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A B S T R A C T   

Uncertainty estimation in healthcare involves quantifying and understanding the inherent uncertainty or vari-
ability associated with medical predictions, diagnoses, and treatment outcomes. In this era of Artificial Intelli-
gence (AI) models, uncertainty estimation becomes vital to ensure safe decision-making in the medical field. 
Therefore, this review focuses on the application of uncertainty techniques to machine and deep learning models 
in healthcare. 

A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines. Our analysis revealed that Bayesian methods were the predominant tech-
nique for uncertainty quantification in machine learning models, with Fuzzy systems being the second most used 
approach. Regarding deep learning models, Bayesian methods emerged as the most prevalent approach, finding 
application in nearly all aspects of medical imaging. 

Most of the studies reported in this paper focused on medical images, highlighting the prevalent application of 
uncertainty quantification techniques using deep learning models compared to machine learning models. 
Interestingly, we observed a scarcity of studies applying uncertainty quantification to physiological signals. Thus, 
future research on uncertainty quantification should prioritize investigating the application of these techniques 
to physiological signals. 

Overall, our review highlights the significance of integrating uncertainty techniques in healthcare applications 
of machine learning and deep learning models. This can provide valuable insights and practical solutions to 
manage uncertainty in real-world medical data, ultimately improving the accuracy and reliability of medical 
diagnoses and treatment recommendations.   

1. Introduction 

Artificial intelligence (AI) has emerged as a promising technology 
with significant potential to transform the healthcare industry. AI 
technologies such as machine learning, natural language processing, and 
computer vision can analyze vast amounts of patient data and provide 
valuable insights to healthcare professionals. The use of AI in healthcare 
has the potential to revolutionize the way in which healthcare is deliv-
ered, improving patient outcomes, reducing costs, and increasing access 
to care. AI can assist healthcare providers in making more accurate 

diagnoses, predicting outcomes, and developing personalized treatment 
plans for patients. Additionally, AI-powered tools can help healthcare 
providers identify early warning signs of diseases and conditions, 
enabling early intervention and prevention [1]. This can greatly 
enhance the efficiency and effectiveness of healthcare delivery, ulti-
mately leading to better health outcomes for patients. 

Despite the promising potential of AI in healthcare, there are also 
concerns regarding privacy, security, and ethical considerations. As 
such, it is important to carefully consider the benefits and risks associ-
ated with the use of AI in healthcare and to ensure that the technology is 
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deployed ethically and responsibly. Indeed, the ‘black box’ nature of 
these AI systems has raised concerns about their reliability and 
accountability [2]. The inner workings of these models are often not 
comprehensible to end-users, and even data scientists may struggle to 
interpret the algorithm [2]. This entire scenario makes it challenging for 
end-users to trust the AI system they are interacting with, potentially 
leading to skepticism or even rejection [2]. 

In response to this need for transparency and trust, the emerging 
field of explainable AI (XAI) employs techniques to enhance the inter-
pretability of AI models [2]. XAI techniques are effective in uncovering 
the ‘black box’ aspect of machine learning models and providing ex-
planations for the decisions they make [2]. However, while these tech-
niques can improve the interpretability of AI models, they do not 
address the practical assessment of decision reliability [3]. Furthermore, 
XAI techniques do not capture the AI models’ overconfident predictions 
and vulnerability to adversarial attacks [4], which can lead to user un-
certainty about AI system prediction. 

To ensure safety and reliability [5], it is crucial to evaluate the un-
certainty of AI system predictions. The concept of uncertainty pertains to 
the level of confidence or ambiguity in the predictions generated by 
these models and can result from a variety of factors such as incomplete 
or noisy data, limited domain knowledge, or inherent randomness in the 
system, making it a crucial consideration in ensuring the reliability, 
interpretability, and safety of AI models. Providing uncertainty esti-
mates in AI systems is essential for ensuring safe decision-making in 
high-risk domains characterized by diverse data sources, as seen in 
remote sensing [6]. Uncertainty estimates are also critical in domains 
where the nature of uncertainty is an essential part of the training 
methods, such as in active learning [7] and reinforcement learning [8]. 
By incorporating strategies for quantifying and communicating uncer-
tainty in AI systems, we can enhance their effectiveness and foster 
greater trust in their predictions. 

Predictive uncertainty is a widely used technique concerned with the 
uncertainty associated with making predictions or estimates using a 
model. It quantifies the level of confidence or reliability in the model’s 
predictions for new or unseen data points. The most common approach 
for estimating predictive uncertainty involves modeling the uncertainty 
caused by the model itself (model or epistemic uncertainty) separately 
from the uncertainty caused by the data (data or aleatoric uncertainty) 
[9]. Aleatoric uncertainty is an intrinsic property of the data distribution 
[4] and arises in situations with a large amount of data that are not 
informative [10] or incomplete, noisy, conflicting, or multi-modal [11]. 
On the other hand, epistemic uncertainty occurs due to insufficient 
knowledge, a poor representation of the training data, or flaws in the 
model itself, leading to uncertainty about the model’s behavior or per-
formance in new or unseen situations [4]. While model uncertainty can 
be reduced by improving the architecture, learning process, and training 
data quality, data uncertainties are irreducible [4]. 

Predictive uncertainty can be classified into three main groups based 
on predictive uncertainty: in-domain uncertainty [12], domain-shift un-
certainty [13], and out-of-domain uncertainty [14,15]. In-domain uncer-
tainty refers to input data that is assumed to be drawn from the same 
distribution as the training data. This type of uncertainty arises when the 
model is unable to accurately predict an in-domain sample due to a lack 
of relevant knowledge. Additionally, design inaccuracies in the model 
can also contribute to in-domain uncertainty [12]. Domain-shift uncer-
tainty [13] describes the uncertainty associated with input data that is 
drawn from a distribution that is shifted from the training distribution. 
This shift can be caused by poor representation of training data changes 
in real-world circumstances [13]. This shift may increase uncertainty 
because the deep model may struggle to explain the domain-shifted data 
based on the seen data used for training. Out-of-domain uncertainty [14, 
15] refers to the uncertainty associated with an input extracted from the 
subgroup of unknown data, wherein the distribution of unknown data is 
dissimilar and far from the distribution of training data. This type of 
uncertainty arises when the deep model is unable to explain an 

out-of-domain sample due to its lack of knowledge of the out-of-domain 
data [4]. 

As a result, model uncertainty encompasses what the deep model 
does not know due to the lack of in-domain or out-of-domain knowledge. 
This includes in-domain, domain-shift, and out-of-domain uncertainties. 
In contrast, data uncertainty only includes in-domain uncertainty 
caused by the nature of the data used to train the model [4]. Uncertainty 
can be introduced in healthcare in various ways (Fig. 1), for example:  

- Variability in measurements: Medical measurements such as blood 
pressure, heart rate, and oxygen saturation can vary due to various 
factors such as measurement noise, biological variability, and mea-
surement error.  

- Incomplete or missing data: Medical data collected from patients 
may be incomplete or missing due to various reasons such as 
incomplete medical records, data entry errors, or patient non- 
compliance.  

- Uncertainty in medical diagnosis: Medical diagnosis involves making 
decisions based on incomplete information and subjective interpre-
tation of medical data, which may introduce uncertainty in the 
diagnosis. 

- Uncertainty in medical treatment: Medical treatment involves mak-
ing decisions based on uncertain outcomes and potential side effects, 
which may introduce uncertainty in the treatment process. 

This review paper provides a comprehensive overview of uncertainty 
estimation in healthcare. The paper reviews recent advances in the field, 
highlights current challenges, and identifies potential research oppor-
tunities. In addition to providing a general outline of uncertainty 
quantification methods applied in the machine and deep learning 
models, the paper also discusses the most prevalent, emerging, and 
technically promising techniques in this research field. 

2. Methods 

The Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) guidelines were closely followed to select the most 
relevant articles on uncertainty estimation methods applied to health-
care, using traditional machine learning and advanced deep learning 
models. 

2.1. Related reviews 

The topic of uncertainty is highly relevant in the field of data anal-
ysis, and several reviews have recently been published on the subject. 
However, these reviews have limitations in terms of their scope and 
focus:  

• Broekhuizen et al. [16] “A Review and Classification of Approaches 
for Dealing with Uncertainty in Multi-Criteria Decision Analysis for 
Healthcare Decisions”. In this review, the authors discuss techniques 
for estimating uncertainty in multi-criteria decision analysis for 
healthcare decisions, without focusing on machine and deep learning 
approaches or considering only medical data. 

- Lambert et al. [17] “Trustworthy clinical AI solutions: a unified re-
view of uncertainty quantification in deep learning models for 
medical image analysis”. Here the authors focus only on deep 
learning approaches, neglecting machine learning ones. Moreover, 
the focus is only on medical images.  

- Loftus et al. [18] “Uncertainty-aware deep learning in healthcare: A 
scoping review”. The authors evaluate methods for quantifying un-
certainty in deep learning for healthcare applications but analyze 
relatively few studies (around 30 papers).  

- Gawlikowski et al. [19] “A Survey of Uncertainty in Deep Neural 
Networks”. The authors provide a comprehensive review focusing 
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Fig. 1. Different sources of uncertainty possibilities in healthcare such as variability in measurements, incomplete or missing data, uncertainty in medical diagnosis, 
and uncertainty in medical treatment. 

Fig. 2. Comparison between our review paper and the existing literature reviews. 
**ML and DL are machine learning and deep learning. 
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only on deep neural networks, with a partial focus on medical 
images.  

- Authors in Ref. [20] investigated UQ techniques in AI models and 
provided overview without delving into individual study nuances or 
explicitly distinguishing between ML and DL methods. 

Thus, there is a need for a comprehensive review that covers both 
machine learning and deep learning approaches and analyzes all types of 
medical data, including physiological signals and medical images. This 
review aims to provide an overview of uncertainty quantification tech-
niques applied in healthcare, with a focus on both machine learning and 
deep learning frameworks. Fig. 2 shows how our review integrates the 
existing literature reviews, providing an overview of all the works on 
uncertainty estimation in healthcare. 

2.2. Search strategy 

Only articles published in the last decade (2013–2023) were 
included in this review. The appropriate journal articles were searched 
through the Institute of Electrical and Electronics Engineers (IEEE), 
Google Scholar, PubMed, and Scopus scientific repositories. For the 
retrieval of articles focusing on machine learning and deep learning, the 
Boolean search strings such as “Uncertainty estimation”, “Human 
healthcare”, “Signals”, “Images”, “Machine learning” and “Deep 
learning” were used in various combinations from Scopus and PubMed 
scientific repositories. Two distinct searches were performed: one 
focusing on uncertainty estimation methods based on machine learning, 
and the other on those based on deep learning. The search was con-
ducted between September 2022 to January 2023. 

2.3. Study selection and quality assessment 

A total of 424 articles and 553 articles were identified, respectively, 
using Boolean search strings for machine learning-based methods and 
deep learning-based methods. About 74 (ML) and 96 (DL) duplicate and 
irrelevant articles on deep learning were eliminated wherein articles on 
‘animal health’ or ‘model explainability’. Theses, books, and abstracts 
were also excluded. Thereafter, studies were included if they met the 
following criteria: 

(i) They described uncertainty estimation methods used in health-
care involving human data (images/signals), 

(ii) They described uncertainty estimation methods used in health-
care, based on machine learning or deep learning models,  

(iii) They were published between the years 2013 and 2023,  
(iv) They were published in a peer-reviewed journal,  
(v) They were published in English. 

Articles were excluded if they were: (i) not written in English, (ii) a 
review article or pilot study, (iii) an abstract or a book chapter, (iv) too 
similar to other studies, (v) published before 2013, or (vi) not available 
in full text. After careful examination, 312 articles for machine learning 
and 350 articles for deep learning were excluded based on the afore-
mentioned criteria. The final selection yielded 38 articles for machine 
learning and 107 articles for deep learning, focusing on uncertainty 
estimation methods in healthcare. Table 1 provides a summary of these 
articles, and Fig. 3 depicts the utilization of the PRISMA guideline in 
article selection for this review. 

3. Results 

3.1. Uncertainty quantification in machine learning 

Effective management of uncertainty is a crucial factor in medical 
decision-making, particularly in the context of diagnostic procedures. 
Table 2 illustrates the distribution of works based on the employed 

method for uncertainty management in machine learning approaches. 
According to the research papers, it can be concluded that the most 
utilized algorithms for uncertainty quantification are:  

(i) Bayesian inference: Bayesian inference is a statistical inference 
technique that leverages Bayes’ theorem [21] to combine prior 
knowledge of a model with observed data for analysis. It in-
terprets probabilities as degrees of belief and allows for the 
estimation and management of uncertainty in the estimates. 

(ii) Monte Carlo simulation: Monte Carlo simulations predict sys-
tem outcomes, aiding risk assessment and decision-making [22]. 
These simulations employ random sampling algorithms to 
address deterministic problems, distinguishing them from other 
approaches.  

(iii) Fuzzy systems: Fuzzy logic is a powerful approach for handling 
uncertainty in machine learning models. Neuro-fuzzy inference 
system (ANFIS) is an advanced method integrating fuzzy logic 
and neural networks to model uncertainty [23]. It combines fuzzy 
“IF-ELSE” rules and optimal parameters from the fuzzy algorithm 
to learn non-linear functions. ANFIS’s architecture includes five 
layers for fuzzification, rule generation, normalization, and 
output generation.  

(iv) Dempster-Shafer’s theory (DST): DST is an extension of 
Bayesian theory [24]. DST aimed at addressing its limitations, 
such as the inability to represent ignorance and consider multiple 
hypotheses. DST, as a theory of evidence, integrates all potential 
outcomes rather than analyzing individual pieces of evidence. 

(v) Rough set theory (RST): RST manages uncertainty and incon-
sistency using an approximation space defined by upper and 
lower approximations [25]. These approximations can be crisp or 
fuzzy sets, making RST a fundamental theory in addressing 
uncertainty.  

(vi) Imprecise probability: Imprecise probability, a broader concept 
than traditional probability, allows for estimating uncertainty 
[26]. Multiple theories exist, including subjective probability and 
consistent lower prediction, which offer different approaches to 
modeling imprecise probability. 

3.1.1. Related works based on Bayesian inference 
In recent years, Bayesian inference has emerged as a versatile and 

powerful tool for addressing various scientific challenges. This statistical 
framework allows for the integration of prior knowledge and observed 
data to make informed estimations and predictions. Furthermore, the 
Bayesian inference is based on the interpretation of probabilities as 
degrees of belief. Bayesian rule is used to combine existing information 
on the a priori known model and unseen data from the sample to be 
analyzed. This method allows to estimate and effectively manage the 
inherent uncertainty associated with the estimation process. 

Table 1 
Results of the Boolean search string for the respective repositories on uncertainty 
estimation methods using machine learning.  

Uncertainty 
techniques 

Boolean search string 

Database Title AND [Title/ 
Abstract/Full text] 

No. of 
articles 

Machine 
learning- 
based 

IEEE, 
Scopus, 
PubMed 

“Uncertainty 
estimation for 
human 
healthcare ” 

Machine learning 
model/signals/ 
images 

38 

Deep 
learning- 
based 

IEEE, 
Google 
Scholar, 
PubMed 

“Uncertainty 
estimation for 
human 
healthcare ” 

Deep learning 
model/signals/ 
images/imaging 
applications/non- 
imaging 
applications 

107  
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Lin et al. [27] developed a framework based on Bayesian inference to 
estimate the risk factor of nonylphenosis (NPs) exposure in certain foods 
and environments. The proposed model facilitated the construction of a 
probabilistic risk estimation framework that considered a population of 
different age groups and both genders. Zouh et al. [28] developed a 
model to identify possible artifacts in a reconstructed image, based on 
the quantification of uncertainty through a Bayesian framework. This 
application based on Bayesian inference can be used to reconstruct 
medical images and to estimate the uncertainty associated with the 
reconstruction itself. Akkoyun et al. [29] demonstrated the effectiveness 
of Bayesian in estimating the maximum diameter of an abdominal 
aneurysm from CT images. This estimation enabled the assessment of 
the aneurysm’s growth rate and facilitated the identification of appro-
priate treatment options. Magnusson et al. [30] proposed an estimation 
of the principal stratum to assess the effectiveness of the treatment on 
disability progression in patients with secondary progressive multiple 
sclerosis (SPSM). A Bayesian inference through Markov chain Monte 
Carlo (MCMC) methods using the No-U-Turn sampler (NUTS) was used 

to estimate the principal state. Lipkova et al. [31] presented a Bayesian 
machine-learning framework to calibrate the mathematical model of 
glioblastoma tumor growth from multimodal scans. Through a correct 
inference of tumor density, radiofrequency therapy can be better 
defined. The Bayesian framework effectively quantified uncertainties in 
imaging and modeling, allowing for the prediction of patient-specific 
tumor cell density with credible ranges. Flügge et al. [32] introduced 
a Bayesian network for the diagnosis of three different kinds of head-
aches. The study explored three types of inference methods to develop 
different Bayesian networks for the diagnosis of a brain tumor and three 
different forms of headache (migraine with/without aura, tension 
headache and cluster headache). Wang et al. [33] developed a model for 
assessing the risk factors associated with lung cancer, enabling the 
development of a medical expenditure model that accounts for data 
uncertainty through a Bayesian network. By accurately gauging the 
severity of cancer, the model predicted individual patients’ medical 
expenses, aiding in effective health insurance management. 

3.1.2. Related works based on Monte Carlo simulation 
Another widely used method for dealing with uncertainty is Monte 

Carlo simulation. Monte Carlo simulations are a class of computational 
techniques that facilitate the prediction of all conceivable outcomes of a 
given system, thereby enabling the user to gauge the associated risks and 
uncertainties prior to making a decision. A distinctive feature of this 
approach is the use of algorithms that employ a random sampling pro-
cedure to tackle deterministic problems. 

An example of applying the Monte Carlo simulation tool for uncer-
tainty estimation is presented by Salgado et al. [34], who demonstrated 
a computer simulation model used to estimate the impact of 
sugar-sweetened beverages on diabetes and cardiovascular disease. Tsai 
et al. [35] presented a GPU-based microscopic Monte Carlo simulation 
tool for the DNA damage caused by ionizing radiations. Specifically, 

Fig. 3. Selection of relevant articles based on PRISMA guidelines.  

Table 2 
Summary of the number of papers that employed uncertainty quantification 
techniques in machine learning frameworks.  

Method N % of Articles Reference(s) 

Bayesian inference 7 18% [27–33] 
Monte Carlo simulation 6 16% [33–39] 
Fuzzy systems 6 16% [40–46] 
Dempster-Shafer theory 7 18% [47–53] 
Dempster-Shafer theory þ Fuzzy logic 5 13% [54–58] 
Rough set theory 4 11% [59–61,63] 
Imprecise probability 3 8% [64–66] 

**N: Number of articles. 
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they presented a GPU-based microscopic Monte Carlo simulation tool for 
analyzing the DNA damage induced by ionizing radiations. Their work 
did not revolve around the development of a new chemical or physical 
model but rather focused on the implementation of a GPU-based model 
aimed at improving computational cost. Lee et al. [36] used a Monte 
Carlo simulation to prove the feasibility of the dual-head Compton 
camera with Si/CZT material as a medical imaging system for the 
detection of breast cancer. Shih et al. [37] employed the Monte Carlo 
method to calculate the dose distribution of the blood irradiator, 
assessing the viability of using MAGAT gel for dose measurements. 
Unlike traditional dosimeters that necessitate multi-point or plane 
measurements, the combination of Monte Carlo simulation and polymer 
gel allowed for the simultaneous acquisition of a 3D dose distribution. 
Gasparini et al. [38] proposed the Monte Carlo simulation for the 
evaluation of different analytic models proposed for informative visiting 
processes in healthcare longitudinal data. This study highlighted the 
potential for biased regression coefficient estimates within a longitudi-
nal model when an informative visiting process was neglected. 
Furthermore, various methods proposed in the literature to address this 
issue were compared and evaluated, with an assessment of the differ-
ences in their performance. Lee et al. [39] demonstrated the feasibility 
of the Monte Carlo simulation to handle the uncertainty of the proton 
path during the proton therapy. To model the proton beam range 
monitoring process, they modeled a 3-D PG slit-camera system based on 
pixelated cadmium zinc telluride (CZT) semiconductor detectors, using 
TOPAS Monte Carlo simulation. 

3.1.3. Related works based on fuzzy systems 
Fuzzy logic is a powerful approach for handling uncertainty in ma-

chine learning models by accommodating imprecise and ambiguous 
information. It allows nuanced reasoning and decision-making by 
assigning membership degrees to different categories. The Adaptive 
Neuro-Fuzzy Inference System (ANFIS) combines fuzzy logic and neural 
networks, integrating fuzzy logic with neural networks to model un-
certainty [23]. ANFIS adapts its fuzzy inference system’s structure and 
parameters based on input-output training data, enabling accurate 
inference in complex systems. ANFIS’s layered architecture includes 
input, fuzzification, rule, normalization, and defuzzification stages. 
Widely used for system modeling, prediction, and control, ANFIS offers a 
flexible and effective solution for addressing uncertainty. 

Castellazi et al. [40] presented several machine learning models 
combined with unimodal and multimodal MRI features to classify Alz-
heimer’s disease (AD) and vascular dementia (VD). ANFIS proved to be 
the most effective classifier in distinguishing between AD and VD sub-
jects, achieving the highest performance when using combined tensor 
imaging (DTI) and genetic testing (GT) features. ANFIS successfully 
predicted the prevalent underlying disease in 11 out of 15 MXD subjects, 
resulting in a correct prediction rate of 77.33%. Das et al. [41] proposed 
a hybrid model called Linguistic Neuro-Fuzzy with Feature Extraction 
(LNF-FE) to analyze medical data and predict eight different diseases, 
such as diabetes or breast cancer. The LNF-FE model was developed by 
incorporating multiple components: expanding input features through 
fuzzification, assigning linguistic values to these features, performing 
feature selection using PCA, and using an artificial neural network for 
prediction. The LNF-FE model exhibited superior performance and 
achieved better results in comparison to alternative approaches. Vidhya 
et al. [42] introduced the Modified adaptive neuro-fuzzy inference 
system (M-ANFIS) for the assessment of various disorders of healthcare. 
After a data pre-processing phase, a feature selection was performed, 
and the count of the closed frequent item set (CFI) was estimated. 
M-ANFIS showed better performance than the other traditional 
methods, such as SVM. Kaur et al. [43] devised a predictive model for 
various knee diseases, namely osteoarthritis (OA), rheumatoid arthritis 
(RA), and osteonecrosis (ON), using a combination of Neuro-Fuzzy and 
Artificial Neural Network (ANN) techniques. The study involved a 
comparative analysis of the performance between a fuzzy system and the 

Adaptive Neuro-Fuzzy Inference System (ANFIS). The results demon-
strated the efficacy of the ANFIS approach in accurately predicting knee 
diseases, providing valuable insights for improved diagnosis and treat-
ment strategies in clinical settings. Liu et al. [44] exploited fuzzy 
interference logic to develop a decision-making model for prostate 
cancer detection, analysis, and fusion of medical data and treatment 
recommendations with risk analysis. De Medeiros et al. [45] developed a 
fuzzy inference system for supporting medical decisions. The imple-
mentation of the Fuzzy Intelligent System demonstrated the potential to 
create innovative channels for the distribution of medical costs, allowing 
for accurate assessment of health risks for new patients. Furthermore, its 
contribution to the medical domain was complemented by increased 
sales and enhanced hospital marketing efforts, adding value to the 
overall system. Nguyen et al. [46] developed an integrated system for 
medical data classification. To be specific, the model consisted of a 
wavelet transform, for the features extraction, and a type-2 fuzzy logic 
system for the classification of breast cancers and heart diseases. 

3.1.4. Related works based on Dempster-Shafer theory 
The Dempster-Shafer theory is a generalization of Bayesian theory 

[24]. Dempster-Shafer’s theory attempts to overcome the limitations of 
the Bayesian theory, which is unable to describe ignorance and only 
considers single rows. The Dempster-Shafer theory also known as evi-
dence theory or belief functions theory, provides a powerful mathe-
matical framework for managing uncertainty and combining evidence 
from multiple sources in machine learning. Introducing belief functions 
that assign masses of belief to subsets of possibilities, enables a more 
expressive representation of uncertainty and the ability to handle con-
flicting evidence. Incorporating the Dempster-Shafer theory into ma-
chine learning models enhances their performance and enables more 
robust and reliable decision-making in uncertain environments. 

Buono et al. [47] developed a model based on the Dempster-Shafer 
theory to generate a diagnosis system for certain skin diseases. After 
collecting a series of symptoms based on medical knowledge, the au-
thors proposed a set of rules to enable the diagnosis of skin diseases. The 
Dempster-Shafer method demonstrates its effectiveness in delivering 
reliable outcomes for skin disease consultation. The results generated by 
the expert system align with the predetermined rules, thereby con-
firming the advantage of this method in accurate disease diagnosis. 
Prameswari et al. [48] introduced the DST to diagnose digestive dis-
eases. Web-based E-diagnostic based on DST provided diagnosis infor-
mation that was based on symptoms and enables better management of 
the disease. The results of this study demonstrated that by applying the 
Dempster-Shafer method for diagnosing digestive disorders in humans, a 
higher confidence value (70%) was obtained compared to the value 
obtained (60%) with the Certainty Factor method. Razi et al. [49] 
addressed the challenge of multi-class motor imagery tasks using a 
model based on DST. Unlike the traditional common spatial patterns 
(CSP) method that enables binary classifications, this study focused on 
analyzing five classes of tasks. To tackle the multi-class problem, a 
DST-based model was employed, which fused the results of binary 
classification. Additionally, DST was introduced as a method to handle 
uncertainty arising from a lack of knowledge in this study. Another 
interesting application of DST has been proposed by Shi et al. [50], in 
the context of drug interactions, which can be a key factor in therapeutic 
decision-making. While descriptions of possible drug interactions exist 
for many medications, there was no description of the specific interac-
tion analyzed in this study. Building upon this knowledge, the authors 
presented a model based on local classification (LCM) for predicting 
drug interactions for new medications. Kang et al. [51] proposed the use 
of DST in the analysis of the incidence of Clostridium difficile infection 
(CDI) in hospitals. The proposed model was based on the Gaussian 
mixture model (GMM) for the generation of the explicit probability 
criteria to assess the risk factors and the DST for predicting the incidence 
of infection based on the probability criteria provided by the GMM. A 
model based on the combination of ambiguity measurement with DST 

S. Seoni et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 165 (2023) 107441

7

theory was proposed by Wang et al. [52], for uncertainty management in 
medical diagnostic decision-making. The ambiguity measure assessed 
the level of uncertainty for each parameter, enabling the creation of 
basic probability assignments (BPA) for each parameter. Furthermore, 
the DST of evidence was employed to aggregate independent evidence 
into collective evidence, facilitating the ranking of candidate alterna-
tives and identifying the best alternative. Ghesu et al. [53] introduced a 
model for evaluating medical images, combining uncertainty measure-
ment with probabilistic classification to quantify the system’s confi-
dence in its outputs. By employing uncertainty estimation through 
Dempster-Shafer theory, the model achieved a substantial improve-
ment in accuracy and robustness across different kinds of images, 
including chest radiographs, abdominal ultrasound image 
view-classification, and brain metastases detection in brain MR scans. 

3.1.5. Related works based on Dempster-Shafer theory and fuzzy logic 
Some authors have presented models for uncertainty management 

based on both fuzzy logic and Dempster-Shafer’s theory. For instance, 
Biswas et al. [54] proposed a model for the enhancement of chest X-ray 
images based on soft fuzzy sets and the DST approach. The proposed 
model involved two soft fuzzy sets of the image grey levels. The un-
certainty levels of peak intensity and spatial information were handled 
by fuzzy intervals based on the DST approach. Porebski et al. [55] 
developed a set of rules for the diagnosis of liver fibrosis based on DST 
extended for fuzzy focal elements. Utilizing the DST to address knowl-
edge uncertainty caused by incomplete and unbalanced data, the pro-
posed model was successfully developed to support the diagnosis of liver 
fibrosis. Xiao et al. [56] developed a model to deal with the uncertainty 
that arises in decision-making. The model integrated belief entropy, 
fuzzy preference relations, and DST theory to measure and modulate 
parameter uncertainties while merging independent parameters. The 
model was validated in a clinical setting, considering four potential 
diseases: acute dental abscess, migraine, acute sinusitis, and peri-
tonsillar abscess. The proposed method enabled the measurement of 
parameter uncertainty, and assessment of parameter reliability, and 
provided insights for clinicians regarding the impact of parameters on 
decision-making. Ghasemi et al. [57] presented a model for brain seg-
mentation, that was based on the combination of fuzzy inference system 
and Dempster-Shafer theory (FDSIS). The DST was proposed to handle 
and reduce uncertainty in MRI segmentation. In the FDSIS algorithm, 
features were extracted from MRI images, including pixel intensity and 
spatial information. The fuzzy inference was utilized to construct rules, 
while the DST was employed for the aggregation phase of the fuzzy 
inference system. The FDSIS proposed model demonstrated an enhanced 
accuracy in segmenting both real and simulated MRI images when 
compared to traditional methods, which generally lack the incorpora-
tion of uncertainty estimation and management. Li et al. [58] combined 
the fuzzy soft set and the Dempster-Shafer theory of evidence for 
decision-making applied to solving medical diagnosis problems. They 
used grey relational analysis to calculate the degree of uncertainty of the 
various parameters, based on which the probability assignment function 
is obtained. Then, through the Dempster-Shafer rules, all alternatives 
were aggregated into a collective alternative, whereby they were ranked 
to obtain the best alternative. The authors demonstrated the superior 
performance of the model based on fuzzy soft set and Dempster-Shafer 
theory, surpassing even traditional methods like Feng’s method and 
Naive Bayes’ classifier. 

3.1.6. Related works based on rough set theory 
Rough set theory is a mathematical framework utilized to address 

uncertainty and inconsistency in data analysis and decision-making. It 
provides a set of tools for handling imperfect or incomplete information. 
In the context of uncertainty estimation in machine learning, rough set 
theory enables the exploration and representation of uncertainty 
through the definition of upper and lower approximations. It facilitates 
the identification of uncertain instances and supports attribute 

reduction, thereby contributing to effective uncertainty management in 
the learning process. 

Acharya et al. [59] developed a combination of cuckoo search and 
rough set (CRCS) models for knowledge inference from the cardiac 
disease information system. The objective was to identify which hidden 
features and knowledge derived from electronic information systems 
allowed the diagnosis of early cardiac disorders. Clinical data of 603 
patients were analyzed, and an initial feature selection using the cuckoo 
search model yielded eight selected features. These features were then 
analyzed using rough set data analysis to generate classification rules. 
The CRCS model exhibits the highest accuracy rate (93%) compared to 
the rough set model (92%) and the decision tree model (90%), 
demonstrating its effectiveness in knowledge inference for cardiac 
diagnosis. Santra et al. [60], showed the use of a lattice of raw knowl-
edge as an information system for the rough set for the design of 
knowledge for medical expert systems. They applied the proposed model 
for a simple case study from the domain of low back pain. An innovative 
metric was proposed to assess the consistency and reliability of rules. 
The authors demonstrated that the utilization of a lattice of raw 
knowledge facilitated effective information management in medical 
systems, surpassing the capabilities of conventional tabular information 
systems. Bania et al. [61] developed an R-ensemble method for attribute 
selection by exploiting the rough set theory, demonstrating its superi-
ority over methods already found in the literature. They used a medical 
dataset, collected from UCI Machine repositories [62], which contained 
clinical data on Wisconsin breast cancer, lung cancer, diabetes, Indian 
liver patients, dermatology chronic kidney, and hepatitis. Except for the 
diabetes dataset, all other datasets exhibited missing values, which were 
addressed using a k-nearest neighbor (kNN) imputation method. This 
study aimed to tackle one of the major challenges in the analysis of 
medical and healthcare data, specifically dealing with datasets that 
contain missing and redundant information, leading to uncertainty. 
Jiang et al. [63] showed a novel computational model based on fuzzy 
mathematics and rough set theory for the assisted diagnosis of 
sub-health referring to traditional Chinese medicine (TCM). They 
analyzed original medical records from the First Affiliated Hospital of 
the Guangzhou University of Chinese Medicine. Comparative analysis 
with linear models, Naive Bayesian classification, and fuzzy compre-
hensive evaluation revealed that the novel model achieved higher 
overall accuracies. 

3.1.7. Related works based on imprecise probability 
Imprecise probability is a generalization of traditional probability 

that can be used as a framework in machine learning for handling un-
certainty. Unlike traditional probability theory, which assigns precise 
probabilities to events, imprecise probability allows for the represen-
tation of uncertain or ambiguous information by using intervals or sets 
of probabilities. This approach recognizes that in real-world scenarios, it 
is often challenging to assign precise probabilities due to limited 
knowledge or conflicting evidence. In machine learning, imprecise 
probability provides a flexible and robust framework for uncertainty 
estimation. It allows for the modeling of uncertain events or variables by 
considering a range of possible probabilities rather than a single value. 
This is particularly useful when dealing with incomplete or noisy data, 
where precise probabilities may be difficult to obtain. For instance, 
Giustinelli et al. [64] provided empirical evidence on the perception of 
dementia risk among elderly Americans without dementia and through 
models on the imprecision of subjective probabilities. Mckenna et al. 
[65], reported several mathematical models, that highlight the 
modeling to improve breast cancer treatments, especially chemo-
therapy, and radiation therapy. The authors demonstrated how mathe-
matical models can provide valuable contributions within the context of 
breast cancer therapy. In their study, Mahmoud et al. [66], investigated 
various machine learning models to address uncertainty measures and 
imprecise probabilities in the diagnosis of medical noisy data. The 
models proposed in their research were categorized into three groups: 
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single tree classifiers, ensemble models, and credal decision trees 
(CDTs). Notably, the credal decision trees outperformed the single tree 
classifiers, exhibiting higher accuracy, particularly in noisy domains and 
databases with mostly numerical attributes. 

3.2. Uncertainty quantification in deep learning 

Table 3 summarizes the distribution of works based on the employed 
method for uncertainty management in deep learning approaches. Data 
uncertainty and model uncertainty are both important concepts in data 
analysis and modeling. Given that various sources of uncertainty may 
arise in a model, developing effective methods for estimating uncer-
tainty in their prediction is currently a subject of significant interest in 
the research community [4]. While the data uncertainty is often re-
flected in the Softmax output of a classification model [67], researchers 
have extensively investigated four main approaches to disentangle and 
accurately represent model uncertainty from data uncertainty [67,68]. 
The choice of approach depends on the number and characteristics of 
the deep neural network being employed [4]: 

(i) Single deterministic methods: These methods employ a deter-
ministic neural network for uncertainty quantification, relying on 
a single forward pass to generate predictions without explicitly 
modeling uncertainty [69]. 

(ii) Bayesian methods: These methods calculate a posterior distri-
bution that captures the uncertainty in the parameter values of 
the model [70–72]. This distribution is subsequently utilized to 
quantify the uncertainty in predictions or estimates. 

(iii) Ensemble methods: These methods leverage the fusion of mul-
tiple deterministic networks to enhance model performance and 
generalization [73]. By combining the predictions of different 
networks, ensemble approaches enable the generation of more 
reliable and accurate results surpassing those achieved by indi-
vidual models alone.  

(iv) Test-time augmentation methods: These methods involve 
generating multiple predictions from various augmentations of 
the primary input data during inference and quantifying uncer-
tainty based on these predictions [74]. 

When discussing deep learning frameworks, an important aspect is 
the calibration of the predictor. A predictor is considered well-calibrated 
when its predictive confidence accurately estimates the actual proba-
bility of accuracy [75]. Thus, it is important to ensure that the network is 
well-calibrated before employing uncertainty methods [4]. There are 
three relevant calibration methods used in healthcare, which depend on 
the phase they are applied: regularisation [4,76–78] post-processing 
[79–81], and neural network estimation methods [82,83]. These 
methods adjust the output probabilities of the model to better match the 
true probabilities of the data, resulting in more accurate and reliable 
predictions. 

3.2.1. Related works based on single deterministic methods 
Signal deterministic methods for uncertainty quantification in deep 

learning involve deterministic approaches that analyze the characteris-
tics of the model’s signals to estimate uncertainty [4]. These methods do 

not directly model uncertainty as probabilistic distributions but instead 
focus on analyzing the properties of the model’s outputs. Uncertainty 
can be computed through external methods or internal methods. 
External methods leverage techniques such as using gradient matrices 
[84,85], employing additional networks for uncertainty estimation [86], 
or measuring training data density in the representation space for input 
data [87]. Internal methods include training prior networks [68], 
evidential neural networks [88] and using gradient penalties [79]. 
While they do not provide probabilistic uncertainty estimates, they offer 
insights into the model’s reliability and confidence. These methods can 
be computationally efficient compared to full probabilistic approaches, 
making them practical for certain applications. 

Ktena et al., [89] developed and trained a convolutional neural 
network on functional MRI images of the brain. Their objective was to 
assess the similarity between functional brain networks by measuring 
the similarity of irregular graphs. Through their proposed method, they 
achieved a significant improvement of 11.9% in overall classification 
accuracy. McKinley et al., [90] developed and trained a CNN using MRI 
images of patients with multiple sclerosis. The authors used 
best-practice standards to annotate lesions and predict the probability 
that the network assigns a different label instead of the ground truth. 
Their approach yielded accuracies of 75% and 85% in accurately dis-
tinguishing stable and progressive time points, showcasing the effec-
tiveness of their method. Devries et al., [91] a convolutional neural 
network and explored six distinct uncertainty estimation techniques to 
assess uncertainty in the segmentation of skin lesion images. The authors 
observed that the heteroscedastic classifier neural network yielded the 
least improvement in results compared to the other uncertainty esti-
mation techniques, which demonstrated comparable performance. Luo 
et al., [92] introduced a novel deep commensal model for estimating 
intrinsic uncertainties in cardiac magnetic resonance images. They 
computed the commensal correlation between direct area estimation 
and bi-ventricle segmentation, achieving accurate uncertainty estima-
tion through one-time inference based on cross-task output variability. 
The authors highlight that their proposed method outperforms other 
approaches in terms of quantification accuracy and optimization results. 
Ghesu et al., [93] applied a bootstrapping uncertainty measure to their 
DenseNet model. By employing this recommended uncertainty mea-
surement, the authors found that unwanted training of chest X-ray im-
ages could be eliminated, leading to increased robustness and accuracy 
of the model. Additionally, the method was effective in identifying 
reader errors. Graham et al. [94] developed and trained a 3-dimensional 
U-Net model using MRI images of the brain to precisely labeling 
different regions and sub-regions of the brain. To achieve this, the au-
thors measured cross-entropy uncertainty at progressively smaller 
sub-regions of the brain. The results showed a dice score of approxi-
mately 0.85 for all regions in the uncertainty-aware model, indicating 
high accuracy in the segmentation task. 

Liao et al. [95] developed a DenseNet model to tackle the issue of 
inter-observer variability in assessing the quality of cardiovascular im-
ages obtained through echocardiography. They measured the aleatoric 
uncertainty by incorporating the variability observed among different 
experts. The proposed method treated this variability as aleatoric un-
certainty and represented it through Laplace or Gaussian distributions in 
the regression space. The authors observed that their approach resulted 
in reduced absolute error compared to conventional regression models, 
as indicated by their findings. Li et al. [96] applied the DistDeepSHAP 
uncertainty measure to assess the importance of features in autism brain 
images by employing a SHAP-based deep model. The results indicate 
that this approach has the potential to identify biomarkers associated 
with the disease in neuroimaging data. Ye et al., [97] utilized the neurite 
orientation dispersion and density imaging model and explored the 
Lasso bootstrap approach for uncertainty estimation of tissue micro-
structure in brain diffusion magnetic resonance images. The authors 
observed a meaningful relationship between the proposed uncertainty 
measures and estimation errors, resulting in the generation of 

Table 3 
Summary of the number of papers that employed uncertainty quantification 
techniques in deep learning frameworks.  

Method N % of Articles Reference(s) 

Single deterministic methods 11 10% [89–99] 
Bayesian methods 68 64% [105–173] 
Ensemble models 14 13% [176–189] 
Test-time augmentation methods 14 13% [191–204] 

**N: Number of articles. 
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reasonable confidence intervals. Tardy et al. [98] utilized a deep neural 
network classifier for the classification of mammogram images. The 
authors estimated network uncertainty using two measurements: sub-
jective logic with softmax predictions and Mahalanobis distance be-
tween new and training samples in the embedding space, for three 
different tasks. They reported that the proposed method allows for the 
rejection of obvious outliers and improves the area under the curve re-
sults by up to 10%. Jensen et al. [99] employed a convolutional neural 
network for skin image classification. They investigated the use of 
inter-rater variability sampling during training to improve model cali-
bration. The study demonstrated that the proposed method enhances 
model calibration, enabling better capture of uncertainty in both sam-
ples and labels. 

3.2.2. Related works based on Bayesian methods 
Bayesian methods involve using different types of stochastic deep 

neural networks wherein two forward passes of the same data sample 
generate varying results [4]. In the Bayesian models, the parameters are 
treated as random variables. During a forward pass, the parameters are 
sampled from the distribution of data, resulting in stochastic prediction 
outcomes, where each prediction is based on varying model weights. 
Bayesian neural networks assume a prior distribution p(θ) and demon-
strate the posterior distribution over the parameter space given by p(θ∣x, 
y) for the training input pair (x,y). After the estimation of posterior 
weights, the prediction of an output y* for the input data x* may be 
obtained by performing the Bayesian Mode Averaging or Full Bayesian 
Analysis [10]. Some types of Bayesian methods include Monte Carlo 
dropout [101], variational inference [102], sampling [103] and Laplace 
approximation [104]. The choice of method depends on the specific 
application and the nature of the data being analyzed. 

Leibig et al., [105] employed Bayesian uncertainty measures in 
combination with various data and deep models to classify fundus im-
ages for diabetic retinopathy. The conducted experiments revealed a 
robust model generalization. Notably, Monte Carlo drop-out out-
performed other direct methods, demonstrating its ability to accurately 
determine and quantify uncertainty. Ozdemir et al., [106] introduced a 
novel approach where uncertainty measures, specifically predictive 
mean and standard deviation, were fused with the original image using 
the Bayesian U-net model. This fusion resulted in the creation of a 
composite image, which was subsequentially fed into the Bayesian 
neural network. The authors concluded that incorporating uncertainty 
measures into the workflow significantly improved prediction accuracy 
and model confidence. Jungo et al. [107] devised four residual con-
volutional neural network models with Monte Carlo dropout at full 
resolution, alongside one model incorporating the conventional weight 
scaling dropout technique. The position and rate of Monte Carlo dropout 
were varied for each model, and the performance of these five models 
was compared to evaluate their effectiveness in uncertainty quantifica-
tion for brain tumor image segmentation. The authors concluded that 
informative uncertainty is obtainable by applying the Monte Carlo 
dropout after each convolutional layer. In a subsequent study [108], the 
authors developed the U-net model and employed uncertainty tech-
niques such as weighted mean entropy and mean entropy among experts 
for brain tumor image segmentation. The findings demonstrated that the 
uncertainty of the model’s parameters can be determined by fusing the 
learned observers’ uncertainty with a Monte Carlo-based Bayesian 
network. 

Orlando et al., [109] developed a Bayesian neural network with in-
tegrated Monte Carlo dropout to provide epistemic uncertainty feed-
back. Results showed that the proposed uncertainty estimation inversely 
corresponds to the model’s performance. This highlights its potential use 
in identifying areas that require corrections in image segmentation. Heo 
et al., [110] introduced a unique variational attention model that in-
corporates instance-dependent modeling to capture both data and model 
uncertainties. The model was validated on six real risk prediction tasks 
in the healthcare domain, involving physiological signals and images. 

The authors reported significant improvements achieved by the devel-
oped model compared to existing attention models. Adrian et al., [111] 
integrated the Monte Carlo dropout method with their developed CNN 
model to estimate uncertainty in multiple sclerosis images. The authors 
concluded that this technique proves valuable in identifying scans that 
may require additional examination, as the variance of Monte Carlo 
dropout samples corresponds to model errors. Roy et al. [112] utilized 
the Bayesian QuickNAT model and integrated four metrics to assess 
segmentation uncertainty. The authors highlight that the proposed un-
certainty metrics hold promising potential for evaluating the accuracy of 
segmentation methods in deep models. Herzog et al. [113] combined 
Bayesian uncertainty techniques and advanced aggregation methods 
with their Bayesian neural network to achieve highly accurate stroke 
classification. The authors observed that the integration of 
Bayesian-based uncertainty methods not only enhanced stroke predic-
tion but also improved the estimation of uncertainty in incorrect patient 
classification and the detection of uncertain aggregations. 

Baumgartner et al. [114] introduced the variational autoencoder 
model and applied the probabilistic hierarchical segmentation tech-
nique on thoracic and prostate images. The results demonstrated that 
the proposed technique yielded more naturalistic and diverse segmen-
tation of images compared to other related approaches. In a separate 
study, Raczkowski et al. [115] employed the variational-based dropout 
measure for uncertainty estimation using the Bayesian neural network in 
the segmentation of colorectal cancer images. The authors found that 
the proposed uncertainty measure enhanced the speed of the deep model 
by approximately 45%, thereby offering a significant computational 
advantage. Eaton-Rosen et al. [116] conducted a study examining the 
application of Monte Carlo dropout and M-heads uncertainty measures 
in the U-net model for calculating predictive intervals during counting 
tasks in medical imaging. The results indicate that these uncertainty 
measures are effective in accurately counting histopathological cells and 
identifying white matter hyperintensity images. Di Scandalea et al. 
[117] developed a U-net model trained with dice loss and weighted 
binary cross entropy for segmenting myelin sheath in mice images. They 
utilized Monte Carlo dropout to estimate uncertainty. The authors 
highlight that by examining the generated heatmaps from uncertainty 
estimates, users can identify potential model failures and control un-
certainty for more accurate predictions in biomedical applications. Jena 
et al. [118] employed a Bayesian neural network with a Monte-Carlo 
uncertainty measure for segmenting brain, cell, and chest radiograph 
images. The authors concluded that their proposed method improves 
segmentation quality and calibration, providing more accurate uncer-
tainty estimates compared to existing techniques. 

Soberanis-Mukul et al. [119] used a graphical convolutional neural 
network with Monte Carlo dropout and dice scores as uncertainty 
measures for segmenting pancreas and spleen images. The authors found 
that their approach enhances dice scores for both images compared to 
the original model predictions. Hu et al. [120] utilized the probabilistic 
U-net model to investigate uncertainty estimation in lung nodule and 
prostate MRI images. They specifically explored the application of 
variational dropout. The authors concluded that their approach led to 
improved predictive uncertainty estimates, enhanced sample accuracy, 
and increased diversity. Combalia et al., [121] employed a convolu-
tional neural network for the classification of skin lesion images and 
applied the Monte Carlo dropout uncertainty estimation method. To 
quantify predictive uncertainty, the authors employed metrics such as 
entropy, variance, and Bhattacharyya coefficient between distributions. 
The results indicate the successful utilization of uncertainty metrics in 
detecting challenging and out-of-distribution samples. Toledo-Cortes 
et al. [122] developed a hybrid deep learning Gaussian process model 
for the classification of diabetic retinopathy. In addition to predicting 
the mean value, the authors also computed the standard deviation as a 
measure of prediction uncertainty. They found that the proposed model 
outperformed the original deep learning model and enabled uncertainty 
analysis. Laves et al. [123] estimated predictive uncertainty using 
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variational Bayesian inference with Monte-Carlo dropout for regression 
tasks on medical image datasets. Their findings highlighted that 
well-calibrated uncertainty in regression tasks enables the elimination of 
unreliable predictions and the identification of out-of-distribution 
samples. 

In another study by Hu et al. [124], a CNN was trained on PET and 
CT images for the diagnosis of rare lymphoma. The authors incorporated 
zone-based uncertainty estimates based on the Monte Carlo dropout 
technique. The reported sensitivity of the model was approximately 
75%, indicating its effectiveness in detecting the target condition. Nair 
et al. [125] developed a CNN for detecting multiple sclerosis lesions 
using MRI images from patients with worsening remitting multiple 
sclerosis. They employed Monte Carlo dropout to approximate proba-
bility distributions and subsequently measured variance, predictive 
entropy, and mutual information. The proposed method achieved a true 
positive rate of 0.8 and a false detection rate of 0.2, demonstrating its 
potential for accurate lesion detection. Kwon et al. [126] utilized a 
Bayesian neural network with predictive uncertainty, which allowed for 
the decomposition of uncertainty into aleatoric and epistemic compo-
nents. The authors applied this technique to segment ischemic stroke 
and retinal images and concluded that it provided a deeper under-
standing of point predictions. Selvan et al. [127] developed a unique 
conditional variational autoencoder called conditional Normalizing 
Flow (cFlow) to improve the approximation of latent posterior distri-
butions. The performance of their model was evaluated on two medical 
imaging datasets, demonstrating substantial improvements in both 
qualitative and quantitative measures compared to state-of-the-art 
methods. In a study by Seebock et al. [128], the Bayesian U-net model 
with Monte Carlo dropout was employed to estimate model uncertainty 
in retinal image segmentation. The authors found that the proposed 
technique achieved high accuracy in segmenting both healthy and 
diseased retinal images. Hiasa et al. [129] employed the Bayesian U-net 
CNN model along with Monte Carlo dropout and dice scoring for un-
certainty estimation in muscle CT image segmentation. They discovered 
a relationship between high uncertainty pixels and segmentation failure, 
enabling patient-specific analysis of muscles. Xia et al. [130] imple-
mented a Bayesian model with uncertainty-aware multi-view training 
on pancreas and liver tumor images. The authors concluded that 
applying multi-view co-training on 2D models yielded promising results. 
Marc et al. [131] investigated the integration of reversible blocks into 
the PHiSeg architecture for image segmentation. The authors reported 
that the recommended method required less memory compared to not 
using reversible blocks while maintaining comparable segmentation 
accuracy. 

Wickstrom et al. [132] used a CNN with a Monte Carlo dropout 
backpropagation algorithm to determine the uncertainty in input 
feature importance. The authors demonstrated that their proposed 
method effectively models uncertainty in input feature importance, 
showing significant contrasts between correct and incorrect predictions. 
Carneiro et al. [133] used a DenseNet model to investigate uncertainty 
estimation and confidence calibration in the classification of colorectal 
polyps. They explored both Bayesian and non-Bayesian inference 
methods, using entropy as an uncertainty measure. The study demon-
strated that employing Bayesian methods to determine classification 
entropy or variance resulted in an accuracy of approximately 76%. Li 
et al. [134] developed a CNN model and compared three Monte-Carlo 
dropout methods, evaluating metrics such as negative log-likelihood, 
and expected calibration error. The authors found that the proposed 
method of region acquisition, as opposed to full region acquisition, led 
to better calibration of the model regardless of the uncertainty measure 
used. Quan et al. [135] proposed a deep CNN model and explored 
Bayesian uncertainty estimates and ensemble semi-supervised learning 
for correcting noisy labels in upper gastrointestinal images. The pro-
posed method effectively improved recognition accuracy for both 
authentic and noisy clinical data. 

Wang et al. [136] employed a unique approach by implementing a 

Bayesian teacher-student deep model with Monte Carlo dropout to es-
timate segmentation and feature uncertainty in atrial MRI and kidney 
CT scan images. The authors found that their proposed method out-
performed existing semi-supervised uncertainty estimates on both 
datasets, demonstrating its effectiveness in uncertainty estimation. Bian 
et al. [137] combined a segmentation network with a Conditional 
Variational Autoencoder (CVAE) for uncertainty estimation, using the 
variance of the network’s output as a measure of uncertainty. They 
proposed an Uncertainty-aware Cross Entropy (UCE) loss to leverage 
uncertainty information and improve segmentation performance in 
highly uncertain regions. The findings demonstrated that the proposed 
method outperformed existing methods for unsupervised domain 
adaptation tasks. Tanno et al. [138] combined a noise model with 
Bayesian inference for uncertainty estimation in brain tumor image 
datasets. Their results demonstrated that measuring uncertainty 
improved prediction performance and enabled the detection of predic-
tive failures. Additionally, the decomposition of predictive uncertainty 
provided high-quality explanations for model performance. Thiagarajan 
et al. [139] employed and compared Bayesian-based and transfer 
learning CNN models for uncertainty estimation in breast histopathol-
ogy images. The findings showed that the Bayesian CNN model out-
performed existing models and was useful in explaining uncertainties in 
histological images. Ghosal et al. [140] introduced two innovative 
techniques, Monte Carlo DropWeight and Bayesian Residual UNet, 
specifically designed for estimating aleatory and epistemic uncertainty. 
By employing these methods, the authors were able to accurately esti-
mate uncertainty, significantly boosting the confidence of clinicians in 
the field of semantic segmentation. Edupuganti et al. [141] employed 
variational autoencoders and convolutional neural network models to 
quantify uncertainty in MRI segmentation of knee images. They utilized 
Monte Carlo sampling to create a posterior of image pixel variance maps 
and achieved a SURE-MSE (Stein’s Unbiased Risk Estimator) value of 
0.97 for 2-fold under-sampling. 

Valliuddin et al. [142] utilized a probabilistic U-Net model to 
perform density modeling on thoracic computed tomography and 
endoscopic polyp images. They employed a probabilistic segmentation 
model to learn aleatoric uncertainty as a distribution of possible anno-
tations. The authors concluded that this approach improved predictive 
performance by up to 14% in modeling uncertainty. Teng et al. [143] 
employed a deep generative model with recurrent neural networks and 
trained it using clinical, imaging, genetic, and biochemical markers to 
investigate the progression of Alzheimer’s and Parkinson’s disease. The 
model, incorporating internal stochastic components, achieved good 
accuracy of 98.1% and 79.7% for Alzheimer’s and Parkinson’s disease, 
respectively. Wang et al. [144] applied a multi-instance learning 
approach for the classification of diabetic macular edema using optical 
coherence tomography images. They quantified uncertainty by 
measuring the mean and standard deviation of probabilistic predictions, 
resulting in an accuracy of approximately 95%. Zhang et al. [145] 
explored deep neural networks, random forest classifiers, and the light 
gradient boosting model for toxicity prediction in chemical compounds. 
They employed conformal prediction with user-defined significance 
levels to quantify prediction uncertainty, obtaining an average AUC of 
0.734. Vranken et al. [146] utilized deep Residual Inception Networks to 
investigate aleatoric and epistemic uncertainties in 12-lead electrocar-
diogram signals. The authors concluded that variational inference with 
Bayesian decomposition and ensemble with auxiliary output performed 
the best, but high uncertainty in deep neural network-based ECG signal 
classification correlated with lower diagnostic agreement compared to 
the interpretation of cardiologists. Sieradzki et al. [147] employed a 
deep generative model with recurrent neural networks for compound 
bioactivity prediction. They utilized dropout-based uncertainty estima-
tion by passing test samples through the network with weight dropout, 
measuring uncertainty from variance. The proposed method achieved 
precision values between 0.0004 and 0.0007. 

Natekar et al. [148] developed convolutional neural network models 
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for brain MRI image classification to detect brain tumors. They 
computed the mean of the variance in a predicted posterior distribution 
obtained by running. Sedghi et al., [149] employed a CNN to assess 
model agreement in brain image registration. The authors computed the 
variance in displacements for various brain MRI images. This approach 
facilitated the estimation of local registration uncertainty, which helps 
identify areas where the two images may not align well and provide 
information to end-users about the registration quality. Norouzi et al. 
[150] employed fully convolutional neural networks for cardiac image 
segmentation and computed model uncertainty by estimating the vari-
ance of the model’s output. They further enhanced segmentation accu-
racy using conditional random fields and assessed the proposed 
approach with three different metrics. The authors emphasized the 
incorporation of new techniques and the successful integration of simple 
ideas with deep neural networks. Filos et al. [151] conducted a sys-
tematic study comparing various uncertainty estimation methods using 
Bayesian deep learning techniques for diabetic retinopathy classifica-
tion. Their research emphasized the importance of systematic compar-
isons to demonstrate the efficacy of Bayesian deep learning techniques 
on large-scale problems. Ghoshal et al. [152] utilized a Monte-Carlo 
Dropweights Bayesian Convolutional Neural Networks (BCNN) model 
to estimate uncertainty in predictions of deep learning models applied to 
chest X-ray images of patients with COVID-19. Their results revealed a 
correlation between uncertainty and prediction accuracy. Dolezal et al. 
[153] developed deep convolutional neural network models for the 
classification of lung adenocarcinoma and squamous cell carcinoma in 
out-of-distribution digital histopathological data. They estimated 
slide-level uncertainty for whole slide images by applying uncertainty 
thresholding to generalize the handling of out-of-distribution data. The 
findings of the study corroborated that high-confidence predictions 
outperform those without uncertainty, and uncertainty thresholding is a 
reliable approach for making high-confidence predictions in lung 
adenocarcinoma and squamous cell carcinoma out-of-distribution data. 
Mensah et al. [154] uniquely employed Bayesian capsule networks for 
uncertainty estimation on computer vision and chest X-ray image 
datasets using mean-field variational inference. They highlighted the 
transparency, credibility, reliability, and interpretability of Bayesian 
capsule networks in gaining the confidence of industry partners. 
Mazoure et al. [155] developed a distinctive web server for deep un-
certainty estimation of skin lesion images, specifically for skin cancer 
detection. They compared the means and variances from new and 
traditional convolutional neural network models. The findings estab-
lished that the proposed method outperforms other supervised, 
self-supervised, and uncertainty estimation techniques, making it the 
best-performing approach in skin cancer detection. Jahmunah et al. 
[156] employed the deep DenseNet model to estimate predictive en-
tropy for the misclassification of normal and myocardial infarction ECG 
signals. Based on the obtained results, the authors asserted that the 
proposed model is reliable, trustworthy, and confident in the diagnostic 
information it provides. Therefore, it holds great potential for utilization 
in healthcare applications. Stoean et al. [157] investigated the use of 
Monte Carlo dropout within the DL structure to automatically identify 
indicators of spinocerebellar ataxia type 2 from saccadic samples ob-
tained from electrooculograms. Unlike the typical integration of this 
specific dropout method in deep neural networks, the researchers used 
the uncertainty derived from validation samples to construct a decision 
tree at the patient register level. This decision tree, constructed from 
uncertainty estimates, achieved a classification accuracy of 81.18% in 
distinguishing between control, presymptomatic, and symptomatic 
classes. Guo et al. [158] proposed a technique to enhance multi-class 
segmentation of cardiac MRI by combining CNNs with interpretable 
machine learning algorithms. This approach demonstrated significant 
improvement over traditional CNN segmentation. Evaluations were 
performed on two distinct cardiac MRI datasets representing various 
cardiovascular pathologies, with the proposed model exhibiting 
increased segmentation accuracy and reduced variability. In a separate 

study, Da Silvia et al. [159] presented a Monte Carlo method-based 
approach to analyze the performance of measurement systems during 
design phases to improve their quality. They focused on a simulated 
electrocardiogram system, using measurement uncertainty as a perfor-
mance parameter during the design process. The Monte Carlo method 
enabled the identification of the primary source of ECG measurement 
uncertainty, aiming for better characterization of the metrological 
behavior of ECG measurements. Nasir et al. [160] introduced a model 
for the early prediction of type 2 diabetes mellitus (T2DM) using 
real-world electronic health record (EHR) data, which included histor-
ical diagnoses, patient vitals, and demographic information. By 
employing Monte Carlo dropout for uncertainty estimation, the pro-
posed model demonstrated a 1.6% accuracy improvement compared to 
baseline techniques. Abdar et al. [161] developed a novel deep learning 
model called UncertaintyFuseNet, specifically designed for the accurate 
classification of large CT scan and X-ray image datasets in COVID-19 
cases. The model integrated the Ensemble Monte Carlo Dropout 
(EMCD) technique, which effectively estimated uncertainty during the 
learning process. The experimental results showcased the model’s effi-
cacy, with impressive prediction accuracies of 99.08% for CT scan 
datasets and 96.35% for X-ray datasets. Additionally, UncertaintyFuse-
Net displayed robustness to noise and reliable performance when 
applied to unseen data. MacDonald et al. [162] conducted a comparative 
analysis of three approximate Bayesian deep learning models for pre-
dicting cancer of unknown primary origin, using three RNA-seq datasets 
consisting of 10,968 samples across 57 cancer types. The study 
demonstrated that Bayesian deep learning is a promising approach for 
generalizing uncertainty, thereby improving the performance, trans-
parency, and safety of deep learning models in real-world applications. 
Farooq et al. [163] proposed a residual-attention-based, uncertainty--
guided mean teacher framework that incorporated residual and atten-
tion blocks for breast cancer detection. The quantitative and qualitative 
findings showed that the proposed framework outperformed 
state-of-the-art techniques and surpassed existing methods for breast 
ultrasound mass segmentation. The study also highlighted the potential 
of including additional unlabeled data to enhance breast tumor seg-
mentation performance. Abdar et al. [164] proposed a simple, yet novel, 
hierarchical attentive multilevel feature fusion model that leveraged 
uncertainty quantification during predictions in the classification task. 
By integrating dropout and Bayesian inference techniques, they effec-
tively enhanced the performance in terms of accuracy, recall, and pre-
cision for classification in OCT, lung CT, and chest X-ray. Zakeri et al. 
[165] introduced DragNet, an unsupervised statistical motion model 
with Bayesian uncertainty quantification for generating high temporal 
resolution image sequences from a single reference frame. DragNet 
offered analytical spatiotemporal uncertainty estimation at the pixel 
level in a cardiac cycle. Abdar et al. [166] proposed a Binarized 
Multi-Gate Mixture of Bayesian Experts (MoBE) ensemble technique for 
accurate cardiac syndrome X (CSX) classification, using uncertainty 
strategy with Bayesian neural networks (BNNs) and dropout Monte 
Carlo for decision uncertainty quantification. Achieved impressive 85% 
accuracy on Tehran Heart Center’s CSX dataset. Tanno et al. [167] 
proposed Bayesian inference-based methods for capturing uncertainty in 
medical image enhancement using deep learning. A spatial map of 
predictive uncertainty over output image enabled subject-specific and 
voxel-wise reliability assessment, demonstrating benefits in enhancing 
system safety for diffusion MRI super-resolution through Image Quality 
Transfer (IQT). Wang et al. [168] introduced a Bayesian inference 
approach for CT image segmentation of cochlear structures. The 
framework balanced shape and appearance information using likelihood 
appearance and prior label probabilities based on a generic shape 
function, showing promising results on multiple datasets. Corrado et al. 
[169] utilized Bayesian probabilistic methods to estimate left atrium 
anatomy from Cardiac Magnetic Resonance images. The proposed model 
quantified uncertain left atrial shape, accounting for imaging artifacts, 
and assessed its impact on left atrial activation time simulations. The 
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authors demonstrated that quantifying the uncertainty of the shape 
impacts the simulation of cardiac activation in the left atrium. Dhamala 
et al. [170] used Direct Markov Chain Monte Carlo for uncertainty 
estimation in personalized modeling with small-sized datasets, 
enhancing clinical decision-making reliability. The framework was 
evaluated in cardiac electrophysiological modeling using synthetic and 
real data experiments, revealing valuable parameter uncertainty in-
sights through efficient surrogate modeling integration. Chen et al. 
[171] introduced TransMorph, a cutting-edge model for unsupervised 
deformable image registration. Distinguished from traditional ap-
proaches, TransMorph leveraged the Transformer architecture and in-
corporates Bayesian deep learning to estimate deformation uncertainty 
without compromising registration performance. The model’s valida-
tion on brain MRI images and phantom-to-CT images showcased supe-
rior accuracy compared to conventional methods. Abdullah et al. [172] 
proposed a study to assess uncertainty in multi-layer perceptron (MLP) 
Mixer models and CNN models for small datasets using Bayesian Deep 
Learning (BDL) techniques. Their results showed that BDL significantly 
improved MLP-Mixer performance by 9.2%–17.4% across various 
models. Dolezal et al. [173] introduced Slideflow, a versatile deep 
learning library for histopathologic image processing and visualization. 
This library integrates uncertainty estimation using Monte Carlo 
Dropout into a variety of deep learning models for stain normalization, 
augmentation, and classification. 

3.2.3. Related works based on ensemble methods 
Ensemble methods involve the combination of many different 

deterministic networks during model inference. Hence, the prediction 
from an ensemble model is based on diverse predictions obtained from 
the different networks. Using combined effects among different net-
works, researchers have found that a group of networks tends to make 
better decisions than a single network, leading to improved model 
generalization [4]. Ensemble models may be trained using weight 
sharing [174], reducing numbers [6], and other various strategies like 
data shuffling or boosting [175]. 

In a recent study by Jungo et al., [176], subject-wise uncertainty 
measures were compared against five other uncertainty measures, 
including ensemble models, for brain and skin lesion image segmenta-
tion. The authors discovered that while existing uncertainty measures 
demonstrate good calibration at the data level, they are not 
well-calibrated at the subject level. Hence, subject-wise uncertainty es-
timates are crucial measures for accurate segmentation. McClure et al., 
[177] proposed the MeshNet architecture combined with the distributed 
weight consolidation technique to train independent structural MRI 
datasets. The findings revealed that the distributed weight consolidation 
measure improved the performance of each independent test while 
maintaining model generalization, surpassing the standard ensemble 
model. Wu et al., [178] introduced the deep Dirichlet mixture model to 
generate point estimates and credible intervals from learned distribu-
tions for evaluating uncertainties in Alzheimer’s disease classification 
probability. The authors discussed the usefulness of the proposed model 
in predicting uncertainties for multiclass classification problems. 

Linmans et al., [179] conducted a comparative analysis between the 
performances of the Multi-head convolutional neural network model 
combined with meta-loss functions, and those of the Monte Carlo 
dropout and deep ensemble methods, for estimating predictive uncer-
tainty on out-of-distribution lymph node tissue images. The authors 
concluded, based on the results, that the multi-head convolutional 
neural network outperformed both Monte Carlo dropout and deep en-
sembles. Liang et al. [180] developed and trained four different types of 
CNN models using diverse datasets consisting of head CT, mammog-
raphy, chest x-ray, and histological images. Instead of using the 
cross-entropy loss function, they introduced an auxiliary loss term that 
captures the difference between predicted confidence and accuracy for 
classification tasks, aiming to quantify model calibration error. The 
authors discussed that their proposed approach significantly reduces 

calibration error across various models and datasets. Hoebal et al. [181] 
compared the performance of traditional U-Net, U-Net with Monte Carlo 
dropout, and Deep Ensemble in segmenting nodules in CT images. The 
Deep Ensemble method showed slightly better results compared to the 
Monte Carlo dropout. The authors concluded that incorporating uncer-
tainty information provides a means to assess segmentation quality 
automatically, even without access to ground truth. Mehrtash et al., 
[182] employed a fully convolutional neural network (FCN) along with 
model ensembling to calibrate model confidence. They conducted a 
comparison of results using both dice and cross-entropy losses. The 
authors found that employing model ensembling successfully calibrated 
the confidence of fully convolutional neural networks trained with the 
dice loss function. Dahal et al. [183] investigated three uncertainty 
measures and utilized four metrics on the ResNet model for cardiac ul-
trasound image segmentation. The results demonstrated that uncer-
tainty estimation effectively identified and rejected low-quality images, 
leading to enhanced segmentation outcomes. The study employed three 
ensembling-based uncertainty models quantified using four different 
metrics. Chiou et al. [184] utilized an encoder-decoder network com-
bined with a CycleGAN-based approach for uncertainty estimation in 
prostate image segmentation. The findings established that the proposed 
method improved image representations in prostate image segmenta-
tion, particularly for cancer characterization. Cao et al., [185] devel-
oped a temporal ensembling segmentation model to segment and 
classify masses in breast ultrasound. An uncertainty-aware unsupervised 
loss was also integrated into their model. Thanks to this approach, the 
authors obtained a pixel-wise accuracy of about 99%. Qin et al., [186] 
employed a CNN to estimate brain and cerebrospinal fluid intracellular 
volume. The authors trained an ensemble of deep models and calculated 
the variance in the combined results. The findings demonstrated sig-
nificant relationships between estimation uncertainty and error across 
all measurements. Singh et al. [187] developed the Bayesian Multi-
ResUNet model for the segmentation and classification of skin lesion 
images. The authors thoroughly investigated the effectiveness of two 
techniques: Monte-Carlo dropout and test time augmentation. Their 
findings revealed that the recommended approach not only showcases 
the robustness of the model but also enhances its transparency and 
confidence. Guo et al. [188] introduced a globally optimal label fusion 
algorithm and an uncertainty-guided, coupled continuous kernel cut 
algorithm for deep learning with shape priors. These were integrated 
into a deep learning ensemble algorithm designed for left ventricle 
segmentation and functional measurements in short-axis cardiac cine 
MRI. Remarkably, their model exhibited outstanding performance even 
when trained on small datasets (5–10 subjects) and with sparse anno-
tations. Buddenkotte et al. [189] introduced an efficient model to cali-
brate deep learning ensembles for accurate classification probability 
approximation in medical image segmentation of ovarian or kidney 
tumors. The approach was successfully validated with complex seg-
mentation tasks using large 3D networks, showing that the generated 
heatmaps outperformed traditional methods in approximating classifi-
cation probability. 

3.2.4. Related works based on test-time augmentation methods 
Test-time data augmentation methods involve predicting and quan-

tifying uncertainty at inference based on multiple predictions generated 
from various augmentations of the primary input data. Typically, mul-
tiple test data are created from each input data by applying data 
augmentation methods; then, the entire set of test data is used to 
calculate the predictive distribution for the estimation of uncertainty 
[4]. Greedy policy search [190] is an example of an augmentation policy 
where each stage of the search selects a sub-policy that provides the 
most significant improvement in the ensemble predictions, which is 
added to the existing policy. These methods can improve model 
robustness and generalization by generating a diverse set of augmented 
data for testing and prediction. 

In their study, Wang et al., [191] introduced a unique approach by 
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using a CNN model with a bounding box for the segmentation of fetal 
and brain tumor images. They further explored scribble-based segmen-
tation and image-specific fine-tuning during testing. The authors 
concluded that the proposed fine-tuning technique significantly 
improved segmentation accuracy while reducing user time and in-
teractions required for the process. Ayhan et al., [192] developed a CNN 
model and incorporated a conventional geometric and color trans-
formation technique as an uncertainty measure during testing on fundus 
images. The aim was to analyze the variations in the network’s output. 
Based on their findings, the authors reported that their test-time 
augmentation approach provides valuable approximations for predict-
ing uncertainties in deep models. Wang et al. [193] investigated alea-
toric and epistemic uncertainties by incorporating test-time 
augmentation and test-time dropout methods into their CNN model. The 
authors’ analysis revealed that the aleatoric uncertainty estimation 
technique yielded superior advantages compared to the test-time 
dropout technique. Specifically, it effectively mitigated the issue of 
overconfident predictions, resulting in more accurate and reliable un-
certainty estimates. Zhang et al. [194] introduced a novel method for 
MRI reconstruction, where measurements are dynamically selected, and 
the prediction is iteratively refined during inference to achieve optimal 
reconstruction. The authors found that this technique effectively reduces 
reconstruction uncertainty in the resulting images. Athanasiadis et al., 
[195] developed a generative adversarial network to explore the rela-
tionship between visual and audio emotional expressions. They 
employed conformal prediction to obtain calibration error and confi-
dence values during testing. The authors reported an approximately 2% 
increase in classification accuracy on two public datasets. In a separate 
study, Ayhan et al. [196] developed and trained a convolutional neural 
network using fundus images for diagnosing diabetic retinopathy. They 
calculated the variance using entropy as a measure of the distribution of 
predicted probabilities. The reported accuracy ranged from a 
commendable 96%–98%, highlighting the effectiveness of their 
approach in achieving accurate diagnoses. Araujo et al., [197] used 
convolutional batch normalization blocks and max-pooling layers to 
assess the severity of diabetic retinopathy in retinal images. The authors 
employed Cohen’s kappa statistics to estimate the model’s predictions at 
different uncertainty threshold levels by calculating the variance in 
image-wise retinopathy grade probabilities. They concluded that the 
best results were achieved using the quadratic-weighted Cohen’s kappa, 
ranging from 0.71 to 0.84. 

Abdar et al. [198] developed a hybrid deep model for skin cancer 
image classification. They explored three uncertainty metrics, including 
Monte Carlo dropout and Deep Ensemble. The results demonstrated that 
the proposed model achieved the highest accuracy of approximately 
91% and showed potential for effective use in various stages of medical 
image analysis. Scalia et al. [199] employed graph convolutional neural 
networks for predicting molecular properties. The authors quantified 
prediction uncertainty using Monte Carlo dropout, deep ensembles, and 
bootstrapping methods on four datasets. The deep ensemble consistently 
outperformed the other techniques. Dong et al. [200] introduced a novel 
deep neural network model called RCoNetks, designed for COVID-19 
detection in chest X-ray (CXR) images. The model generates both the 
final diagnosis and uncertainty estimation, and it has been tested on 
both the original dataset as well as a corrupted dataset containing 
varying percentages of fake samples. In the presence of noise within the 
data, the proposed method displayed superior effectiveness compared to 
existing approaches. Cortes-Cirianco et al. [201] utilized ensembles of 
several deep learning models to examine the effectiveness of a substance 
in inhibiting a biochemical or biological function. They monitored the 
model parameters during single network optimization and calculated 
the variability and validation residuals across snapshots to quantify 
prediction uncertainty. The findings revealed a strong relationship be-
tween confidence levels and the percentage of confidence intervals, 
indicating accurate bioactivity estimation. In a separate study, 
Cortes-Cirianco et al. [202] utilized deep neural networks and the 

random forest classifier to explore the effectiveness of a substance in 
inhibiting a biochemical or biological function. They employed 
conformal prediction, along with test-time dropout, to compute pre-
diction errors on various prediction combinations. The authors 
concluded that there existed a robust correlation between confidence 
levels and error rates in their analysis. KarAzmoudeh et al. [203] 
introduced Bayesian approximation and ensemble learning techniques 
as uncertainty quantification methods for classifying breast tumor tis-
sue. They demonstrated that by employing evaluation criteria based on 
uncertainty estimation, it is possible to determine when to trust the 
output of a deep neural network. Furthermore, the Bayesian Ensemble 
model displayed greater reliability in quantifying uncertainty. Graham 
et al. [204] introduced a model for segmenting colon histology images, 
utilizing uncertainty quantification during test time by applying random 
image transformations. They also presented an uncertainty-based score 
to assess prediction reliability. The model exhibited excellent perfor-
mance in segmenting both gland lumen and gland object across datasets 
from different centers. 

4. Discussion 

This paper discusses the importance of incorporating uncertainty 
estimation techniques in healthcare applications of machine and deep 
learning models. While Explainable AI (XAI) is a growing area of 
research, relying solely on XAI techniques cannot guarantee the reli-
ability of model decisions. To promote safe decision-making in the 
medical domain, it is crucial to present uncertainty estimates in AI 
systems. Fig. 4 shows the main advantages of using UQ in AI models. 

4.1. Uncertainty in machine learning frameworks 

In machine learning, several approaches are being investigated to 
address decision-making under uncertainty, including Bayesian net-
works, Fuzzy logic, Monte Carlo simulation, and Dempster-Shafer the-
ory [205]. Bayesian networks rely on the concept of conditional 
independence to compute values of the joint distribution based on 
random variables in a specific domain. On the other hand, Dempster--
Shafer’s theory quantitatively evaluates uncertainties through subjec-
tive assessments of statement reliability by experts. Fuzzy logic assigns 
values to elements using membership functions that represent their 
degree of belongingness to a fuzzy set, with subjective probability dis-
tributions assigned to these fuzzy sets [205]. When it comes to medical 
decisions, Bayesian networks, and fuzzy logic are preferred due to their 
ability to represent medical knowledge in a structured manner and 
efficiently utilize prior probabilities for problem-solving [205]. These 
concepts are summarized in Table 2, which highlights Bayesian models 
and Dempster-Shafer theory as the primary methods for uncertainty 
estimation in healthcare using machine learning techniques. This sug-
gests that these approaches have proven effective in handling uncer-
tainty in medical data and improving prediction accuracy. Additionally, 
uncertainty techniques utilizing machine learning models have pri-
marily been applied to neurological systems, followed by thoracic sys-
tems (as cardiac systems), medical data, and other organs (with breast 
cancer detection being the most extensively studied) (Fig. 5). Uncer-
tainty plays a significant role in machine learning, particularly in the 
analysis of clinical data (62%) and biomedical images (24%). Flügge 
et al. [32] investigated diagnostic inference when faced with uncertainty 
using Bayesian networks. Their model was tested on real-world medical 
history data, and the information derived from Bayesian networks can 
be applied beyond the mere determination of diagnostic probabilities for 
a given medical history. On the other hand, Lipkova et al. [31] 
demonstrated a Bayesian machine learning framework that utilizes 
high-resolution MRI scans and highly specific FET-PET metabolic maps 
to design personalized radiotherapy plans and estimate tumor cell 
density in patients with glioblastoma. This approach offers a promising 
avenue for individualized treatment planning and could lead to 
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improved clinical outcomes. Razi et al. [49] is the only study that in-
vestigates uncertainty in signal processing models, demonstrating a new 
method for classifying motor imagery tasks based on Dempster-Shafer’s 
theory. 

Integrating uncertainty measurement into machine learning frame-
works offers multiple benefits. It improves decision-making by 
providing insights into prediction confidence. Uncertainty estimation 
enhances model robustness, detecting out-of-distribution inputs. It fa-
cilitates interpretability, building trust and allowing experts to validate 
model decisions. Additionally, uncertainty-aware frameworks support 
efficient data acquisition strategies. Overall, it empowers users with 
reliable predictions, enhances model robustness, promotes interpret-
ability, and supports efficient data collection. 

4.2. Uncertainty in deep learning frameworks 

Fig. 6 shows the different types of images studied for uncertainty 
techniques used in healthcare based on deep learning frameworks. The 
analysis reveals that brain, eye, and skin images have been the most 
extensively studied in the past decade, followed by chest, cardiac, and 
breast images. However, limited instances of research exist for liver, 
spleen, gastrointestinal tract, muscle, audio-visual, and cell membrane 
images, possibly due to challenges related to biological variability, im-
aging modality, and expert annotation [206]. This variability may 
explain why brain, eye, and skin images are more commonly associated 
with uncertainty techniques compared to other medical images. 
Non-imaging data, such as physiological signals and the bioactivity of 
proteins, have received limited attention in the literature. Only a few 
studies, such as Heo et al. [110] examining data and model uncertainties 
using multiple physiological signals, and Jahmunah et al. [156] 

Fig. 4. The main advantages of using UQ in AI models.  

Fig. 5. Types of diseases most prevalently studied involving uncertainty tech-
niques using machine learning models in healthcare (Table 2). The medical 
dataset represents works that utilize different combined datasets or non-specific 
datasets, such as EHR. 

Fig. 6. Bar graph representing the different types of images used in Table 3.  
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investigating model uncertainty using ECG signals, are mentioned in this 
review paper. These findings indicate that while uncertainty techniques 
have been extensively explored in the context of medical images, their 
application to non-imaging data is still emerging in the healthcare 
domain. Indeed, only a few studies have focused on studying uncertainty 
applied to physiological signals, such as in the case of ECG signals [156]. 

Fig. 7 presents a pie chart illustrating the use of deep learning models 
with uncertainty techniques in healthcare. The analysis reveals that 
approximately half of the studies incorporated uncertainty techniques 
into convolutional neural networks (CNN), followed by Bayesian-based 
deep learning models. Deep CNN models are effective in learning useful 
representations of images and structured data [207] while Bayesian 
neural networks are effective in describing model uncertainties while 
requiring low memory consumption [4]. In contrast, models such as 
autoencoders, and ensemble models were used to a lesser extent. 
Ensemble methods do not effectively describe model uncertainties, 
require training many networks, and incur high computational effort 
and memory consumption [4]. Autoencoders employ the axis-aligned 
Gaussian as the latent distribution, which may be disadvantageous 
when estimating complex latent posterior distribution [127] in uncer-
tainty techniques. Consequently, CNN and Bayesian deep models are 
more prominently utilized with uncertainty techniques in image-related 
applications, due to their inherent strengths and advantages over 
autoencoders and ensembles, as discussed. 

4.3. Key papers and techniques in the field of uncertainty quantification 

In the realm of machine learning, all methods for uncertainty 
quantification are equally represented (as shown in Table 2). However, 
in the domain of deep learning, Bayesian methods are the most widely 
used, with 60% of the papers (n = 68) identified in our review 
employing Bayesian methods (as shown in Table 3). Fig. 8 illustrates the 
various types of data employed alongside Bayesian methods, the pre-
dominant approach for UQ. It emphasizes that thoracic system data is 
the most prevalent, followed by nervous system data. Among these 
Bayesian methods, the MC dropout technique is the most popular, for 
several reasons. Firstly, the implementation of MC dropout is relatively 
straightforward, and unlike other techniques for quantifying uncer-
tainty, it only requires enabling dropout layers during test-time to obtain 
uncertainty maps. This makes it a convenient and accessible method for 
many researchers and practitioners. Secondly, MC dropout is highly 
flexible and can be implemented in most deep neural networks simply by 
adding dropout layers within the architecture. This means that it can be 
used with a wide range of models and architectures, making it a versatile 

tool for uncertainty quantification. Finally, once uncertainty maps are 
obtained using MC dropout, they can be used to customize the pipeline 
by imposing fixed or adaptive thresholds based on the level of uncer-
tainty in the prediction. This allows for a range of applications, such as 
refining semantic segmentation, correcting misclassified data, and 
improving model calibration. 

Enabling the dropout layers during inference allows the model to 
make slightly different predictions for the same input each time. The 
variance between these predictions can be leveraged both in classifica-
tion tasks (e.g., image and signal classification) to improve model ac-
curacy and in segmentation tasks to generate uncertainty maps. By 
sampling multiple predictions during inference, the model can capture 
some of the uncertainty in its outputs. This Monte Carlo sampling 
approach has two main benefits:  

- For classification tasks, averaging the predictions of multiple 
dropout samples can improve model accuracy compared to a single 
prediction.  

- For segmentation tasks, the variance in the segmentation masks 
generated from different dropout samples provides a natural mea-
sure of uncertainty for each pixel or region. This produces an un-
certainty map that highlights areas where the model is less confident. 

Here we will discuss the key papers that have used MC dropout to 
improve their AI-based frameworks. Gal and Ghahramani [101] first 
proposed using MC dropout during inference to approximate Bayesian 
prediction intervals for neural networks. They showed that averaging 
the predictions from multiple dropout samples leads to improved clas-
sification accuracy and calibration of uncertainty estimates. 

Jahmunah et al. [156] quantified uncertainty in an ECG model using 
MC dropout. This study develops a DenseNet model for myocardial 
infarction diagnosis from ECG signals that can quantify predictive un-
certainty. Predictive entropy is computed based on the model’s predic-
tive probabilities and used as an uncertainty measure to detect 
misclassifications caused by out-of-distribution data. The results show 
that i) the model’s uncertainty sensitivity increases as noise decreases, 
indicating increased confidence in predictions; ii) the model achieves 
high uncertainty accuracy and precision when SNR values are high, 
indicating it is aware of what it knows. Overall, MC dropout likely en-
ables the model to estimate its predictive uncertainty, which allows it to 
detect misclassifications and indicate a lack of confidence when 
appropriate. This uncertainty awareness improves the model’s reli-
ability. Combalia et al., [121] used MC dropout and test time 

Fig. 7. Pie chart representing the different types of deep learning models used 
to model uncertainty in deep learning frameworks. 

Fig. 8. Bar graph representing the different types of images used with the 
Bayesian methods. 
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augmentation to estimate prediction uncertainty for a skin lesion clas-
sification model. MC dropout allows the model to estimate how uncer-
tain it is when classifying individual samples. The results show that 
uncertainty metrics based on MC dropout can detect difficult samples 
that the model tends to misclassify; identify out-of-distribution samples 
that differ from the training data. By removing the most uncertain 
samples, classification accuracy improved, indicating the uncertainty 
metrics can detect error-prone samples. In short, Monte Carlo dropout 
enables uncertainty estimation, which helps detect samples that may 
confuse the model. The uncertainty metrics based on it can improve 
model reliability, though challenges remain in identifying certain types 
of outliers. This study demonstrates that uncertainty estimation tech-
niques based on MC dropout can enhance the performance and reli-
ability of deep learning models for skin lesion classification. 

The study conducted by Roy et al. [112] introduces a Bayesian 
convolutional neural network for whole-brain segmentation of MRI 
brain scans. The model uses Monte Carlo dropout at test time to generate 
samples from the posterior distribution, which allows it to estimate 
uncertainty in its segmentations. The entropy over the MC samples 
produces a voxel-wise uncertainty map while the mean of the MC pre-
dictions generates the final segmentation. In summary, Monte Carlo 
dropout enables the model to estimate uncertainty in its segmentations, 
which helps detect poor-quality segmentations. The structure-wise un-
certainty metrics provide a useful interpretation of this uncertainty at 
the level of individual brain structures, facilitating both quality control 
and reliable analyses of large datasets. Edupuganti et al. [141] aim to 
quantify uncertainty in deep learning-based MRI reconstruction 
methods. The authors develop a variational autoencoder (VAE) to 
probabilistically reconstruct undersampled MRI scans. Monte Carlo 
sampling from the VAE’s posterior distribution generates pixel variance 
maps, which quantify the uncertainty in the reconstructions. The MC 
dropout enables the VAE to i) model the uncertainty inherent in 
undersampled data; ii) quantify that uncertainty through pixel variance 
maps. The authors conclude that quantifying and reducing uncertainty 
in deep learning-based MRI reconstruction can improve diagnostic ac-
curacy. In summary, MC dropout allows the VAE to model and visualize 
the uncertainty in its reconstructions, providing insights to improve 
model performance and reliability. 

Overall, the MC dropout technique provides a practical and flexible 
approach to uncertainty quantification in deep learning, which is why it 
is the most used Bayesian method in this field. 

4.4. Application areas 

Fig. 9 illustrates the most employed methods in machine learning 
and deep learning for analyzing different anatomical regions. For 
models analyzing the thoracic and nervous systems, Bayesian inference 
emerges as the most utilized technique for uncertainty management. In 
the case of the digestive system, Dempster-Shafer theory (DST) is the 
predominant technique, while Monte Carlo simulation is found to be 
most used for analyzing diverse dataset collections. Regarding deep 
learning, the Bayesian method remains the primary technique across all 
analyzed organ systems. 

Fig. 10 presents a sunburst diagram highlighting the prevalent deep 
models for the four most extensively studied image types in Fig. 6. Our 
analysis reveals a notable trend in the utilization of uncertainty tech-
niques, with CNN models being the most employed for studying brain 
images, followed by Bayesian-based deep models. A similar pattern 
emerges for eye images, where CNN models are predominantly favored, 
closely followed by Bayesian-based deep models. In the case of skin 
images, CNN models hold a widespread preference, while Bayesian-deep 
models are the preferred choice for analyzing chest images. 

Integrating uncertainty measurement into deep learning frameworks 
in healthcare can provide several benefits. It can help improve the 
reliability and interpretability of the model’s predictions, enable better 
decision-making by clinicians, and enhance patient safety by high-
lighting areas of uncertainty in the model’s output. 

Fig. 11 illustrates the use of uncertainty techniques in the healthcare 
domain, incorporating machine learning and deep learning methods 
from 2013 to 2023. The graph reveals a growing trend in studies 
examining uncertainty using both machine learning and deep learning 
approaches throughout the years. Notably, there has been a significant 
increase in the application of uncertainty techniques in healthcare, 
particularly in 2019 and 2020, possibly driven by the need to analyze 
and detect conditions related to COVID-19 complications. However, 
there has been a decline in the number of studies focusing on uncertainty 

Fig. 9. Methods commonly employed for uncertainty estimation (both in machine learning and deep learning), categorized by different anatomical regions.  
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quantification in healthcare starting from 2021, which may be attrib-
uted to the rising adoption of uncertainty visualization techniques as 
reported in recent literature [208]. 

Based on the information presented in Table 2, it is evident that 
uncertainty techniques are commonly combined with machine learning 
approaches to capture and represent uncertainty in either data, models, 
or both. As a result, many studies focus on providing qualitative results, 
with only a few exploring methods for quantifying uncertainty. How-
ever, when examining deep learning approaches combined with un-
certainty techniques, the emphasis is primarily on quantifying the 
inherent uncertainty in the data or the model, offering practical solu-
tions for managing uncertainty in real-world medical systems. It is 
important to note that most studies investigate model uncertainties, 
followed by uncertainties in both the model and the data. The relatively 
fewer investigations into data uncertainties may be attributed to the fact 
that model uncertainties can be mitigated by improving the model ar-
chitecture, learning process, and quality of training data, whereas data 
uncertainties are inherent and cannot be reduced [4]. As a result, re-
searchers often prioritize refining their models to reduce uncertainties 
rather than exploring approaches to enhance training performance on 
noisy data. Finally, it should be emphasized that many authors who 
study model uncertainty employ the Monte Carlo dropout technique, 
which is computationally complex [209] and may pose limitations in 
healthcare settings where timely and rapid diagnoses are crucial. 

This review study has some benefits and shortcomings, as discussed 
below: 

4.4.1. Advantages 

(i) This review summarizes recent research on uncertainty tech-
niques in the machine and deep learning models in healthcare.  

(ii) The type of diseases that have been studied using machine 
learning with uncertainty techniques have also been discussed. 

(iii) The frequency of machine learning methods used with uncer-
tainty techniques in the past decade has been examined.  

(iv) The most used medical images for uncertainty techniques 
involving deep learning models in the past decade have been 
identified.  

(v) The most used deep learning with uncertainty techniques for the 
top four studied images in the past decade have been identified. 

4.4.2. Limitation(s)  

(i) Uncertainty techniques used in healthcare involving animal or 
plant data were not considered in this review. 

5. Future work 

Based on the findings of the review, it is evident that further research 
is needed to explore uncertainty techniques in deep models for health-
care applications, particularly in relation to physiological signals. Esti-
mating uncertainty is crucial for quantifying and effectively managing 
the inherent noise, interference, and imperfections present in 1D phys-
iological data. This, in turn, improves the quality of measurements, 
resulting in more accurate and reliable outcomes. Additionally, uncer-
tainty quantification has the potential to enhance the reliability of 
model predictions, even in scenarios involving missing or noisy data. 

The existing studies have mainly focused on datasets of one type or 
very few multimodal data. Therefore, future investigations should delve 
into uncertainty techniques for multimodal data. In multimodal data 
involving diverse sources like images, text, and physiological signals, 
uncertainty can arise from various factors, including sensor quality, 
measurement accuracy, and inherent variability across modalities. By 
employing uncertainty techniques, confidence levels can be quantified 
for outcomes derived from each distinct modality and the integrated 
multimodal dataset as a whole. This proactive approach contributes to 
the refinement of predictions, ensuring heightened precision and 
robustness in the results obtained. 

Most of the current studies primarily concentrate on binary classifi-
cation or segmentation problems. For this reason, it is recommended 
that future works incorporate an assessment of quantitative un-
certainties in classification probabilities for multiclass data. Expanding 
the evaluation to include multiclass scenarios would offer a more 
comprehensive understanding of uncertainty in classification tasks. 

Fig. 10. Sunburst diagram detailing deep models most prevalently employed 
for the four top images studied in Table 3. 
**The term ‘Bay’ refers to Bayesian-based deep models. 

Fig. 11. Bar graphs of uncertainty techniques involving machines (top graph) and deep learning (bottom graph) from 2013 to 2023. 
**The term ‘DL’ refers to deep learning models while ‘ML’ refers to machine learning models. 
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These avenues of research have the potential to enhance the accuracy 
and reliability of uncertainty techniques in healthcare applications. 

To compare various uncertainty quantification methods and deter-
mine which one performs best on a given task, it is necessary to test them 
all on the same dataset. However, this review highlights a significant 
heterogeneity in both the tasks and datasets used across different 
studies. This variation can make it challenging to compare and draw 
general conclusions from the results. Furthermore, the use of different 
evaluation metrics and protocols across studies can further complicate 
comparisons. For example, some studies may report only accuracy, 
while others may report additional metrics such as precision, recall, or 
F1 score. Additionally, the choice of the dataset used for evaluation can 
significantly impact the results, as some datasets may be more chal-
lenging or have different characteristics than others. 

To address these issues, future studies may benefit from using 
benchmark datasets and evaluation metrics to allow for more direct 
comparisons between different uncertainty quantification methods. 
Additionally, the development of challenges may help establish a stan-
dardized framework for evaluating the performance of these methods. 

Future works could also investigate the following topics:  

I. Development and exploration of UQ methods in AI models, 
especially in ML models where fewer studies exist: The field of 
machine learning offers several areas that warrant further 
exploration and research, including the development and explo-
ration of UQ methods. Despite notable advancements in UQ for 
machine learning, there is still a need for more methods to be 
proposed and explored, especially in healthcare [210].  

II. Fusion-based methods for enhancing AI techniques: Fusion-based 
methods, which combine multiple sources of information, offer a 
promising avenue for improving both predictions and uncertainty 
estimation in machine learning. Investigating and exploring 
fusion-based approaches further can provide insights into their 
potential benefits and applications [20], especially in healthcare 
[211,212].  

III. Leveraging new theories for uncertainty quantification. The 
introduction of new theories can provide valuable frameworks for 
uncertainty quantification in machine and deep learning. For 
example, three-way decisions offer a decision-making approach 
that considers acceptance, rejection, and uncertainty as possible 
outcomes, making it a useful UQ method for tackling uncertain 
scenarios [213]. Similarly, info-gap decisions provide a theoret-
ical foundation for decision-making in the face of severe uncer-
tainty, where precise knowledge of the model or parameters may 
be lacking [214,215].  

IV. Application of transfer learning techniques for uncertainty 
quantification. When data availability is limited, the application 
of transfer learning techniques becomes relevant for uncertainty 
quantification. Transfer learning enables leveraging knowledge 
and patterns acquired from a source domain with abundant data 
to enhance learning in a target domain with fewer samples. 
Investigating the effectiveness of transfer learning in the context 
of UQ can provide valuable insights and potential benefits.  

V. Handling uncertainty in Graph Neural Networks (GNNs) and 
Graph CNNs. The advent of GNNs and Graph CNNs has intro-
duced new challenges and opportunities in uncertainty quantifi-
cation. These specialized architectures facilitate learning from 
graph-structured data, but efficient handling of uncertainty in 
such models requires the proposal and development of innovative 
methods specifically designed for GNNs [216] and Graph CNNs 
[217]. A review of existing techniques utilized in these domains 
can offer valuable insights and inform the development of novel 
approaches.  

VI. Enhancing uncertainty calibration approaches in machine 
learning. Uncertainty calibration approaches play a pivotal role 
in machine learning by ensuring that predicted uncertainties 
align with empirical uncertainties, enabling dependable decision- 
making. Proposing novel uncertainty calibration methods can 
enhance the precision and utility of uncertainty estimates. A re-
view of pertinent literature, including related review papers, can 
serve as a foundation for identifying and citing established cali-
bration methods.  

VII. Lastly, the accessibility of public data is essential for advancing 
machine learning research and promoting collaboration. Access 
to diverse and well-curated datasets enables researchers to 
benchmark and compare methods, ensuring reproducibility and 
fostering further progress in the field. As a result, efforts should 
be directed toward encouraging the release and sharing of public 
data, supporting initiatives such as open data platforms or 
collaborative data-sharing communities. 

6. Conclusion 

AI models are increasingly being utilized in healthcare, emphasizing 
the need to assess the reliability and safety of these systems. A crucial 
aspect of this assessment involves quantifying the uncertainty in the 
predictions made by AI models. This study systematically reviewed 
recent research that employed uncertainty techniques in healthcare 
applications of machine and deep learning, adhering to PRISMA 
guidelines. 

This review identified Bayesian methods as the primary uncertainty 
techniques used in healthcare. Moreover, UQ techniques were more 
prevalent in healthcare applications using deep learning models 
compared to traditional machine learning models. These findings pro-
vide valuable insights for advancing UQ research in healthcare, and 
improving the reliability and safety of AI systems in this critical field. 

Quantifying uncertainty in clinical AI implementation offers several 
advantages, including improved model accuracy by reducing mis-
classifications, identification of uncertain cases, enhanced model reli-
ability and safety, and increased confidence among clinical operators, 
leading to greater acceptance and usage. The results of this study pave 
the way for future investigations in uncertainty quantification, 
strengthening the reliability and safety of AI systems in healthcare. 
Future studies could explore the examined UQ techniques in 1D physi-
ological signals, encompassing multiclass or multimodal data, to further 
enhance UQ implementation. Additionally, comparing different uncer-
tainty quantification techniques using standardized datasets and 
consistent metrics would enable a comprehensive analysis of these 
methods. 

It is worth noting that this review focused solely on uncertainty 
techniques applied to healthcare data and did not include uncertainty 
techniques in animal or plant data or non-healthcare-specific applica-
tions. Future analyses could be conducted to incorporate these aspects 
and provide a more comprehensive understanding of uncertainty tech-
niques across various domains. 
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Appendix  

Table A1 
Summary of studies on the introduction of uncertainty techniques in healthcare applications using machine learning approaches.  

Author, year Features and methods Data information Findings/Results (%) 

Giustinelli et al., 
2022 [64]  

• Imprecise/precise probability Data collected from specific subsets of HRS 
respondents using so-called Experimental Modules 

Imprecise/precise probability of successfully studying 
late-onset dementia 

Ghesu et al. 
[49], 2021  

• Dempster-Shafer theory Chest X-ray images, the view-classification of 
abdominal ultrasound images, brain MR scans 

Assessment of the image quality that combines the 
uncertainty measurement with probabilistic classification 

Lin et al., 2020 
[27]  

• Bayesian inference  
• Markov chain Monte Carlo (MCMC) 

simulation 

National food consumption database 
(nonylphenols residual in food, 
nonylphenols toxicity data) 

Construction of a probabilistic risk assessment framework 
for dietary exposure to NP using Bayesian inference is a 
successful approach to showing effects on renal disease 

Aakoyun et al., 
2020 [29]  

• Bayesian inference  
• Markov Chain Monte Carlo (MCMC) 

samplers 

106 TC scans Bayesian inference method is successful in predicting the 
maximum aneurysm diameter 

Castellazi et al., 
2020 [218]  

• Adaptive Neuro Fuzzy Inference 
System  

• Unimodal and multimodal magnetic 
resonance features 

77 MRI acquisitions: 33 patients with AD and 27 with 
VD 

Unimodal and multimodal features are combined in the 
ML model for the classification of Alzheimer’s disease and 
vascular dementia, achieving a prediction accuracy of 
77.33%. 

Das et al. [41] 
2020  

• Linguistic Neuro-Fuzzy with Feature 
Extraction (LNF-FE)  

• Features extraction with principal 
component analysis 

Medical dataset: Pima Indian Diabetes (PID), 
Mammographic Mass, Breast Cancer, Heart Statlog, 
Liver, Blood transfusion Services, Haberman Nepal 
Breast Cancer 

The analysis of medical data with a Linguistic Neuro- 
Fuzzy with Feature Extraction (LNF-FE) classifies diseases 
successfully 

Vidhya et al., 
2020 [42] 

• Modified adaptive neuro-fuzzy infer-
ence system (M-ANFIS)  

• Entropy 

Big Healthcare Data (Patient portals, research studies, 
electronic health records, wearable devices, etc) 

The proposed technique performs better than other 
machine learning techniques 

Kaur et al. [43] 
2020  

• Adaptive neuro-fuzzy inference system  
• Neuro-Fuzzy system 

Medical data: osteoarthritis (OA) rheumatoid arthritis 
(RA) and osteonecrosis (ON) diseases. 

Proposed system outperforms the fuzzy system in areas 
such as accuracy, sensitivity, and specificity 

Sood et al. [219] 
2020  

• Linear Discriminant Analysis-Adaptive 
Neuro-Fuzzy Inference System (LDA- 
ANFIS) 

The dengue-related data (10 attributes, such as fever, 
pain behind eyes and so on) and the heart data (6 
parameters, such as ECG, HDL, sex) 

The proposed method demonstrates efficient performance 
and uses several experimental and statistical methods 

Tsai et al. [220] 
2020  

• Monte Carlo simulation  
• Computation of DNA damages caused 

by radiation 

Simulation of radical’s diffusion and reaction in 
chemical state and a multi-scale DNA model 

GPU-based microscopic Monte Carlo simulation tool for 
DNA disease is advantageous 

Salgado et al. 
[221], 2020  

• Monte Carlo simulations Local demographic and consumption data (from 
CESCAS I study) 

Study of the impact of a lessening in sugar-sweetened 
beverage consumption on cardiovascular disease and 
diabetes 

Lee et al. [36], 
2020  

• Monte Carlo Simulation using Geant4 
Application 

Images acquired on two breast phantoms with our Si/ 
CZT Compton camera imaging system 

Proposed method confirmed the feasibility of using a 
Compton camera for the detection of breast cancer 

Shih et al. [37], 
2020  

• Monte Carlo simulation Blood irradiator simulated using Monte Carlo 
simulation and MAGAT gel dosimeter 

The proposed method can be used to ensure blood 
products can achieve an accurate delivery dosage. 

Gasparini et al. 
[222], 2020  

• Monte Carlo simulation 49 care practices of adults with chronic kidney disease Proposed framework using Monte-Carlo simulation helps 
in the visitation process with respect to the health care 
utilization analysis 

Zouh et al. [28], 
2019  

• Markov chain Monte Carlo algorithm  
• Bayesian framework  
• Monte Carlo algorithm 

PET image with synthetic data. Construction of a Bayesian framework for quantifying 
uncertainty in image reconstruction with Poisson data 

Lee et al. [223], 
2020  

• TOPAS Monte Carlo simulation for 
monitoring of proton beam range 

Energy spectra by the CZT camera Monte Carlo simulation for proton beam range verification 
in cancer therapy 

Achariya et al. 
[59], 2020  

• Cuckoo search for the features 
selection  

• Rough set for the definition of the rule 

Electrical information system of 606 patients with 
heart disease 

Cuckoo search and rough set (CRCS) model developed for 
knowledge inference from information medical systems 
aided in the detection of heart disease. 

Santra et al. 
[60], 2020  

• Rough set-based lattice structure  
• Generation of the best set of decision 

rules during inference 

Low back pain data Proposed method can be extended to complex medical 
datasets for the representation of knowledge 

Bania et al. [61] 
2020  

• R-Ensemble method based on rough 
set theory 

Medical datasets, collected from UCI Machine 
repositories 

Results demonstrate the superiority of the R-ensemble 
method over other attribute selection algorithms 

Buono et al. 
[47], 2020  

• Dempster-Shafer method for the 
diagnosis of skin diseases 

Data on skin disease The proposed method is successful in the diagnosis of skin 
diseases 

Biswas et al. 
[54] 2020  

• Soft fuzzy set  
• Dempster-Shafer method 

600 chest x-ray image data set Proposed method enhances the X-ray images of lungs and 
improves the visual quality of normal/diseased structural 
regions in X-ray images effectively. 

Magnusson 
et al., 2019 
[224]  

• Bayesian inference  
• Bayesian inference through Markov 

chain Monte Carlo (MCMC) methods 
using the No-U-Turn sampler (NUTS). 

1651 patients (administration of 2 mg siponimod or 
placebo) 

Main stratum estimator based on Bayesian inference can 
be used to quantify the effect of treatment on disability 
progression in the (latent) population of patients with 
multiple sclerosis 

Lipkova et al., 
2019 [31]  

• Bayesian framework 3D slice of the synthetic data (FET-PET image), and 
Clinical data from 8 patients with glioblastoma (GBM) 

The proposed multimodal Bayesian model calibration is 
promising in assisting the development of personalized 
radiotherapy procedures 

Flügge et al., 
2019 [32]  

• Bayesian networks  
• Approximate inference with 

variational message passing, loopy 
belief propagation, expectation 
propagation 

Real diagnosis and anamnesis data Bayesian network yields accurate headache diagnosis, 
with expectation propagation outperforming variational 
message passing. 

Wang et al., 
2020 [33] 
2019  

• Conditional Gaussian Bayesian 
network 

15 variables from lung cancer patients (identified 
from 1996 to 2010) 

Bayesian uncertainty estimation for lung cancer patient 
medical expenditure outperformed other investigated 
models. 

(continued on next page) 
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Table A1 (continued ) 

Author, year Features and methods Data information Findings/Results (%) 

Liu et al., 2019 
[225]  

• Fuzzy inference logic model Medical data associated with prostate cancers (1 933 
535 items of structured and recognizable medical 
information from 8000 patients). 

A fuzzy inference-based medical decision-making model 
aids reliable diagnosis. 

Prameswari 
et al. [48], 
2019  

• Dempster-Shafer’s theory  
• E-diagnostics for digestive system 

disorders 

Data on the digestive diseases collected by experts Web-based E-diagnostic for Digestive System Disorders 
using the Dempster Shafer’s Method proved to yield 
higher certainty and accuracy (85%) in matching an 
expert’s diagnosis 

Razi et al. [226] 
2019  

• Dempster-Shafer theory Linear 
discriminant analysis (LDA) 

EEG and EOG signals for 9 subjects Results obtained show considerable improvement, 
highlighting the success of the proposed approach in 
modeling uncertainty, in multi-class classifications. 

Porebski et al. 
[55], 2019  

• Fuzzy focal elements  
• Dempster-Shafer theory 

Medical database of patients affected by the hepatitis 
C virus 

Proposed method provides simple diagnostic rules, helpful 
in processing inadequate data. 

Xiao et al. [56] 
2018  

• The belief entropy  
• Fuzzy preference relations analysis  
• Dempster-Shafer theory 

Medical diagnosis Proposed method outperforms other related methods as 
uncertainty arising from human cognition can be lowered. 

Shi et al. [50], 
2018  

• Dempster-Shafer theory of evidence Drug-drug interaction dataset: 569 drugs and 52416 
pairwise interactions between them 

Combined Dempster-Shafer-based local classification 
models outperform single models for drug-drug 
interactions. 

Kang et al. [51] 
2018  

• Gaussian mixture model (GMM) model  
• Dempster-Shafer theory 

Dataset related to Clostridium difficile infection from 
22 hospitals (Interior Health Authority (IHA), British 
Columbia) 

Proposed model enables the generation of criteria ratings 
of risk factors to avert the imprecision caused by experts’ 
judgments. 

Mckenna et al. 
[65], 2018  

• Uncertainty estimation with 
imprecise/precise probability 

Breast cancer images Proposed method proved that mathematical modeling for 
the optimization of chemotherapy for breast cancer 
therapy. 

De Medeiros 
et al. [45], 
2017  

• Fuzzy inference system Data from the World Bank, e.g Body mass index, 
Blood pressure, Physical activities, Eating habits 

Proposed fuzzy logic supports real-time medical diagnosis 
and quantifies management. 

Wang et al. [52], 
2016  

• Dempster-Shafer theory of evidence Three datasets about decision-making in medical 
diagnosis 

Proposed approach can reduce uncertainty caused by 
humans’ subjective cognition 

Mahmoud et al. 
[66], 2016  

• Ensemble models  
• Creedal decision trees (CDTs) based on 

imprecise probability 

Thrombosis Disease Dataset 
Hypothyroid Disease Database 
Arrhythmia Disease Database 
Heart Disease Database 

Ensemble models yielded higher classification accuracy as 
compared to single-tree models. 

Nguyen et al. 
[46], 2015  

• Interval type-2 fuzzy logic system  
• Adaptive neuro-fuzzy inference system 

The breast cancer database (699 breast cancers cases) 
The heart disease dataset (303 cases) 

Wavelet transform and Interval type-2 fuzzy logic system 
successful for medical data classification. 

Li et al. [58], 
2015  

• Fuzzy soft set  
• Dempster-Shafer theory of evidence 

Dataset for decision-making in medical diagnosis 
problems 

Fuzzy soft set and Dempster-Shafer theory practical for 
medical diagnosis. 

Ghasemi et al. 
[57], 2013  

• Fuzzy inference system  
• Dempster-Shafer theory 

Simulated and real Brain MR images Fuzzy inference and Dempster-Shafer for brain MRI 
segmentation yielded satisfactory results.   

Table A2 
Summary of studies on uncertainty estimation techniques in healthcare applications using deep learning approaches.  

Author, year Features and methods Data information Findings/Results (%) 

Leibig et al., [105] 
2017  

• Bayesian deep neural network  
• Ensemble model  
• Monte Carlo dropout 

Kaggle data: 35126 training and 53576 test fundus 
images; 
Messidor data: 1200 fundus images 

Bayesian uncertainty measures determine uncertainty 
better than other direct methods. 

Ktena et al., [89] 
2017  

• Convolutional neural network  
• Single deterministic methods 

MRI images from 871 subjects Proposed method improved overall classification by 
11.9% 

Ozdemir et al., 
[106] 2017  

• Bayesian convolutional neural network  
• Bayesian convolutional neural network 

with uncertainty fusion 

CT scan images of 888 patients’ pulmonary 
nodules 

Infusing uncertainty measures in the workflow improves 
prediction accuracy and model confidence. 

Heo et al., [110] 
2018  

• Bayesian methods  
• Unique variational attention model 

Physionet dataset: 36 physiological signals 
Pancreatic cancer dataset: 3699 patient records 
representing qualitative data 
Sepsis dataset: 22395 patient records comprising 
14 variables 

Proposed model yields large improvements compared to 
existing attention models. 

Ayhan et al., [192] 
2018  

• Test-time augmentation methods 35126 training and 53576 test images Proposed method provides useful approximations for the 
predictive uncertainties of deep models. 

Wang et al., [191] 
2018  

• Test-time augmentation models MRI images of 18 fetal patients, MRI images from 
198 brain tumor patients 

Proposed fine-tuning technique increases the 
segmentation accuracy and the method used in the study 
reduces user time and interactions. 

McClure et al., 
[177] 2018  

• Ensemble model sMRI images from 5 datasets: 956, 1136, 183, 120 
and 893 images from respective datasets 

Distributed weight consolidation measure improves the 
performance of each independent test, as compared to the 
standard ensemble model. 

Jungo et al., [107] 
2018  

• Monte Carlo dropout models Brain tumor images of 46 subjects Uncertainty information is obtainable by applying the 
Monte Carlo dropout after each convolutional layer. 

Jungo et al., [108] 
2018  

• Bayesian methods  
• Monte Carlo dropout 

30 MRI images of brain tumor Learned observers’ uncertainty can be fused with a Monte 
Carlo-based Bayesian network to determine the 
uncertainty of the model’s parameters. 

(continued on next page) 
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Table A2 (continued ) 

Author, year Features and methods Data information Findings/Results (%) 

Devries et al., [91] 
2018  

• Monte-Carlo dropout 2750 dermoscopic images Heteroscedastic neural networks had the least 
improvement, while other uncertainty estimation 
techniques had similar results. 

Dhamala et al. 
[161],2018  

• Monte Carlo dropout Body surface ECG and epicardial potentials Quantifying the Uncertainty in Model Parameters Using 
Gaussian Process-Based Markov Chain Monte Carlo in 
Cardiac Electrophysiology 

Tanno et al. [158], 
2019  

• Bayesian inference Lifespan dataset, Prisma dataset, Human 
connection project dataset 

Image enhancement based on uncertainty quantification 
in MRI data with a brain tumor (glioma) and multiple 
sclerosis 

Graham et al. 
[195], 2019  

• Test-time dropout Gland Segmentation (GlaS) challenge dataset 
(MICAI) and a indipendent adenocarcinoma 
dataset 

Segmentation in colon histology images 

Jungo et al., [176] 
2019  

• Ensemble models  
• 5 uncertainty measures 

Brain tumor images from 265 patients, skin lesion 
images dataset 

While existing uncertainty measures calibrate well at the 
data level, they are not well calibrated at the subject 
level. 

Orlando et al., 
[109] 2019  

• Bayesian neural network with Monte 
Carlo dropout 

OCT scans of 50 patients Proposed uncertainty estimates highlight areas for model 
correction based on inverse performance correlation. 

Wu et al., [178] 
2019  

• Ensemble methods 1660 magnetic resonance images of Alzheimer’s 
disease 

The proposed model is useful for uncertainty prediction 
for multi-class classification. 

Adrian et al., 
[111] 2019  

• Monte Carlo dropout MRI images of 465 patients Monte Carlo sample dropout identifies scans for further 
examination based on model errors. 

Wang et al., [193] 
2019  

• Test-time augmentation  
• Test-time dropout 

MRI scan images of 60 features Aleatoric uncertainty estimation outperforms test-time 
dropout, reducing overconfident predictions. 

Roy et al., [112] 
2019  

• Uncertainty map from Monte Carlo 
samples 

4 datasets of brain images The proposed uncertainty metrics could evaluate the 
accuracy of segmentation methods in deep models. 

Ghesu et al., [93] 
2019  

• Bootstrapping for uncertainty  
• Single deterministic models 

112120 and 185421 images from 2 datasets 
respectively 

Proposed uncertainty method can eliminate training 
data, increasing the robustness and accuracy of the model 
and determining reader errors. 

Baumgartner 
et al., [114] 
2019  

• Bayesian models 1018 thoracic CT images, prostate MR images from 
68 patients 

Proposed technique is able to produce a more naturalistic 
and varied segmentation of images as compared to other 
related works. 

Raczkowski et al., 
[115] 2019  

• Variational dropout-based entropy 
measure 

5000 images of colorectal cancer Variational dropout entropy measures increase the 
model’s speed by about 45%. 

Eaton-Rosen et al., 
[116] 2019  

• Monte Carlo, varying thresholds of 
output confidence maps of a model, M- 
head uncertainty measures  

• Bayesian models 

White-matter hyperintensity image data of 60 
subjects 

The proposed technique is effective in the counting of 
histopathological cells and white matter hyperintensity. 

Jena et al., [118] 
2019  

• Bayesian neural network with Monte 
Carlo dropout 

3 datasets of brain tumor, cell membrane and chest 
radiograph images 

Proposed method enhances segmentation quality and 
uncertainty estimation accuracy compared to existing 
methods. 

Soberanis-Mukul 
et al., [119] 
2019  

• Monte-Carlo dropout Pancreas, spleen image datasets The proposed method improves dice scores for both 
images compared to the original prediction by the model. 

Hu et al., [120] 
2019  

• Variational dropout 1018 lung CT images, 48 prostate MRI images Predictive uncertainty estimates, sample accuracy and 
diversity are improved. 

Zhang et al., [194] 
2019  

• Test-time augmentation methods 11049 training and 5048 test MRI images of the 
knee 

Proposed method reduces the reconstruction uncertainty 
of MRI images. 

Sedghi et al., 
[149] 2019  

• Bayesian methods MRI brain images of 115 subjects Intra-subject dice scores for grey matter, white matter 
and cerebrospinal fluid obtained were 0.70, 0.77 and 
0.62 respectively. 

Cortes-Cirianco 
et al., [201] 
2019  

• Ensembles of 100 deep neural network 
models  

• Test-time augmentation methods 

2.035.207 bioactivity data points per protein A strong relationship exists between confidence levels 
and the percentage of confidence intervals reflecting true 
bioactivity. 

Cortes-Cirianco 
et al., [202] 
2019  

• Test-time dropout 4.795.207 bioactivity data points per protein for 
24 target proteins 

A strong relationship between confidence levels and error 
rates. 

Norouzi et al., 
[150] 2019  

• Monte-Carlo sampling  
• Computation of model uncertainty by 

estimation of the variance of 
segmentation results 

7980 MRI images Results demonstrate the successful integration of simple 
ideas with deep neural networks, highlighting their 
potential. 

Filos et al., [151] 
2019  

• Bayesian deep learning techniques, 
convolutional neural network  

• Uncertainty estimation methods 

35126 training images, 53576 test images Comparing Bayesian deep learning techniques enables 
new methods to showcase efficacy on large-scale 
problems. 

Tardy et al., [98] 
2019  

• Single deterministic method In-house database: 1600 mammographies Proposed method allows the rejection of the most obvious 
outliers and improved area under the curve results by up 
to 10%. 

Jensen et al., [99] 
2019  

• Single deterministic method 31017 skin images Proposed method provides improvements in model 
calibration, aiding in capturing uncertainty in samples 
and labels 

Ghoshal et al., 
2020 [152]  

• Dropweights-based Bayesian 
Convolutional Neural Networks  

• Monte Carlo Dropweights (Bayesian 
convolutional neural networks 

5941 Postero-Anterior chest radiography images Uncertainty in prediction has a strong correlation with 
classification accuracy 

Athanasiadis 
et al., [195] 
2020  

• Test-time augmentation methods Audio-visual emotion datasets: 7386 audio 
recordings, 7442 videos and 96 images from 187 
participants. 

The best model achieved 52.52% classification accuracy 
in one dataset and 47.11% in another. 
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Author, year Features and methods Data information Findings/Results (%) 

Ayhan et al., [196] 
2020  

• Test-time augmentation methods  
• Computation of variance using entropy 

as a distribution of predicted 
probabilities 

89215 fundus images The proposed model achieved a high accuracy between 
95.9 and 98.2%. 

Graham et al., 
[94] 2020  

• Single Deterministic methods  
• Measurement of cross-entropy 

uncertainty 

593 MRI images Obtained a dice score of about 0.85 for all regions in the 
uncertainty-aware hierarchical model 

Hu et al., [124] 
2020  

• Zone-based uncertainty estimates based 
on Monte Carlo dropout technique 

Scanned images from 83 patients Obtained sensitivity of 74.7% 

Nair et al., [125] 
2020  

• Computation of approximate probability 
distributions with Monte Carlo dropout 

MRI images from 1064 patients Overall lesion true-positive rate was at 0.8 and false 
detection rate was at 0.2 

Natekar et al., 
[148] 2020  

• Bayesian models 285 training cases, 48 testing volumes Whole tumour dice coefficient obtained is 0.830 

Wang et al., [144] 
2020  

• Bayesian models  
• Uncertainty as the mean of probabilistic 

predictions 

5028 images An accuracy of about 95% was obtained. 

Scalia et al., [199] 
2020  

• Test-time augmentation methods  
• Monte Carlo dropout, deep ensembles, 

bootstrapping methods for 
quantification of prediction uncertainty 

4 datasets of molecular graphs Test set errors of 0.74, 0.32, 1.33 and 0.481 for 4 datasets 
respectively. 

Sieradzki et al., 
[147] 2020  

• Dropout-based uncertainty estimation  
• Derivation of uncertainty measured 

from variance in dropout 

A deep generative model with recurrent neural 
networks 

Proposed method enabled models to gain precision values 
between 0.0004 and 0.0007. 

Laves et al., [123] 
2020  

• Deep Bayesian models  
• Variational inference with Monte-Carlo 

dropout 

Variety of medical image datasets Well-calibrated uncertainty in regression enables strong 
rejection of unreliable predictions or identification of out- 
of-distribution samples 

Herzog et al., 
[113] 2020  

• Bayesian convolutional neural network  
• Bayesian uncertainty 

Magnetic resonance images of 511 patients with 
ischemic stroke 

Bayesian methods improved image prediction, 
uncertainty estimation, and patient-level identification of 
uncertain aggregations. Bayesian network achieved 95% 
classification accuracy. 

Luo et al., [92] 
2020  

• Single deterministic models 4 cardiac magnetic resonance image datasets The recommended method yields the best quantification 
accuracy and optimization results. 

Kwon et al., [126] 
2020  

• Bayesian neural network  
• Decomposition of predictive uncertainty 

into data and model uncertainty 

Ischemic stroke lesion, retinal image datasets Proposed uncertainty quantification technique provides 
deeper understanding of the point predictions 

Selvan et al., 
[127] 2020  

• Bayesian models 1018 thoracic CT images, 68 CT images Proposed model captured richer segmentation variations, 
improving the quality and diversity of samples acquired 

Hoebal et al., 
[181] 2020  

• Ensemble models CT images of lung nodules Useful uncertainty information can be obtained when the 
model is trained using weighted categorical cross entropy 
measure. 

Seebock et al., 
[128] 2020  

• Bayesian U-net model  
• Monte Carlo dropout for epistemic 

uncertainty estimation 

Six datasets of macula-centered spectralis Images were segmented with high accuracy for healthy 
and diseased retinal images. 

Hiasa et al., [129] 
2020  

• Bayesian U-net CNN model  
• Monte-Carlo dropout 

20 fully annotated and 18 partially annotated CT 
images of hip and thigh 

High uncertainty pixels relate to segmentation failure, 
allowing patient-specific muscle analysis. 

Liao et al., [95] 
2020  

• Aleatoric uncertainty  
• Single deterministic methods 

Images from 3157 patients Absolute error of the model is reduced as compared to the 
conventional regression model. 

Xia et al., [130] 
2020  

• Bayesian deep model Pancreas and liver tumour data Multi-view co-training on 2d models produces promising 
results. 

Marc et al., [131] 
2020  

• Bayesian models 1018 lung CT scan images, MR prostate images 
from 68 patients 

Proposed method requires lesser memory compared to 
not using reversible blocks, despite comparable 
segmentation accuracy being obtained. 

Mehrtash et al., 
[182] 2020  

• Model ensembling for calibration of 
model confidence 

Brain, heart, and prostate MRI images Model ensembling is successful in the confidence 
calibration of fully convolutional neural networks trained 
with dice loss. 

Wickstrom et al., 
[132] 2020  

• Monte-Carlo guided backpropagation 912 RGB colonoscopy images of 36 patients Proposed method models input feature uncertainty, 
highlighting its contrast in correct and incorrect 
predictions. 

Carneiro et al., 
[133] 2020  

• Bayesian learning and inference, non- 
Bayesian inference  

• Uncertainty (entropy) and confidence 
calibration 

940 colorectal polyps images Proposed method yields good results pertaining to 
confidence calibration and classification accuracy. 

Li et al., [134] 
2020  

• 3 Monte-Carlo dropout methods  
• Negative log likelihood, expected 

calibration error, Brier score 

37 benign, 48 malignant images of the colon, 900 
training and 379 testing skin images 

Proposed region acquisition method improves model 
calibration compared to full region acquisition, 
irrespective of uncertainty measure. 

Dahal et al., [183] 
2020  

• Ensemble model  
• Monte-Carlo, Horizontal stacked 

ensemble, test time augmentation  
• variance, entropy, mutual information, 

probabilistic atlas 

2 datasets; cardiac ultrasound images from 500 
patients and images taken from 10 030 varying 
echocardiography videos. 

Uncertainty estimation has been proven to automatically 
reject images of poor quality and enhance segmentation 
results. 

Li et al., [96] 2020  • DistDeepSHAP uncertainty assessment 
method for feature importance  

• Single deterministic models 

Autism brain images from 4 datasets; 106, 175, 72, 
and 71 images respectively 

Proposed method has the potential to determine 
biomarkers related to disease in neuroimaging data. 

Quan et al., [135] 
2020  

• Bayesian uncertainty estimates  
• Ensemble of semi-supervised learning to 

correct noisy labels 

Upper gastrointestinal images Proposed method effectively enhances the recognition 
accuracy for authentic and noisy clinical data. 

(continued on next page) 

S. Seoni et al.                                                                                                                                                                                                                                    



Computers in Biology and Medicine 165 (2023) 107441

23

Table A2 (continued ) 

Author, year Features and methods Data information Findings/Results (%) 

Chiou et al., [184] 
2020  

• Ensemble models MRI prostate lesion images from 60 patients 
suspected of having cancer, diffusion-weighted 
MRI images from 80 patients 

Better image representations are obtained in 
segmentation for cancer characterization. 

Wang et al., [136] 
2020  

• Teacher-student Bayesian deep model  
• Monte-Carlo dropout 

100 MRI images of the left atrium, 210 CT scan 
images of the kidney 

Proposed method outperforms existing semi-supervised 
uncertainty estimates on both datasets. 

Ye et al., [97] 
2020  

• Single deterministic methods  
• Lasso bootstrap approach for 

uncertainty estimation 

Brain diffusion magnetic resonance images from 
25 subjects 

Uncertainty measures relate to estimation errors and 
generate reasonable confidence intervals. 

Bian et al., [137] 
2020  

• Bayesian models  
• Uncertainty aware cross-entropy loss, 

uncertainty aware self-training 
approach, uncertainty feature calibra-
tion method 

OCT images from 623 to 537 patients respectively Optimum results were obtained compared to existing 
methods for unsupervised domain adaptation tasks. 

Araujo et al., 
[197] 2020  

• Test-time augmentation About 93 000 retinal images Best result was obtained by the quadratic-weighted 
Cohen’s kappa (between the range of 0.71–0.84). 

Combalia et al., 
[121] 2020 

• Monte-Carlo test-time dropout uncer-
tainty estimation (epistemic and alea-
toric) method 

ISIC 2018 Challenge dataset: 
10 015 dermoscopic images, 7470 skin lesions; 
ISIC 2019 Challenge dataset: 
25331 training images, 8238 test images 

Results demonstrate the successful use of uncertainty 
metrics for the detection of difficult and out-of- 
distribution samples. 

Linmans et al., 
[179] 2020  

• Monte- Carlo dropout  
• Deep ensemble models 

26 whole slide images of breast cancer Multi-head CNN outperforms MC dropout and deep 
ensembles, while the meta-loss function enhances out-of- 
distribution detection. 

Toledo-Cortes 
et al., [122] 
2020  

• Bayesian models EyePACS dataset Proposed model yielded better results than the original 
deep learning model and enables uncertainty analysis. 

Liang et al., [180] 
2020  

• Ensemble methods 4 publicly available datasets: head CT, 
mammography, chest x-ray, histological images 

Proposed approach reduces calibration error largely 
across the different models and datasets 

Stoean et al. 
[157], 2020  

• Monte Carlo dropout Eighty-five EOG tests The novel method integrates uncertainty quantification 
into decision trees using MC dropout, achieving 81.18% 
accuracy in classifying control, presymptomatic, and sick 
classes 

Guo et al. [158], 
2020  

• Monte Carlo dropout The UKBB dataset: 3D cardiac images Incorporating MCD uncertainty enhanced the 
segmentation performance of the model when applied to 
cardiovascular disease image data. 

Guo et al. [188], 
2020  

• Ensemble models Public CXR dataset (15134 images) The method combines label fusion, uncertainty-guided 
continuous kernel cut, and deep learning for accurate 
ventricle segmentation and function measurements in 
cardiac cine MRI. 

Corrado et al. 
[169], 2020  

• Bayesian probability approach Cardiac MRI Quantifying atrial anatomy uncertainty from clinical data 
and its impact on electro-physiology simulation 
predictions 

Tanno et al., [138] 
2021  

• Bayesian inference for uncertainty 288 diffusion-weighted MRI images of the brain 
per subject, MRI images of 26 subjects, 2 healthy 
male MRI images, brain tumor + multiple sclerosis 
images 

Uncertainty measurement enhances prediction, detects 
failures, and provides insightful explanations for model 
performance. 

Cao et al., [185] 
2021  

• Ensemble model 13382 ultrasound images from 107 patients The proposed model obtained a high classification 
accuracy of 99.21%. 

Ghoshal et al. 
[140], 2021  

• Monte-Carlo DropWeights  
• Bayesian Residual UNet 

Segmentation task: Dataset from Kaggle Data 
Science Bowl Challenge 2018 
Classification task: 96115 MRI images of medical 
images 

Monte-Carlo DropWeights and Bayesian Residual UNet 
for uncertainty estimation in medical image 
segmentation and classification. 

Edupuganti et al., 
[141] 2021  

• Monte-Carlo sampling technique 320 2d image slices per patient, from 19 patients A high SURE-MSE value of 0.97 was achieved for 2-fold 
under sampling 

Qin et al., [186] 
2021  

• Brain diffusion MRI images  
• Convolutional neural network  
• Measurement of variance in results 

combined from the training of ensemble 
deep models 

About 1, 000, 000 images Correlations between estimation uncertainty and error 
were considerable, p < 0.001. 

Valliuddin et al., 
al., [142] 2021  

• Bayesian models 1000 polyp images Proposed approach increased predictive performance by 
up to 14%. 

Teng et al., [143] 
2021  

• Bayesian method Alzheimer’s disease: 1574 patients 
Parkinson’s disease: 1093 patients 

Accuracy for Alzheimer’s disease: 91.6% 
Accuracy for Parkinson’s disease: 79.7% 

Zhang et al., [145] 
2021  

• Bayesian method A sample size of active class: 7039 
A sample size of inactive class: 89922 

Average area under the receiver operating characteristic 
curve: 0.734. 

Vranken et al., 
[146] 2021  

• Bayesian method 526656 ECG signals from three different datasets Variational inference with Bayesian decomposition and 
ensemble outperforms other methods. High uncertainty 
in deep ECG classification correlates with lower 
diagnostic agreement. 

Abdar et al., [198] 
2021  

• Monte-Carlo dropout, ensemble Monte- 
Carlo dropout, Deep ensemble uncer-
tainty quantification techniques 

Dataset 1: Kaggle skin dataset (2637 training, 660 
test images). 
Dataset 2: ISIC dataset 2 (7234 training, 1808 test 
images) 

The highest accuracy of about 91% was obtained in the 
second dataset. 

Dong et al. [200], 
2021  

• Test-time augmentation Public CXR dataset (15134) The MUL method combines parallel dropout networks for 
accurate diagnoses and uncertainty estimations. RCoNet 
model outperforms existing methods in all metrics 
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Thiagarajan et al., 
[139] 2022  

• Bayesian-based, transfer learning CNN 
models 

162 slide images of breast cancer Bayesian CNN is advantageous over existing models and 
is useful in explaining the uncertainties in histological 
images. 

Dolezal et al., al., 
[153] 2022  

• Bayesian method 941 images Confident predictions outperform uncertainty-free 
predictions. Thresholding reliably predicts lung 
adenocarcinoma and squamous cell carcinoma out-of- 
distribution data. 

Mensah et al., 
[154] 2022  

• Bayesian capsule network  
• Aleatoric and epistemic uncertainty 

estimation 

Three computer vision datasets and one COVID-19 
chest x-ray image dataset (16952 training, 2000 
validation and 4227 test images) 

Bayesian capsule networks have the potential to 
demonstrate the necessary transparency, credibility, 
reliability and interpretability to gain the confidence of 
industry partners. 

Mazoure et al., 
[155] 2022  

• Ensemble models Skin lesion images from International Skin Imaging 
Collaboration (ISIC) 2018 dataset 

Proposed method serves as the best-performing 
supervised and self-supervised and uncertainty 
estimation technique. 

Singh et al., [187] 
2022  

• Ensemble models  
• Monte-Carlo dropout, test time 

augmentation techniques 

Skin lesion images from International Skin Imaging 
Collaboration (ISIC) 2018 dataset (10 015 
dermoscopic images) 

The results demonstrate the robustness, transparency, 
and confidence of the proposed model. 

Wang et al. [168], 
2022  

• Bayesian probability approach 200 CT images A probabilistic generative approach for combining shape 
and intensity models for cochlear segmentation in CT 
images 

Abdar et al. [161] 
2023  

• Monte-Carlo dropout CT scan and X-ray images UncertaintyFuseNet integrates EMCD for accurate 
classification of COVID-19 CT scan and X-ray images, 
achieving high accuracies of 99.08% and 96.35%. 

Da Silvia et al. 
[159], 2023  

• Monte-Carlo dropout ECG data The Monte Carlo method was used to identify the primary 
source of ECG measurement uncertainty, improving the 
understanding of the metrological behavior of ECG 
measurements. 

Nasir et al. [160] 
2023  

• Monte-Carlo dropout Real-world electronic health record (EHR) data A model for early prediction of type 2 diabetes mellitus 
utilized real-world EHR data and incorporated Monte 
Carlo dropout for uncertainty estimation. The model 
showed a 1.6% accuracy improvement. 

MacDonald et al. 
[162], 2023  

• Monte-Carlo dropout Transcriptomic data: three RNA-seq datasets Three Bayesian DL models were compared for cancer 
prediction. Bayesian DL has the potential to improve 
performance, transparency, and safety by effectively 
handling uncertainty in real-world applications. 

Farooq et al. 
[163], 2023  

• Monte-Carlo 2 database BUSI and UDIAT datasets A residual-attention-based uncertainty-guided mean 
teacher framework outperformed existing methods in 
breast ultrasound mass segmentation 

Buddenkotte et al. 
[189], 2023  

• Ensemble model (i) CT images of high-grade serous ovarian cancer 
patients, 
(ii) a public dataset of CT images of kidney tumors 

A scalable and intuitive framework for UQ in 3D medical 
image segmentation of cancers (ovarian and kidney) 

Abdar et al. [166], 
2023  

• Bayesian model Cardiac Syndrome X (CSX) dataset from Tehran’s 
Heart Center 

A binarized multi-gate mixture of Bayesian experts for 
cardiac syndrome X Diagnosis 

Chen et al. [171], 
2023  

• Bayesian inference Brain MRI (inter-patients 260 T1 and 451 T1 from 
two different datasets), and phantom images 

An innovative transformer for unsupervised medical 
image registration 

Zakeri et al. [165], 
2023  

• Bayesian inference Cine cardiac magnetic resonance: UK Biobank 
(UKB) LAX cine CMR images 

Learning-based deformable registration for realistic 
cardiac MR sequence generation from a single frame 

Dolezal et al. 
[173], 2023  

• Bayesian inference Histologic images Digital Histopathology with Real-Time Whole-Slide 
Visualization 

Abdullah et al. 
[172], 2023  

• Bayesian deep learning model  
• Monte Carlo Dropout out 

Monte Carlo dropout Histological images and ultrasound images of breast 
cancers 

Abdar et al. [164], 
2023  

• Bayesian approximation Retinal OCT, lung CT, and chest X-ray Classification in Retinal OCT, lung CT, and chest X-ray 

Jahmunah et al., 
[156] 2023  

• Bayesian model 12 lead ECG signals from 148 MI patients and 52 
healthy subjects (multiclass data) 

The proposed model reliably presents diagnostic 
information, making it suitable for healthcare 
applications.  
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