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Abstract
Summary: DCAlign is a new alignment method able to cope with the conservation and the co-evolution signals that characterize the columns of
multiple sequence alignments of homologous sequences. However, the pre-processing steps required to align a candidate sequence are
computationally demanding. We show in v1.0 how to dramatically reduce the overall computing time by including an empirical prior over an
informative set of variables mirroring the presence of insertions and deletions.

Availability and implementation: DCAlign v1.0 is implemented in Julia and it is fully available at https://github.com/infernet-h2020/DCAlign.

1 Introduction

A common task in Bioinformatics is to cast evolutionary-related
biological sequences into a multiple sequence alignment (MSA).
The objective of this task is to identify and align conserved
regions of the sequences by maximizing the similarity among the
columns of the MSA. State-of-the-art alignment methods, like
HMMER for proteins (Eddy 2011) and Infernal (Nawrocki
and Eddy 2013) for RNAs, use hand-curated MSAs of small
representative subsets of sequences to be aligned (the so-called
seed alignments). Whereas for proteins, HMMER builds the
Hidden Markov Model (HMM) by using only the seed align-
ment, Infernal needs also secondary structure information to
generate a Covariance Model (CM). In both cases, HMM (for
proteins) or CM (for RNAs) are used to align query sequences.
However, homologous sequences show signals of correlated
mutations (epistasis) undetected by profile models.

Conservation and co-evolution signals are at the basis of
Direct Coupling Analysis (DCA)-based statistical models
(Morcos et al. 2011, Cocco et al. 2018). Recently, these models
have been used to align biological sequences (Muntoni et al.
2020) and perform remote homology search (Wilburn and Eddy
2020) by alignment of the sequences to a seed model, or by pair-
wise alignments of seed models (Talibart and Coste 2021). The
method in Muntoni et al. (2020), viz. DCAlign, returns the or-
dered sub-sequence of a query unaligned sequence which maxi-
mizes an objective function related to the DCA model of the
seed. In this latter case, standard DCA models fail to adequately
describe the statistics of insertions and gaps. To alleviate this lim-
itation, we added to the objective function gap and insertion
penalties learned from the seed alignment. While for the inser-
tions, the computational complexity is negligible, inferring gap

penalties is a time-consuming problem [see (Muntoni et al.
2020) and Supplementary text]. Here, we treat penalties in terms
of informed priors computed from the seed sequences. The
parameters for gaps and insertions, extracted from the seed
alignment, are determined in an unsupervised manner. Finally,
to further speed up the learning of the seed-based objective func-
tion, we obtain the parameters of the DCA model using pseudo-
likelihood maximization (Ekeberg et al. 2013) instead of
Boltzmann Machine Learning (Figliuzzi et al. 2018, Muntoni
et al. 2021). DCAlign v1.0, is a computational pipeline that
allows for the computation of the seed-model parameters in a
few minutes, contrary to its original implementation which re-
quired at least a day of computation in the best scenario. The
alignment problem is then solved approximately through a
message-passing algorithm (see Supplementary text).

2 Methods

Our alignment algorithm estimates the optimal ordered
sub-sequence compatible with a DCA model and empirical
knowledge of insertions and gaps of the seed. Let A be an un-
aligned sequence of length N, and S be its aligned counterpart of
length L (which is the length of the seed MSA). We only con-
sider the L � N case. At each i ¼ 1; . . . ;L, we define a Boolean
variable xi 2 f0;1g and a pointer ni 2 f0; . . . ;N þ 1g. The var-
iable xi indicates whether the position i is a gap ‘-’ (xi ¼ 0) or a
match, i.e. a symbol in A. When i is a match, ni identifies where
Si matches A, i.e. Si ¼ Ani ; instead, for xi ¼ 0, the value of ni is
used for keeping track of the last matched symbol in A. Let us
define a pointer-difference variable as Dni;j ¼ nj � ni for i ¼
1; . . . ;L and j > i. Each auxiliary variable Dni;j quantifies how
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many symbols of the unaligned sequence A are present between
two i, j positions of the aligned counterpart S. If a configuration
of the n is given, the full set of the pointer differences reveal the
presence of insertions and gaps between any columns i and j of
the alignment (see Supplementary text).

2.1 Seed modeling

Together with a DCA model of the aligned seed (see Fig. 1,
central panel), for every site i (in red), we compute the Dni;j

for j > i for all the seed sequences, and we learn an empirical
probability Pi;jðDni;jÞ as shown in the bottom central panel of
Fig. 1 (this procedure is computationally very fast). The color
gradient is associated with the value of j, the lighter the color,
the larger is j. In Fig. 1 (bottom central panel), we consider as
an example three sequences differing in the nature of the
Dni;iþ1.

2.2 Alignment procedure

We can express the alignment problem in terms of the follow-

ing optimization problem: x;n ¼ argmaxx;n
e�bHðx ;nÞ

ZðbÞ
Q

i;j Pb
ijðnÞ,

where H is the DCA model describing the seed (see Fig. 1, top
central panel), Z is a normalization factor, and b is a free pa-
rameter whose relevance will be discussed below. The maxi-
mization only runs over the feasible assignment of the
variables, i.e. we impose that niþ1 > ni for every column i.
The informed prior will guide the optimization process to-
ward solutions that, among those that maximize the
Boltzmann distribution associated with H, reproduce the sta-
tistics of the seed pointer differences. Unfortunately, the prob-
lem thus stated is unfeasible as the normalization function Z
cannot be efficiently computed. Similarly to the first
DCAlign version, we use an approximate message-passing
algorithm coupled with an annealing scheme over b (i.e. we
iteratively increase b) to get the best alignment for the query
sequence A (see Supplementary text and Supplementary
Fig. S2).

3 Results

We can classify the type of tests performed to assess the per-
formance of our computational strategy into three different
categories:

• Comparison with the previous implementation: As in
Muntoni et al. (2020), we compared our results against
HMMER, Infernal (the last algorithm only for RNA
sequences) on four Pfam (PF00035, PF00677, PF00684,
PF00763), and Rfam (RF00059, RF00162, RF00167,
RF01734) families. A detailed description of the dataset is
contained in Supplementary Tables S2 and S3. We utilized
the following comparison metrics: (i) the positive predic-
tive value (PPV) of the DCA-based contact prediction
(Morcos et al. 2011, Cocco et al. 2018), (ii) the proximity
measures between the generated and the seed MSAs. As
far as the contact map prediction is concerned, we observe
either a mild improvement or a similar performance. With
respect to the proximity measures, we notice a negligible
increase in the average distance between seed sequences
and generated alignments (see Supplementary Figs S3–S6
and Supplementary Tables S7–S10).

• Leave-one-out experiment: As a stress test for DCAlign
v1.0 we also compared our results to 25 ground-truth
MSAs either extracted from benchmark sets (Bahr et al.
2001, Thompson et al. 2005, Freyhult et al. 2007) or built
from structural alignments (Akdel et al., 2020) (see
Supplementary Tables S2, S4, and S5). The numerical
experiments consist of iteratively excluding one of the
sequences of the reference alignment and training HMM,
CM, or DCAlign using the remaining sequences. The ex-
cluded sequence is then aligned and quantitatively com-
pared to the ground truth (viz. the structural alignment, or
the benchmark sets). The emerging picture depends on the
data type considered: for benchmark sets all computa-
tional strategies seem to perform reasonably well. In par-
ticular, HMMER (resp. Infernal) and our algorithm
provide similar outcomes for protein (resp. RNA) domains
(see Supplementary Figs S7–S10 and Supplementary
Tables S11 and S12). However, when we consider struc-
tural alignments as our reference ground truth, our
method significantly outperforms HMMER as shown in
Supplementary Figs S11 and S12 and Supplementary
Tables S13 and S14.

• Divergent sequence alignment: Finally, to assess our algo-
rithm’s remote homology detection performance, we con-
sidered three RNA benchmark sets (the seed of Rfam

Figure 1. Schematic representation of the DCAlign v1.0 pipeline. From a (given) hand-curated alignment (the seed, shown in the left panel), our algorithm

learns (i) a DCA model H exploiting the one-site and two-site statistics of the seed (upper central box), and (ii) the gap and insertion penalties by means of

the empirical distribution of the pointer differences PðDnij Þ for i ¼ 1; . . . ; L, and j > i (bottom central box). The three sequences represent the three

scenarios that can occur between position i and j ¼ i þ 1: some insertion can appear, no insertion and no gap is present, or i þ 1 contain a gap, so

Dni ;iþ1 ¼ 0. For j > i þ 1 (gradient shaded region on the left end of the sequence), both insertions and matched symbols contribute to the computation of

the Dni ;j , while gaps do not carry any contribution (see Supplementary Fig. S1 for a more detailed example). The alignment problem is then mapped into a

constrained optimization problem over the ðx;nÞ variables. The constraints on the variables and an example of alignment are shown in the right panel.
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RF00162 (Kalvari et al. 2020), Twister type P1 (Roth et al.
2014), tRNA (Sprinzl et al. 1998), see Supplementary Table
S6) from (Wilburn and Eddy 2020). Results suggest that
Infernal is the best-performing method on two of the three
datasets, while our method achieves the best alignment for
the tRNA case. Note that Infernal is trained using secondary
structure information that our algorithm does not use.
All results are presented in Supplementary Fig. S13 and
Supplementary Table S15.

From a computational efficiency point of view, the time
needed to train the algorithm is significantly smaller than both
our old implementation and CM-Infernal (see Supplementary
text and Supplementary Fig. S14). However, the time necessary
to align a sequence is equivalent compared to DCAlign, and
probably to other computational strategies taking into account
epistasis (Wilburn and Eddy 2020, Talibart and Coste 2021).

4 Conclusion

DCAlign v1.0 is a new implementation of the DCA-based
alignment technique, DCAlign, which conversely to the first
implementation, allows for a fast parametrization of the seed
alignment. The new modeling significantly drops the pre-
processing time and guarantees a qualitatively equivalent
alignment of a set of target sequences.
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