
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling Inter-Product Transfer Learning on MCU Performance Screening / Bellarmino, Nicolo; Cantoro, Riccardo;
Huch, Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - ELETTRONICO. - (2023), pp. 1-6. (Intervento
presentato al  convegno IEEE 32nd Asian Test Symposium tenutosi a Beijing (China) nel 14-17 October 2023)
[10.1109/ATS59501.2023.10317992].

Original

Enabling Inter-Product Transfer Learning on MCU Performance Screening

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ATS59501.2023.10317992

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981872 since: 2023-09-30T08:52:00Z

IEEE



Enabling Inter-Product Transfer Learning on MCU
Performance Screening

Nicolò Bellarmino∗, Riccardo Cantoro∗, Martin Huch†,
Tobias Kilian†‡, Ulf Schlichtmann‡ and Giovanni Squillero∗

Abstract—In safety-critical applications, microcontrollers must
meet strict quality and performance standards, including the
maximum operating frequency (Fmax). Machine learning (ML)
models can estimate Fmax using data from on-chip ring oscil-
lators (ROs), making them suitable for performance screening.
However, when new products are introduced, existing ML models
may no longer be suitable and require updating. Training a new
model from scratch is challenging due to limited data availability.
Acquiring Fmax data is time-consuming and costly, resulting
in a small labeled dataset. However, a large amount of data
from legacy products may be available, along with existing ML
models. In order to address the scarcity of labeled data, this
paper proposes using deep learning feature extractors trained on
specific MCU product data and fine-tuning them for new devices,
in a Transfer Learning fashion. Experimental results show that
these models can extract useful general features for performance
prediction. As a result, they achieve better performance with
significantly less labeled data compared to traditional shallow
learning approaches.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
Transfer Learning, Deep Learning

I. INTRODUCTION

The automotive and aerospace industries demand highly
reliable devices, particularly microcontrollers (MCUs) used
in safety-critical components. The performance screening of
MCUs focuses on identifying devices that do not meet speci-
fied characteristics, such as the maximum operating frequency
(Fmax) [1]. Traditional speed binning involves executing crit-
ical functional tests at increasing clock frequencies to identify
underperforming devices. However, this approach is time-
consuming, requires expensive Automatic Test Equipment
(ATE), and only provides categorical binning results [1]–[5].

To address these challenges, ML regression models have
been proposed to predict the Fmax of MCUs based on cor-
related data [5]. ML techniques offer significant time savings
compared to traditional speed binning methods [5]. Previous
research has explored the use of on-chip ring oscillators,
known as Speed Monitors (SMONs), as features to predict
Fmax values [3], [4], [6], [7]. These ML models establish the
relationship between SMON values and the Fmax.

The accuracy of supervised ML models relies on high-
quality and sufficient labeled data. While unlabeled data are
readily available and inexpensive to obtain, acquiring Fmax

∗ Politecnico di Torino (Turin, Italy). † Infineon Technologies AG (Munich,
Germany). ‡ Technical University of Munich (Munich, Germany). Authors are
listed in alphabetical order.

is time-consuming. When introducing a new product, there is
often a scarcity or absence of data. Constructing an ML model
from scratch under these circumstances becomes challenging,
as it requires obtaining an adequate training set, which is
very time-consuming. Additionally, using the very same model
trained on previous-generation data may not be viable due to
potential shifts in data distributions, resulting in significant
prediction errors. However, data and models from previous-
generation products remain accessible and can be utilized to
build new ML models.

In this paper, we propose leveraging the knowledge ac-
quired from a legacy MCU product (P1) to develop models
for a different new product (P2) using Transfer Learning.
Specifically, we employ 1-Dimensional Convolutional Neural
Networks pre-trained on P1 as Feature Extractors for P2.
Our experiments demonstrate that this approach achieves a
reasonable prediction error (2% normalized root-mean-square
error, nRMSE) even with a limited number of samples (units).
This accelerates the deployment of ML models in production
and requires training only a shallow linear regression model to
link the extracted features with the actual operating frequency.
The performance achieved with this approach is comparable
to classical shallow-learning algorithms, such as Ridge Re-
gression with polynomial feature transformation, trained on
thousands of samples.

The rest of the paper is organized as follows: Section II
presents related works on the topic. Section III provides the
necessary background information, including data collection
processes for ML algorithms (Section III-A) and an introduc-
tion to Deep Convolutional Networks and Transfer Learning
(Sections III-B and III-C). In Section IV, the motivations for
deploying transfer learning are given. In Section V, we detailed
the proposed approach. Section VI presents the experimental
evaluation. Finally, Section VII draws the conclusions.

II. RELATED WORK

The usage of machine learning (ML) models to establish
a relationship between structural and functional Fmax was
initially introduced in [3]. Subsequently, several approaches
have been proposed for performance prediction [6]–[8].

The use of indirect measures to predict circuit characteris-
tics, known as “alternate test”, has been studied for analog
circuits [9]–[12]. The idea is to learn a mapping between
indirect measurements and circuit specifications. In this work,
we leverage ML techniques to build this mapping, specifically



from Ring Oscillators (ROs) values (namely, Speed Monitors
or SMONs) to Fmax.

In the field of MCU performance screening, researchers
have worked on deriving ML models for Fmax prediction
[5], [7], [13], [14]. In [7], authors correlated the values of
27 SMONs obtained during wafer sort to functional Fmax. In
[15], they found polynomial ridge regression (Poly Ridge) to
be an effective ML model for MCU performance screening.
In [13], Active Learning (AL) was employed to reduce the
training set size by selecting informative samples for deriving
the ML model. Additionally, outlier detection techniques were
evaluated for identifying anomalous, noisy data and outliers
[14].

In [16], Semi-Supervised Learning (SSL) was leveraged
to develop Deep Feature Extractor models, showcasing how
Neural Networks can acquire relevant knowledge even from
unlabeled data. This work lays the foundation for applying
such models in scenarios characterized by limited labeled data.

Transfer learning has emerged as a powerful technique in
various domains [17]–[19]. The concept of pretraining and
fine-tuning was introduced in [20], where a CNN is pre-trained
on a large-scale dataset and then fine-tuned for a specific target
task, yielding significant improvements in computer vision
tasks.

III. BACKGROUND

A. Data Collection

The ML training process involves acquiring a suitable
dataset, and thus, characterizing the MCUs. The measurements
obtained from the on-chip ROs, known as SMONs, serve as the
features for the ML models [7]. These SMONs’ frequencies
are accurately measured during production while the dies are
still on the wafer, providing high-quality features in a stable,
fast, and straightforward process. The SMONs measurement
is part of the regular production test flow [15], as depicted in
Figure 1.

On the other hand, labels acquisition is a separate and time-
consuming process that is not included in the standard produc-
tion test flow. Labeling involves individually measuring each
MCU using functional test patterns [7]. This process requires
mounting the MCU on a measurement board that simulates
real-field applications. The MCU executes a specific func-
tional pattern under worst-case voltage (Vcrit) and temperature
(Tcrit), gradually increasing the frequency until a functional
failure is observed [21]. The last working frequency Fmax is
then recorded. Multiple functional test patterns are typically
employed, resulting in a multi-label dataset. The Fmax values
collected with different patterns can exhibit significant varia-
tions. The most critical pattern, denoted as Pmin, is the one
with the lowest Fmax value, which may differ among MCUs.
Due to the substantial effort involved, the labeling process is
conducted on a small subset of manufactured devices, leading
to a scarcity of labeled data. This presents a major bottleneck
in ML-based procedures [13], [15]. Consequently, techniques
such as Outlier Detection [14], Active Learning [13], [15],
and possibly Transfer Learning are employed to optimize the

Fig. 1. Data collection steps through the manufacturing

information extracted from the available data. In the end, the
data acquisition process leads to multi-label numerical tabular
data.

B. Transfer Learning

Transfer learning is an ML technique that involves using
knowledge gained from solving one problem to improve the
performance achieved on a different but related task. In the
context of deep neural networks, transfer learning refers to
leveraging pre-trained models on large datasets and trans-
ferring their learned knowledge to new tasks or domains.
Deep neural networks are often trained on large-scale datasets
that usually contain millions of samples. In computer vision
applications, for example, it is quite common to start from
a network pre-trained on very huge datasets with millions
of labeled images. These models learn to extract hierarchical
representations of data, enabling them to recognize various
features and patterns. Instead of training a deep neural network
from scratch on a new task or dataset, transfer learning allows
initializing the network with the pre-trained weights, which
serves as a valuable starting point. The first layers of the
pre-trained neural network are then frozen to prevent their
weights from being modified during the successive fine-tuning.
The pre-trained layers serve as a feature extractor, capturing
general patterns and representations from the original dataset.
Due to the flexible nature of the neural networks, it is possible
to add new custom layers on top of the pre-trained layers.
These layers are task-specific and can be designed according to
the requirements of the target task. After adding custom layers,
it is possible to optionally unfreeze some pre-trained layers to
allow them to be fine-tuned on the final target task. This step
is beneficial when a substantial amount of data is given for the
new task, allowing the model to adapt further to the specific
domain. Transfer learning offers several benefits, including
reducing the amount of required labeled data, speeding up
training time, and improving generalization to new tasks. It
is widely used across various domains, including computer
vision, natural language processing, and audio processing.

C. Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) have emerged
as a powerful machine learning model, especially in the field of
computer vision. Nowadays, CNNs have achieved state-of-the-
art results in a wide range of both supervised and unsupervised
tasks such as image classification, object detection, and seman-
tic segmentation or blind feature extraction. Supervised CNNs
have been extensively used for tasks where labeled training



data is available. The architecture of a typical supervised CNN
consists of multiple layers, including convolutional, pooling,
and fully connected layers. These networks are designed to
automatically learn hierarchical representations of visual data
directly from the raw input. The convolutional layers in a CNN
apply a set of learnable filters to the input image. These filters
are convolved with the input to produce feature maps, which
are then passed through non-linear activation functions, such
as rectified linear units (ReLU), to introduce non-linearity.
Pooling layers are employed to downsample the feature maps
and reduce spatial dimensions, aiding in translation invariance
and computational efficiency. The fully connected layers at the
end of the CNN receive the high-level features extracted by the
previous layers and perform classification or regression tasks.
These layers connect all neurons in one layer to all neurons
in the next layer, allowing for complex relationships to be
learned. CNNs can also be deployed in unsupervised tasks, to
learn a useful representation from unlabeled data. A popular
approach in unsupervised learning is the use of convolutional
autoencoders. These models consist of two parts: an encoder
network that maps the input data to a compressed repre-
sentation, and a decoder network that reconstructs the input
from the encoded representation. This process encourages the
network to learn meaningful representations that capture im-
portant features and structures in the data. Unsupervised CNNs
have been used for tasks like dimensionality reduction, feature
extraction, and image denoising [22]. CNNs are mainly used
in the field of images because of the ability of convolutional
layers to catch spatial structure and patterns of data (such
as correlation among near pixels in images). Convolutional
kernels are designed to extract features by leveraging two
important properties of input images: local connectivity and
spatial locality [23]. The concept of local connectivity implies
that each convolutional kernel operates on a small region of
the input image during the convolution process. This locality
property assumes that the pixels being convolved are closely
related, and processing them together allows for the extraction
of meaningful feature representations. For example, a single
convolutional kernel can learn to capture edges, textures,
shapes, gradients, and other relevant features. Interestingly,
convolutional layers can also be applied to tabular data [16],
[24]. In such cases, the tabular data can be transformed into
images, enabling the straightforward application of CNNs.
Alternatively, a one-dimensional convolution can be used to
operate on the columns of the dataset, treating each sample
with C dimensions as an image of size (1, C). CNNs have been
effectively used in the field of MCU performance screening
[16], catching non-linear relationships among input features.

IV. TRANSFER LEARNING: REASON WHY

Extensive research has been conducted in recent years
on predictive models for MCU performance screening [7],
[13], [14]. Recently, the utilization of unlabeled data and
Semi-Supervised Learning (SSL) techniques has emerged as
a promising approach in this field, enabling the use of deep
neural networks as feature extractors [16]. Once the knowledge

of the task becomes mature based on the analysis of thousands
of labeled devices of a specific MCU type, the predictive
test can be applied to new products. However, applying the
very same model, trained on legacy products, to new ones is
infeasible as it leads to significant prediction errors, making
ML-based performance prediction unreliable.

One potential solution is to build a new ML model from
scratch, starting from the early phase of obtaining labeled data
and training a shallow learning model. However, this process
requires waiting until a sufficient amount of labeled data is
collected to train a reliable model across the feature domain
of interest and evaluate its performance on an appropriate test
set.

In scenarios where data scarcity is a concern, techniques
such as Active Learning (AL) [13] and Outlier Detection [14]
prove useful in creating an informative training set efficiently,
thus facilitating the development of robust ML models. How-
ever, these approaches may not be sufficient when the number
of available samples is extremely limited. Despite having a
high-quality dataset, models trained with limited samples may
exhibit biases and struggle to generalize well to unseen data.

In [16], the authors analyzed the time required to build a
shallow learning supervised model from scratch. They found
that obtaining a suitable training set for learning the ML
model would require 63 days of continuous labeling (for
about 3000 samples). This duration does not even consider
the feature engineering phase, which is often the most time-
consuming aspect of developing a predictive model and may
take months. However, when deep learning feature extractor
models are combined with SSL techniques, the time required
can be significantly reduced to just a few days (2 to 10). These
deep feature extractor models are trained on millions of easily
obtainable unlabeled or pseudo-labeled data. Moreover, while
traditional shallow learning models such as Support Vector
Machines (SVM), Ridge Regression, and ElasticNet tend to
outperform deep learning models in contexts with limited data,
this advantage does not hold in big-data domains.

Shallow learning requires precise feature engineering as
a preprocessing step to build better models. This involves
supervising the learning process by incorporating domain
knowledge, such as applying polynomial transformations to
raw features before feeding them into a Linear Regression
model [15]. In contrast, deep learning models do not nec-
essarily require this step or do not consider it as crucial.
These ML algorithms have gained immense popularity due
to their superior accuracy when applied to big data. They
autonomously learn how to find the best data representation
by manipulating input features.

However, when dealing with limited labeled data, the afore-
mentioned DL models cannot be applied. This situation com-
monly arises when manufacturing a new product, necessitating
precise strategies to address this problem. Instead of waiting
to collect a sufficient number of labeled data or relying on
large-scale mass production to obtain millions of unlabeled
data, Transfer Learning can be employed. Typically, data and
models from different or previous products are still available.



These models have learned valuable information from the
data, which can be utilized to derive new models for the
new product. In particular, the latent space discovered by
deep neural networks can remain useful, making these models
suitable as feature extractors. Only the final layer, responsible
for linking the extracted features to the target variable, needs
to be trained. If the features extracted by deep neural networks
are sufficiently general, only a few samples would be required
to train these final supervised models.

The rationale behind using Transfer Learning becomes
evident: it saves time in the data collection phase by leveraging
knowledge acquired from similar (though not identical) do-
mains. This is accomplished by transforming the input features
using a pre-trained network and training a shallow supervised
linear model that connects these features to the target variable.
The flexibility of deep learning models allows pre-training on
a specific training set, often composed of a massive number of
samples, followed by fine-tuning of the last layers on a related
dataset where a similar task needs to be solved.

V. PROPOSED APPROACH

We aim to use Deep Neural Networks, pre-trained on
millions of samples of a certain product P1, and use them
as off-the-shelf feature extractors on a second product P2,
demonstrating the advantages of Transfer Learning. We ini-
tially conducted two baseline experiments. First, we applied
the very same model trained on P1 directly on P2, with
no fine-tuning. Next, we trained a shallow-learning algorithm
(Polynomial Ridge Regression) only on samples from P2,
without considering previous knowledge. These two base-
line approaches are then compared with Transfer Learning
techniques. The networks used as feature extractors are two
Convolutional Neural Networks (the architecture is explained
in detail in Section VI-B). The networks are pre-trained on
unlabeled devices coming from production lines, available
in millions of samples, by using Semi-Supervised Learning
techniques, and the architecture has proven to be effective in
the context of MCU performance screening [16].

The first network is a supervised CNN, trained on the
dataset DP1

1 = (XP1
unl, ŷ

P1), in which XP1
unl are the SMON

values of the product P1 and ŷP1 are pseudo-labels predicted
by using a shallow-learning model trained on labeled devices
from P1 (in a Semi-Supervised Fashion, [16]). The second net-
work is an unsupervised Convolutional Auto-Encoder, trained
on the dataset DP1

2 = (XP1
unl, X

P1
unl), in which XP1

unl are the
SMONs values of product P1. This network is composed of
two sub-parts: an Encoder, which projects the original feature
space into a latent space, and a Decoder, which aims to
reconstruct the original feature space from the latent one.

These models are used ”as-it-is”, in the sense that the
layers are frozen, and no parameters are changed. Also, no
hyperparameters tuning is needed, since they are not re-trained
during the process but are available from legacy products.
Alternatively, it is possible to re-train these deep models on
the available labeled data from P2, to adapt the parameters
of the convolutional kernels. However, if the representation

Fig. 2. Example of the proposed approach using the PL-CNN.

learned by the network on P1 is general enough, this step does
not lead to an enormous improvement in the final prediction
error evaluation. Also, a high number of samples could be
required to fine-tune the intermediate layers. Once the deep
feature extraction models are applied to the data from P2, a
transformed dataset DP2 = (X̂P2, yP2) is obtained, in which
X̂P2 is the projection of XP2 in the latent space learned by the
Neural Network. At this point, it is possible to train a simple
Linear Regression model (in our case, a Ridge Regression)
on DP2, to learn how to map the transformed SMON values
to the actual Fmax. In the test phase of these models on P2,
the SMON values are first transformed with the deep feature
extractor, and the Linear Ridge Regressor is then applied
to compute the predicted operating frequency. The overall
procedure is summarized in Fig. 2.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed methodology has been validated on a dataset
composed of 1015 labeled P2-devices. The deep neural net-
works were trained by using 2986 labeled P1-devices, and
1,496,248 unlabeled samples from production lots. P1 and P2
devices come from the same product family, with the same
SMONs equipped on board. Thus, for both products, we have
27 SMONs. The values of these SMONs are used as features
by our ML models. Features are standardized by removing the
mean and scaling to unit variance, as a pre-processing step. For
P1, 10 labels are available, measuring the Fmax for different
functional test patterns. For P2, 20 labels are available. For
both products, the final performance of the devices and thus the
target label of our model (the maximum operating frequency)
is the artificial label Pmin (the minimum among the available
labels, see Section III-A). We used a 5 train-test split with
proportion 75%-25%, generated by different random states, to
build learning curves, to eventually fine-tune the deep feature
extractor, and to evaluate the models: thus, each statistical
prediction performance is the mean of 5 values computed on
5 different training/test splits of the dataset, avoiding biased
prediction error estimation.

The DL models were trained on P1, and the setup is
described here: 85% of the training data set was used to
train the models, that are validated on the remaining 15%.
The training procedure runs for a maximum of 100 steps
(epochs), or until we are not able to increase the performance
on the validation set with respect to the last 10 epochs (early



stopping, [25]). We used a Stochastic Gradient Descent (SGD)
optimizer [25], [26] to tune the weights of each layer, with
learning rate lr equal to 1 × 10−4 and momentum equal to
0.7 [25]. The lr decreases on loss plateau until 1 × 10−5.
The very same approach was used to eventually fine-tune
the deep models. Each convolutional layer is preceded by a
Batch Normalization layer. Results are presented in terms of
normalized Root Mean Square Error (nRMSE), normalized
Mean Absolute Error (nMAE), Learning Curves and Guard-
band G. RMSE and MAE are popular regression performance
indexes [27], but normalized by the mean value of Fmax in the
test set, i.e. nRMSE = RMSE(ytrue, ypred)/mean(ytrue)
and nMAE = MAE(ytrue, ypred)/mean(ytrue), to obtain
a percentage of the error. The learning curve plots correlate
the training set size with the generalization capabilities of a
model. At each point of the curve, on the x-axis we have the
number of samples used to train the model and on the y-axis a
measure of prediction performance of the model on the test set
(in our case, the nRMSE). The learning curves were created by
extracting (for each point x-y) a random sample of the training
set of increasing size. To accommodate potential errors and
uncertainties in statistical predictions, a risk-based guardband
is necessary. This error guardband (G) surrounds the specified
limit and serves as a buffer beyond acceptable product limits.
By implementing the guardband, manufacturers can guarantee
that even slight variations or uncertainties won’t compromise
the product’s quality standards or reliability. Essentially, the
error guardband acts as an additional layer of assurance during
the production testing phase [16], [28]. Practically speaking,
supposing that the screening frequency is fscreen, the effect
of G is to increase the threshold for the pass/fail screening
from fscreen to fscreen + G. The goal to achieve is to have
G as small as possible, as it affects the production yield. We
can compute G on a test set with true frequencies y, predicted
frequencies ŷ and errors e = y − ŷ as:

G = µe + kσe (1)

µe and σe are the mean and the standard deviation of the
error distribution and k is a parameter that permits to choose
the defects’ level in ppm. k = 5.2 is an approximation for
0.1 ppm, but we used a more stringent value (k = 6) All
experiments were performed in Python using PyTorch tools
for the DL models. Experiments run on a server equipped with
an Intel® Core™ i9-9900K CPU @ 3.60GHz × 16, 32GB of
RAM, and an Nvidia® 2080 TI GPU.

B. Deep-Learning Models

We used the following DL models, already trained on P1
(as described in the Section V):

1) 1D-CNN with skip connection (namely CNN with
Pseudo-Labeling, PL-CNN): CNN with a fully con-
nected layer as the first layer, with CELU (Continu-
ously differentiable Exponential Linear Units) activation
function [29]. This first layer project the features into a
higher dimensional space by mean of non-linear combi-
nations (see Fig. 2), reordering features (soft-ordering)

and enabling 1D-convolutional layers to extract relevant
features-interaction [16], [30] The output of the first
layer is then reshaped into image-like samples of dimen-
sion (H, 1, C) (height H , length 1, and channels C). We
used batch normalization and dropout layers between the
convolutional layers.

2) Convolutional AE (namely AE-CNN): AE with
soft-ordering, 1D convolutional encoder, and de-
convolutional decoder. The encoder performs feature
space augmentation. The output of the encoder is flat-
tened before going into the final supervised model.

C. Results

As show in Table I, applying a model trained on P1 directly
on P2 leads to an enormous prediction error (first row, 33.93%
nRMSE). The coefficient of the model should be adapted to
the new product. The re-training of the shallow Poly Ridge
model on P2 is effective, since we can reach good accuracy
(1.54% mean nRMSE, with a standard deviation of 0.11%,
in 5 folds) with all the samples in the training set. But to
do this, we first need to have a training size big enough.
The final prediction performances reached by deploying deep
feature extractor are better in terms of nRMSE and guard-
band (1.51% mean nRMSE with standard deviation 0.13%
vs 1.54% mean nRMSE and standard deviation of 0.11%,
11.01% mean guardband with standard deviation 1.05% vs
11.19% mean guardband with standard deviation 0.85%, with
the model PL-CNN, Table I). But these good results are
reached with a fraction of the labeled data: 227 samples are
needed to obtain 1.54% of nRMSE with the PL-CNN, and
16 to 2% (Fig. 3). 2% value of nRMSE has been identified
as a prediction error that leads to an acceptable yield in
the process, in terms of guardband. Experiments showed that
the feature extractor DL models, trained on P1, can extract
relevant information from P2. This is true even without fine-
tuning (FT, in the plots) the intermediate convolutional layers,
meaning that the feature manipulation performed by the neural
networks is general enough, and can be successfully applied
to the different product. Fine-tuning the intermediate layers
model does not lead to improvement, and this may be due
to the low amount of training data from P2, not sufficient
to properly update the entire networks (that have a number
of parameters on ten-thousands of magnitude). The reduction
in the number of labeled data permits decreasing the effort
during the MCU characterization phase and data collection,
thus reducing the time required for acquiring a proper dataset
for ML models. Labeling a sample requires at least 30 min.
By using the PL-CNN, building and deploying ML-predictive
model for the operating frequency of a new MCU requires just
30 min·16 samples = 480 min = 8 hours. Also, no additional
feature engineering phase is required, due to the ability of the
NNs to extract features autonomously.

VII. CONCLUSIONS

We presented a Transfer Learning approach for optimizing
the ML-based MCU performance screening. We made use



Fig. 3. Learning curves for different models. The upper dotted horizontal
line is 2% of nRMSE. The lower horizontal line is 1.54% nRMSE, the final
error obtained by the Polynomial Ridge. The x-axe is the number of training
samples (log scale) while the y-axe is the nRMSE computed on the test set.
Deep Feature extractors are able to obtain lower prediction error with a smaller
training set.

TABLE I
RESULTS ON P2-PRODUCT (AVERAGE ON 5 TRAINING-TEST SPLITS)

Model nRMSE nMAE G Samples to
2% nRMSE

Poly Ridge (P1) 33.93% 33.63% 77.38% –
Poly Ridge (P2) 1.54% 1.16% 11.19% 121
PL-CNN 1.51% 1.13% 11.01% 16
PL-CNN (FT) 1.52% 1.14% 11.05% 24
AE-CNN 1.54% 1.15% 11.21% 24
AE-CNN (FT) 1.74% 1.33% 12.68% 40

of deep neural networks as feature extractors, pre-trained
on a legacy product P1 and thus available when a new
product comes. This enables the use of Transfer Learning on
a new product P2. Transfer Learning permitted us both to
reduce the prediction error of our models (reaching 1.51%
nRMSE) and decrease the number of labeled samples needed
to train the supervised models, reducing the time needed to
build an effective ML training set. With this approach, only
hours of labeling are required (not days/months). The feature
extraction step presented in this paper can be used in other
scenarios in which pre-trained models are available, to re-use
previous knowledge on different products. Future works aim
at optimizing the deep learning models, by tuning the NNs
architecture to achieve further improvement in the learning
process and an additional reduction in the samples needed to
build the supervised models.

REFERENCES

[1] J. Zeng et al., “On correlating structural tests with functional tests
for speed binning of high performance design,” in Fifth International
Workshop on Microprocessor Test and Verification (MTV’04), 2004.

[2] B. D. Cory et al., “Speed binning with path delay test in 150-nm
technology,” IEEE Design Test of Computers, 2003.

[3] J. Chen et al., “Data learning techniques and methodology for fmax
prediction,” in 2009 International Test Conference (ITC), 2009.

[4] J. Chen et al., “Selecting the most relevant structural fmax for system
fmax correlation,” in 2010 28th VLSI Test Symposium (VTS), 2010.

[5] S.-P. Mu et al., “Statistical framework and built-in self-speed-binning
system for speed binning using on-chip ring oscillators,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2016.

[6] M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2017.

[7] R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in 2020 International Test
Conference (ITC), 2020.

[8] G. Sannena et al., “Low overhead warning flip-flop based on charge
sharing for timing slack monitoring,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2018.

[9] H. Ayari et al., “Making predictive analog/rf alternate test strategy
independent of training set size,” in 2012 IEEE International Test
Conference (ITC), 2012.

[10] P. Variyam et al., “Prediction of analog performance parameters using
fast transient testing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2002.

[11] H.-G. Stratigopoulos et al., “Error moderation in low-cost machine-
learning-based analog/rf testing,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2008.

[12] J. Brockman et al., “Predictive subset testing: Optimizing ic parametric
performance testing for quality, cost, and yield,” IEEE Transactions on
Semiconductor Manufacturing, 1989.

[13] N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in 2021 IEEE European Test Symposium
(ETS), 2021.

[14] N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in IEEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

[15] N. Bellarmino et al., “A Multi-Label Active Learning Framework
for Microcontroller Performance Screening,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2023.

[16] N. Bellarmino et al., “Semi-Supervised Deep Learning for Microcon-
troller Performance Screening,” in 2023 IEEE European Test Sympo-
sium (ETS), 2023.

[17] S. J. Pan et al., “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, 2010.

[18] C. Tan et al., “A Survey on Deep Transfer Learning,” 27th Interna-
tional Conference on Artificial Neural Networks (ICANN), 2018.

[19] F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,”
Computing Research Repository (CoRR), 2019.

[20] J. Donahue et al., “Decaf: A deep convolutional activation feature for
generic visual recognition,” in Proceedings of the 31st International
Conference on Machine Learning (ICML), 2014.

[21] R. McLaughlin et al., “Automated Debug of Speed Path Failures Using
Functional Tests,” in 2009 27th IEEE VLSI Test Symposium, 2009.

[22] P. Vincent et al., “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion,”
Journal of Machine Learning Research, 2010.

[23] I. Goodfellow et al., Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[24] V. Borisov et al., “Deep neural networks and tabular data: A survey,”
IEEE Transactions on Neural Networks and Learning Systems, Dec.
2022.

[25] L. Bottou et al., “Optimization Methods for Large-Scale Machine
Learning,” SIAM Review, 2018.

[26] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[27] T. Chai et al., “Root mean square error (RMSE) or mean absolute
error (MAE)?– Arguments against avoiding RMSE in the literature,”
Geoscientific Model Development, Jun. 2014.

[28] R. Williams et al., “The effect of guardbands on errors in production
testing,” in Proceedings ETC 93 Third European Test Conference,
1993.

[29] J. T. Barron, “Continuously Differentiable Exponential Linear Units,”
arXiv, 2017.

[30] Baosenguo, “1D-CNN: Kaggle-MoA 2nd Place Solution,” Kaggle,
Dec. 2020.


