$ (3×3) relative to cation-induced outer-sphere CO₂ activation to HCOO⁻ for the K⁺-free (gray) and near-K⁺ with and without balancing OH⁻ (purple and magenta) for different values of metal work functions (right *y*-axis). **b.** DFT energy relative to the HCOO⁻ formation step on $Pd_{ML}Pt(111)$ (3×3) supercell for cation-free (gray), far-K⁺ (light purple), and near-K⁺ (dark purple) cases at U = -0.4 V vs RHE. Values of metal work function for clean surfaces are given at the right *y*-axis. For details on the model, see Figure 5a-b and Computational Details.

Table S1. Calculated work function for the $Pd_{ML}Pt(111)$ (3×3) surface for clean surface and *CO₂ for the K⁺-free, the near-K⁺ ($d_{K+-surf} = 4$ Å), and far-K⁺ ($d_{K+-surf} = 9$ Å) cases, with and without balancing OH⁻. Cation and H₂O molecules (within bracket) were absent in the K⁺-free case.

System	W / eV					
System	K ⁺ -free	Near K ⁺	Near $K^+ + OH^-$	Far K^+	Near $K^+ + OH^-$	
Clean surface	+4.84	+2.35	+5.54	+1.74	+5.55	
$*CO_2^{-}(+K^++5H_2O)$	+5.05	+5.09	+5.59	+5.14	+5.41	

Table S2. Calculated Bader charges of the $Pd_{ML}Pt(111)$ (3×3) surface for clean surface and *CO₂ for the K⁺-free, the near-K⁺ ($d_{K+-surf} = 4$ Å), and far-K⁺ ($d_{K+-surf} = 9$ Å) cases, with and without balancing OH⁻. Cation and H₂O molecules (within brackets) were absent in the K⁺-free case.

Sustam	$q_{ m surf}$ / $ { m e}^- $					
System	K ⁺ -free	Near-K ⁺	Near $K^+ + OH^-$	Far K ⁺	Near $K^+ + OH^-$	
Clean surface	+0.00	-0.62	-0.24	-0.05	-0.05	
$*CO_2^- (+ K^+ + 5H_2O)$	+0.35	-0.07	+0.29	+0.30	+0.30	

Table S3. Properties of alkali, bi-valent, and tri-valent cations, taken from Refs. ⁵⁻⁸.

Cation	$q_{ m cat}$ / $ { m e}^- $	ionic radius / Å	$d_{\text{cat-O}}$ / Å	Acidity / $ e^- ^2 \text{\AA}^{-1}$	$q_{\rm cat}/r^2_{\rm cat-O} / {\rm e}^- {\rm \AA}^{-2}$
Li ⁺	1	0.92	2.08	1.09	0.23
Na^+	1	1.39	2.36	0.72	0.18
\mathbf{K}^+	1	1.64	2.80	0.61	0.13
Cs^+	1	1.88	3.14	0.53	0.10
Mg^{2+}	2	0.89	2.09	4.49	0.46
Ba ²⁺	2	1.61	2.81	2.48	0.25
Al^{3+}	3	0.54	1.89	16.67	0.84
Nd^{3+}	3	1.27	2.47	7.09	0.49

References

1. McCrum, I. T.; Koper, M. T. M., The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. *Nature Energy* **2020**, *5* (11), 891-899.

2. Monteiro, M. C.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M., Absence of CO₂ electroreduction on copper, gold and silver electrodes without metal cations in solution. *Nat. Catal.* **2021**, *4* (8), 654-662.

3. Chan, K.; Nørskov, J. K., Potential Dependence of Electrochemical Barriers from ab Initio Calculations. *J. Phys. Chem. Lett.* **2016**, *7* (9), 1686-1690.

4. Chan, K.; Nørskov, J. K., Electrochemical Barriers Made Simple. J. Phys. Chem. Lett. 2015, 6 (14), 2663-2668.

5. Monteiro, M. C. O.; Dattila, F.; Lopez, N.; Koper, M. T. M., The Role of Cation Acidity on the Competition between Hydrogen Evolution and CO2 Reduction on Gold Electrodes. *J. Am. Chem. Soc.* **2022**, *144* (4), 1589-1602.

6. Marcus, Y., Ionic radii in aqueous solutions. Chem. Rev. 1988, 88 (8), 1475-1498.

7. Haynes, W. M., CRC handbook of chemistry and physics. CRC press: 2016.

8. Waegele, M. M.; Gunathunge, C. M.; Li, J.; Li, X., How cations affect the electric double layer and the rates and selectivity of electrocatalytic processes. *J. Chem. Phys.* **2019**, *151* (16), 160902.