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Abstract—In safety-critical applications, microcontrollers must
satisfy strict quality constraints and performances in terms of
Fmax (the maximum operating frequency). Traditional speed-
binning techniques are not feasible to be applied to mass produc-
tion, due to the high cost of the needed test equipment. Literature
has proven that data extracted from on-chip ring oscillators
(ROs) can model the Fmax of integrated circuits by means of
machine learning models able to predict the actual operating
frequency of the devices. Those models, once trained, can be
easily applied to the ROs data coming from every produced
device with low effort and no need for high-cost equipment.
This research aims to develop machine learning methodologies
to be deployed in the MCU screening process, allowing for a
more efficient and accurate Fmax estimation, as well as improved
speed binning. The effectiveness of this approach has been
demonstrated on a real-world dataset of microcontroller data.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
Semi-Supervised Learning, Deep Learning

I. INTRODUCTION

Automotive and aerospace industries place a strong em-
phasis on the reliability of electronic devices, particularly in
microcontrollers (MCUs) used in safety-critical components.
To ensure that these devices perform as expected, MCU
performance screening is used to identify any underperform-
ing devices that do not meet the specifications outlined in
their datasheets, specifically in terms of maximum operating
frequency (Fmax). To determine the Fmax of a device, it is
tested under various worst-case conditions. Process variation
during manufacturing impacts several parameters of integrated
circuits, thus the performance of chips may vary across the
production. Chips thus can be placed into different speed
bins, depending on the performance (and chips with higher
performance lead to more profit). To maximize profits, it is
important to accurately and efficiently test the chips to place
them in the correct bin, by performing tests at Fmax speed,
which can be divided into functional, structural (scan-based),
and sensor-based tests [1]. Traditional functional methods of
speed-binning involves running critical functional tests on the
devices at increasing clock frequencies until a failure occurs.
This permits measuring the Fmax. But this approach requires
the use of high-end automated test equipment (ATE) to apply
and analyze a large number of test patterns at high speed,
resulting in high test overhead. Also, this approach consumes

a large amount of memory on the tester and requires the
use of costly ATE that can operate at the targeted frequency
[1]. As chips designs become more complex and circuits
faster the costs associated with functional testers are becom-
ing prohibitive. Both the extended test time and the high
requirement of ATEs increase the cost of traditional speed
binning, making it unfeasible to be applied to large mass
production. An alternative approach is to use machine learning
(ML) regression models trained on data that can be correlated
with the device’s Fmax. In the literature, various methods
for performance prediction have been suggested [2], [3]. The
idea of using machine learning models to link structural and
functional Fmax was first introduced in [4]. Research has
shown that on-chip ring oscillators, known as Speed Monitors
(SMONs), can be used as features to predict Fmax values from
the execution of functional patterns on individual devices [5].
These ML regression models make it possible to relate the
SMONs value with the continuous-value Fmax of the devices.
Using indirect measures to predict a circuit characteristic is
called ’alternate test’ in literature and has been widely studied
for analog circuits [6], [7]. This approach leads to a mapping
between indirect measurements and circuit specifications so
that during production testing, device specifications can be
predicted using only low-cost indirect measurements. ML is a
promising approach in MCU performances, potentially deploy-
able to mass-production, acquiring data from the SMONs of
every produced device and predicting the operating frequency
with high accuracy. However, the accuracy of supervised ML
models depends on the quality and the quantity of labeled
data. In this context, unlabeled data are relatively inexpensive
to acquire. Instead, the acquiring Fmax is costly in terms
of time required, and thus the amount of available data is
limited. The key difficulty in this context is obtaining a
properly labeled training set (thousand of devices). This could
require several months. The scarcity of labeled data requires
carefully producing hand-crafted features and choosing simple
models able to catch non-linear relationship in the Fmax

prediction. Also, noise in the data acquisition may affect the
data quality. These are the main open problems. This research
aim to develop ML models that take into account these critical
issues, optimizing the labeling phase of the MCU sample
and increasing the reliability of the overall procedure. The
developed models are tested on several real case studies.



II. CONTRIBUTION

The study in [5] firstly linked the data from 27-speed
monitors to the functional Fmax measurements on over 4,000
packaged devices taken from 26 corner-lot wafers, laying
the foundation for a new area of research. A first step
towards reducing the training set size for ML performance
screening was moved in [8], by using Active Learning (AL)
to choose the most informative samples for creating an ML
model. AL techniques are deployable in contexts in which
labeled data are hard to obtain, due to money or time cost.
AL builds an optimized training set by selecting the most
valuable sample, according to some metric, from a pool
of unlabeled data. The selected sample will be labeled and
inserted in the training set. This permitted halving the number
of samples needed to build models, saving months in the
overall procedure. In [9], the effectiveness of several outlier
detection techniques was evaluated in identifying anomalous,
noisy data, and outliers; as a result, the training set size was
increased by recovering incomplete samples (samples with
some missing values), which a classical ML framework would
drop, obtaining higher quality data for feeding the successive
ML models. This procedure permitted reducing the number
of samples to be characterized (a third), without affecting
the generalization error of the models. In [10], a novelty
detection procedure based on wafer-level information derived
by SMONs measurements was exploited, to estimate possible
shifts in the data distribution. Monitoring the process permits
test engineers to detect data (single wafers or entire lots) on
which our model would have poor prediction performance,
eventually labeling that data, and deciding if re-train or not
the underlying prediction models. This procedure permits
increasing the reliability of the prediction on mass production,
and thus the robustness of the overall screening procedure. In
general, Unsupervised or Semi-Supervised learning techniques
can be deployed to take advantage of the ease of obtaining
unlabeled data (possibly, for every produced device, and thus
millions of samples). These techniques can extract relevant
patterns, using these in the successive supervised performance
prediction task. Deep Learning models, such as Auto-Encoders
(never used in this context, by far) are appropriate to this goal
since can be fed with the huge amount of available unlabeled
data, and can be fine-tuned with labeled ones, thus becoming
more effective and permitting to reduce the training set size
required to train robust models. Noise detection techniques can
also improve the quality of data, and thus contributes to fitting
better models. All these methods are deployable to build more
accurate models, increasing the yield of the screening process
and thus the monetary gains, while reducing the testing time
(that would require several months just to create the dataset,
resulting in an infeasible application on large-scale volumes).
But these techniques are quite general: they can be applied
to many data-analysis other fields in which obtaining labeled
data is hard (such as Biomedical data, Speech recognition,
and Natural language processing), making this research topic
extremely useful in a wide variety of contexts.

Fig. 1. Data collection steps through the manufacturing

III. IMPACT

The reasons why ML is a promising approach in mi-
crocontroller performance screening were presented above.
It enables the use of models able to predict the operating
frequency of the devices with high accuracy, and it can be
potentially deployed to mass production. ML techniques have
the potential to save significant test time and a huge amount
of money (since requires no demanding ATE) with respect
to traditional speed binning approaches [11]. However, the
ML approach carries some uncertainty due to the probabilistic
nature of the models, which depends on the data on which they
are trained. But this uncertainty can be taken into account,
by deploying guardband [5] to the output predicted frequency
of the models, or by checking if the trained model is still
appropriate to be applied to mass production [10]. With these
approaches, ML models can achieve high prediction accuracy
and quality (currently, about 1% of normalized mean absolute
error, which is satisfactory for the proposed scope), and thus
can be used in the traditional test flow of electronic devices,
to support other existing testing procedures such as functional
and structural tests, increasing the devices test accuracy.
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