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First steps towards micro-benchmarking the
Lava-Loihi neuromorphic ecosystem

Walter Gallego Gomez, Andrea Pignata, Riccardo Pignari, Vittorio Fra, Enrico Macii and Gianvito Urgese
Politecnico di Torino, 10138, Torino (TO), Italy. Email: name.surname@polito.it

Abstract—Neuromorphic computing has proved to be capa-
ble of remarkable gains in energy efficiency over traditional
architectures. With the continuous development of new software
and hardware tools, benchmarking plays a crucial role in the
measurement of technological advancement in the field. Over the
last few years, some benchmarking efforts for neuromorphic com-
puting have been proposed focusing on specific tasks like noise
suppression or gesture recognition, while micro-benchmarking
approaches have not been widely investigated. In this paper,
we present our proposal to fill this gap: the Lava micro-
benchmarking suite, a set of tests specifically designed for the
Lava neuromorphic framework and the Loihi 2 neuromorphic
architecture. Tests are divided into two broad categories: those
aimed at evaluating Lava’s message-passing implementation, that
are partially inspired by MPI benchmarks, and those specifically
designed to test the Loihi 2 architecture and the Lava compilation
process. The suite is still a work in progress that needs to be
extended to cover more functionalities of Lava and Loihi 2, but in
its current state is functional and includes tests covering the three
main hardware backends of interest: host CPU, Loihi 2 embedded
CPU and Loihi 2 neuron cores. We present the general software
design of the suite, the methods we have used to implement
the tests and collect measurements and some examples of results
obtained from running the tests. We expect that the suite can help
Lava / Loihi 2 developers and users with meaningful insights
that can be used to improve the state of this neuromorphic
ecosystem.

Index Terms—Neuromorphic, Lava, Loihi, Benchmarking

I. INTRODUCTION

Neuromorphic computing straddles the boundary between
Computer Science and Neuroscience, representing an alter-
native paradigm for computation based on the primitives
implemented by biological nervous systems [1]. Spiking neural
networks (SNNs) are the artificial counterpart of these lat-
ter [2], where information is processed by artificial neurons
and transmitted through artificial synapses emulating the bio-
logical action potentials through discrete events referred to as
spikes. As a consequence, neuromorphic computing inherently
differs from the classical von Neumann architectures, for
both structures and functions [3]. Furthermore, thanks to
the sparse nature of the event-based SNNs, it can unlock
orders of magnitude gains in energy efficiency over traditional
architectures [4], which makes it an appealing candidate for
on-edge applications [5], [6].

From the hardware perspective, neuromorphic computing
implies and requires architectures and design principles di-
rectly inspired by the brain [7], resulting in huge efforts
that have so far produced different device implementations
and dedicated hardware [8]–[10]. Among them, a prominent

representative is the Loihi chip by Intel, first presented in
2018 [11], which has already reached its second genera-
tion [12]. Together with Loihi 2, Intel presented the open-
source framework Lava [13], [14], that allows users to write
neuro-inspired applications and map them to both traditional
and neuromorphic hardware.

With such advancements and the ongoing development of
new technologies, benchmarking is indispensable as a tool for
establishing a common goal and clear methodology to measure
progress. Therefore, expanding the set of tools available for
benchmarking in the neuromorphic computing domain is of
great importance. Given that both the algorithmic and the
system components are still under development [15], there is
an opportunity for cross-stack advancement, by utilizing dual
track benchmarking: 1) freezing the task and dataset, the algo-
rithm is optimized; 2) freezing the data and the algorithm, the
neuromorphic system is optimized. As algorithms mature, they
can be incorporated into the system benchmark as reference
challenges. As system innovations arise, they can offer new
tools for algorithms to use [16]. In line with these ideas, Intel
has recently issued the ”Intel Neuromorphic Deep Noise Sup-
pression Challenge” [17]. Other workloads for benchmarking
neuromorphic systems were also discussed in [18], including
spoken keywords and MNIST digits classification, Path Opti-
mization in graphs and Constraint Satisfaction Problems (CSP)
such as Latin Square and Map Coloring. Implementation of
benchmarks for neuromorphic hardware includes: benchmark
for spatio-temporal tactile pattern recognition and comparison
of performance between Loihi and traditional hardware [6];
benchmarking using keyword spotting in Loihi and traditional
hardware [19]; comparison of Loihi and SpiNNaker 2 per-
formance for keyword spotting and adaptive robotic control
tasks [20].

These types of benchmarks are appropriate for the specific
areas they cover, but we believe that the development of a more
general benchmarking approach, that can be applied to diverse
areas is also required. Micro-benchmarking has been used as
an alternative to application benchmarking and has proved
to be useful for evaluating the performance of the Message
Passing Interface (MPI) standard [21], [22] and to evaluate
the performance of several architectures like GPUs [23], high-
speed cluster interconnects [24], memories [25] and cloud
applications [26]. Micro-benchmarking has also been used to
evaluate the SpiNNaker neuromorphic architecture [27], [28].

In this paper we present our work in progress: Lava Micro-
Benchmarking Suite, a set of tests that can be used to assess



the performance of Lava and Loihi 2. The proposed suite is de-
livered as an extension to Lava and supports a configurable set
of parameters for each test category. The tests can be divided
into two main groups 1) tests targeting the communication per-
formance of Lava processes running on traditional hardware
(host CPU and embedded Loihi 2 CPU); 2) tests targeting the
communication performance and hardware utilization when
deploying a network of neurons in Loihi 2 neuron cores. We
expect that the results and insights obtained by running the
suite will help in the improvement of the algorithmic and
system layers of neuromorphic computing.

II. METHODS

In the Lava Micro-Benchmarking Suite, we propose a set
of single and well-defined common micro-operations that
represent the building blocks of more complex tasks. This can
help in the characterization of Intel’s neuromorphic ecosystem
at different levels: 1) Lava as a message-passing framework;
2) Lava compilation process to map networks to Loihi 2
hardware; 3) Loihi 2 hardware architecture in terms of commu-
nication between Neuron Cores (NCs); 4) hardware backends
when executing Lava processes; 5) the network interconnec-
tion between different hardware backends.

Micro-benchmarking can be an excellent complement to the
high-level benchmarking proposed in [6], [16]–[20]. High-
level benchmarking can inform when a specific task or al-
gorithm is not performing as well as expected in a given
system, but it does not always give information about the
specific aspect of the system that needs improvement. The
results from running micro-benchmarks can fill this gap by
providing the performance of individual components of the
system, for example, the latency on the transmission of spikes
as a function of the number of neurons.

Neuromorphic computing inherently implies sparse and
asynchronous communication between elemental units de-
signed to implement neuro-inspired functionalities, and the
resulting gain in the energy-delay product when coupled with
dedicated hardware [6] emphasizes the tacit role of assessing
the communication performance within the system. Especially
in view of on-edge and real-time applications, information
passing between nodes has indeed to be investigated in order
to evaluate, and whenever possible to reduce, the latency of the
system in local communication. A way to do so is to leverage
micro-operations to measure elemental contributions to higher-
level activities involving data transmission.

Given that the Lava framework is based on the Com-
municating Sequential Process paradigm and uses channel-
based message passing between asynchronous processes [14],
it makes sense to take inspiration from micro-benchmarking
implementations for the Message Passing Interface (MPI)
standard. Specifically, we use as references the Intel MPI
Benchmarks (IMB) [21] and the Ohio State University Micro-
Benchmarks (OSU-MB) [22]. Even if Lava is not based on
MPI, and it has features specific for neuromorphic execution,
the concepts from MPI benchmarks to test the communication

performance between processes sharing data through messages
are still useful.

For the characterization of Loihi 2 hardware, we leverage
the profiler tools already available in Lava, which allows
us to obtain different execution metrics like the duration of
each synchronization phase at each timestep. We focus our
attention on the duration of the spiking phase and the hardware
utilization ratio when deploying spiking neural networks of
different sizes and topologies.

A. Intel’s neuromorphic ecosystem

1) Lava framework: Lava is the open-source Python soft-
ware framework designed by Intel to deploy neuro-inspired
applications on heterogeneous hardware. We give an overview
of the key features of Lava relevant to our suite:

a) Processes and models: Processes in Lava are abstract
elements and only define their interface in terms of ports and
internal variables. The corresponding concrete implementation
is defined via Process Models. A single process can be defined
by multiple models, each one with different characteristics and
targeting different backends. Processes can be interconnected
to create an application, and the framework will choose
the appropriate model for each process, depending on the
hardware configurations and preferences set by the user.

b) Types of models: As Lava supports multiple types
of hardware backends, multiple types of models are also
required. Three types of models are currently supported:
PyLoihiProcessModel for Python models running on a
host CPU, CLoihiProcessModel for C models running on a
Loihi 2 embedded Lakemont (LMT) processor and NcModel

for models running on Loihi 2 NCs. The user of the framework
needs to define all the models corresponding to the hardware
they aim to support.

c) Compiler: Process models need to be compiled so
that they can be executed in the corresponding hardware
backend. As different backends can have different compilation
procedures, Lava can delegate the compilation job to other
libraries such as gcc for C models, or nxcore for NC models.

d) Processes interconnection: The interconnection be-
tween processes is done through Channels, formed by connect-
ing ports from different processes. A working interconnection
between processes is guaranteed even if they run on different
backends, as long as this type of connection is supported. Cur-
rently, Lava supports the following connections: CPU–CPU,
CPU–LMT, LMT–NC and NC–NC.

e) Types of communication: Ports can be divided into
two groups, that allow for two different types of communica-
tion:

• Point-to-Point using InPorts and OutPorts: An In-
put port of a process can be connected to the output
port of another to form a communication channel. With
this channel, the two processes can communicate via
message-passing in a point-to-point fashion in which
both processes are explicitly involved in the messages
exchange, using the send() and recv() APIs.



• One-sided using RefPorts and VarPorts: Connecting
a Reference port to a Variable port, a process can directly
access an internal variable of another process, using the
read() and write() APIs. As only the accessor process
is explicitly involved, this communication is known as
one-sided.

f) Data representation: The data to be sent can be repre-
sented as either dense or sparse. In the dense representation,
the full array is transmitted as it is. In the sparse representation,
only some elements of the array (usually non-zero ones) are
sent, thus requiring two arrays: one for the data and another
for the corresponding indices.

g) Synchronization protocol: Processes within a sys-
tem or network operate in parallel and communicate asyn-
chronously with each other through the exchange of message
tokens. However, many use cases require synchronization
among processes. For this purpose, Lava uses a synchroniza-
tion protocol with phases that must be executed by all pro-
cesses at each timestep before advancing to the next one. Lava
defines the LoihiProtocol, which adheres to the phases
of execution of Loihi 2. The main phase in this protocol is
Spiking, in which neuron cores perform the actual computation
and may generate a spike if firing conditions are met. The
spiking phase is always required, unlike the other phases of
this protocol (Pre management, Learning, Post management
and Host).

For processes running on a host CPU, Lava also supports
the AsyncProtocol, which does not define any phases for
synchronization. With this protocol processes can run at vary-
ing speeds and message passing is possible at any time.

2) Loihi 2 architecture: The Loihi 2 chip consists of 6
embedded microprocessor cores (Lakemont x86) and 128 fully
asynchronous neuron cores (NCs) connected by a network-on-
chip. The NCs are optimized for neuromorphic workloads by
implementing a group of spiking neurons and including all
synapses connected to such neurons. All the communication
between NCs is in the form of spike messages. Microproces-
sor cores are optimized for spike-based communication and
execute standard C code to assist with data I/O as well as
network configuration, management and monitoring. Some of
the new functionalities added in this second version of the
Loihi chip are the possibility of implementing custom neuron
models using microcode instructions (assembly), the option to
generate and transmit graded spikes, and support for three-
factor learning rules. A single Loihi 2 chip supports up to 1
million neurons and 120 million synapses [13].

3) Resources: We use Intel’s vLab server to run all the
implemented tests. This server acts as our host CPU, and
grants us access to neuromorphic boards, including Intel’s
Oheo Gulch, that we use for tests requiring a Loihi 2 backend.
This board houses a single-socketed Loihi 2 chip, instrumented
for characterization and debug [13].

We use Python (version 3.10.4) as our main programming
language and the open-source Lava framework (version 0.6.0)
which is available for download in the dedicated GitHub

repository1.

B. Micro-benchmarking suite architecture

The suite is developed in Python because it makes the
interaction with Lava straightforward, it has excellent mod-
ules for data management and visualization (NumPy, Pandas,
Matplotlib), and it supports object-oriented programming. We
follow Lava’s development guidelines [14] so that the micro-
benchmarking suite can eventually be integrated into Lava’s
official repository. These guidelines include the use of PEP8
style, docstrings in NumPy format, the development of unit
tests and the use of linting and type hinting.

The micro-benchmarking suite consists of two main com-
ponents: 1) the benchmarking program that executes the tests
requested by the user; 2) a tool for analyzing the obtained data
and generating plots as requested by the user.

The benchmarking program follows a modular approach
implemented using object-oriented programming. Basic com-
ponents are implemented as classes which are then extended to
fit the particularities of each test, through inheritance. When
possible, the same basic components are reused in different
tests.

To obtain statistically meaningful results, each test can be
run multiple times. The user can choose how many repetitions
to perform. For each category of test, there is test maker class,
which executes the required test multiple times, according
to the different combinations of parameters and repetitions
requested. The maker then collects all of the obtained measure-
ments and saves this (possibly multidimensional) data using
basic Python structures (lists and dictionaries). This raw data
is optionally written to disk.

The raw data is given to the data analyzer and plotter that
transforms it into a Pandas DataFrame for easier manipulation,
and process it via statistical methods to extract useful informa-
tion from the measurements. This information, together with
interactive plots, is used to generate an HTML report of the
test execution.

C. MPI-inspired tests

Table I summarizes the proposed MPI-inspired tests, their
configuration parameters and available variants. These variants
are used to cover specific features of the Lava framework:

• Data representation in ports that can either be dense or
sparse.

• Synchronization protocol that can either be the
LoihiProtocol or the AsyncProtocol. This latter is
not supported by LMT processes, so it is only applicable
for the CPU–CPU connection.

• Communication type that can either be point-to-point or
one-sided.

1) Single transfer tests: Single transfer tests are inspired
by the single transfer benchmarks from the IMB [21] and
the Point-to-Point tests from the OSU-MB [22]. They involve

1https://github.com/lava-nc/lava/
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Fig. 1. (a) PingPing. (b) Unidirectional. (c) Periodic chain with three processes.

TABLE I
MPI-INSPIRED TESTS

Category Tests Parameters Connection Variants

Single
transfer

- PingPong
- PingPing Message size

CPU–CPU

CPU–LMT*

Dense or
Sparse

Loihi or
Async+

P2P or
One-sided

Multiple
transfer

- Unidirectional
- Bidirectional

Message Size
No. of messages

Parallel
single
transfer

- Par. PingPing
- Par. PingPong
- Periodic chain
- Bidirectional

periodic chain

Message size
No. of processes

Parallel
multiple
transfer

- Parallel
unidirectional

Message Size
No. of messages
No. of processes

Collective
transfer

- One to many
- Many to one

Message size
No. of processes

*Only one process can be configured to run on the LMT processor.
+The Asynchronous protocol is only supported for CPU-CPU communication.

two active processes, known as Player A and Player B that
communicate only with each other, using single messages.

The exchanged messages are arrays of 32-bit integers. The
user can configure the size of the array (number of integers to
send) and provide a list of sizes, in which case the test will
be run for each provided size.

a) PingPong test: Player A sends a single message
(Ping) to Player B. Player B waits for the message and replies
with a message (Pong) of the same size. Time measurement
is performed by Player A, from the moment the Ping is sent
to the moment the Pong is received.

b) PingPing test: Player A sends a single message
(Ping 1) to Player B. Simultaneously, Player B sends a single
message (Ping 2) to Player A. Time measurement is performed
by Player A from the moment Ping 1 is sent to the moment
Ping 2 is received. (Fig. 1a).

2) Multiple transfer tests: Multiple transfer tests are in-
spired by the OSU-MB Point-to-Point multiple transfer bench-
marks [22]. Two active processes are involved in the exchange
of information. One or both processes sends multiple mes-
sages, sequentially.

Besides the message size, the user can also configure the
size of the message stack to be transmitted, i.e., the number
of messages that are sent one after the other, in a single run of

the test. To execute the test with multiple configurations, the
user can provide a list of integer pairs, each pair indicating
the size of the messages and the number of messages.

a) Unidirectional: Player A sends a stack of messages,
all of the same size, one after the other. Player B receives
all of these messages, sequentially. Once all the messages are
received, Player B will reply with one single message, of the
same size. Time measurement is performed by Player A from
the moment the first message in the stack is sent to the moment
the reply is received. This test allows measuring the sustained
data rate that can be achieved between two single processes
(Fig. 1b).

b) Bidirectional: Both Player A and Player B send a
stack of messages, all of the same size, sequentially. Each
player receives the messages from the other, to then reply
with one single message. Time measurement is performed by
Player A from the moment the first message in the stack is
sent to the moment the reply is received. With this test, we
can measure the maximum sustainable aggregate bandwidth
between two processes.

3) Parallel transfer tests: These tests are inspired by the
Parallel Transfer benchmarks from the IMB [21] combined
with multi-pair tests from the OSU-MB [22]. In this category,
more than two processes are active at the same time, per-
forming data transfer operations, in parallel. A configuration
parameter controls the number of processes.

a) Parallel PingPing, PingPong and Unidirectional tests:
The processes are divided into two ranks: rank A and rank B.
Each process in rank A communicates with its counterpart in
rank B. Each pair of processes performs the requested test
(PingPing, PingPong or Unidirectional) independently and in
parallel. Time measurement is performed independently for
each pair.

b) Periodic chain: The processes are ordered to form a
periodic communication chain. Each process sends a message
to its neighbor to the right and receives a message from its
neighbor to the left. Time measurement is performed inside
each process individually from the instant it sends its message
to the right to the instant it receives the message from the left
(Fig. 1c).

c) Bidirectional periodic chain: The processes are or-
dered to form a periodic communication chain. Each process
first sends a message to both of its neighbors and then waits for
a message from both of them. Time measurement is performed



TABLE II
LOIHI 2 SPECIFIC TESTS

Category Tests Connection Parameters Variants

NC
SNNs

- Fully
connected NC–NC

No. of layers
No. of neurons
Active neurons

Hcoded LIF
Ucoded LIF
Ucoded SDN

- Convolutional
- One-to-One NC–NC

No. of layers
No. of neurons
kernel size

SNNs
with
LMT

LMT as spiker LMT–NC–NC
No. of layers
No. of neurons Hcoded LIFLMT as receiver NC–NC–LMT

LMT as adapter CPU–LMT–NC

inside each process individually from the instant it sends its
first message to the instant it receives the second message.

4) Collective transfer tests: In this category of tests, we
make use of Lava’s ability to split or merge channels when
connecting processes in one-to-many or many-to-one config-
urations. The tests are inspired by the Collective Benchmarks
from the IMB [21] and the OSU-MB [22].

a) One-to-many: One process, known as Player A sends
a single message to n processes, which are known as
{Player B1, . . . , Player Bn}. Player A does not need to send
multiple messages: Lava allows the connection of one output
port to multiple input ports. Each of the receiving processes
replies with a single message to Player A. Time is measured
by Player A from the instant the message is sent to the instant
the last reply is received.

b) Many-to-one: n sender processes, known as
{Player A1, . . . , Player An}, send a message to a receiver
process, known as Player B. Player B receives the data in a
single input port, and the incoming messages are combined
by Lava using a point-wise addition. After receiving the data,
Player B responds with a single message to Player A1, which
performs the time measurement, from the moment it sends
its message to the moment it receives the reply.

D. Loihi 2 tests

To evaluate the performance of the Loihi 2 hardware, we
designed some specific tests, summarized in Table II. The tests
cover Loihi 2 neuron cores (NCs) and the Loihi 2 embedded
Lakemont (LMT) processor. For these tests, we use Spiking
Neural Networks (SNNs) of different topologies, sizes, and
neuron models.

The Lava framework offers a set of tools known as Profilers
that allow users to get performance metrics on the execution of
a network configured on Lava and ran on a supported backend,
like a Loihi 2 chip. The available data include execution time,
resources and memory utilization, spiking activity and energy
consumption. Measurements are performed by the Loihi 2
hardware itself, with little to no overhead, and the results are
transmitted to the host PC by Lava, where we can access them
from our suite.

We focused our attention on the execution time metric. In
the Loihi synchronization protocol, execution is divided in
timesteps. At each timestep, the enabled phases are executed
one after the other, and the execution advances only when all
processes in the network have finished the current phase. The
duration of each timestep can be different and depends on the
enabled phases for that timestep and on the network activity.
We aim to verify how processes computation and spiking
activity impact the duration of a timestep, so we measure the
spiking phase, where computation is performed and spikes
are transmitted. We have designed the tests so that we can
easily understand, for each timestep, which neurons (if any)
are generating spikes.

To obtain meaningful results, the parameters of the network
are configured so that the number of timesteps with spikes is
roughly the same as the number of timesteps without spikes.
We then separate these two groups and calculate their average
timestep duration:

• The timesteps without spikes are useful to understand
how the execution performed by each node in the network
impacts the timestep duration.

• The timesteps with spikes are useful to evaluate commu-
nication performance between nodes.

1) SNNs running on Loihi 2 neuron cores: We propose a set
of tests where all the nodes in the network are run in Loihi 2
NCs. For this category of tests, besides execution time, we also
analyze the allocation of resources. The Loihi 2 platform offers
a maximum number of NCs, a maximum number of neurons
per NC, and a maximum amount of memory per NC. As the
networks used for our benchmarks can be tuned in the number
of neurons and layers, we can increase these values to the
limit allowed by the architecture and evaluate which resource
is depleted first. We can also analyze how our networks are
mapped by the compiler to the Loihi 2 hardware and evaluate
if the result is optimal in terms of resource utilization.

As the neuron model used in each NC can impact the
execution time and resource utilization, the tests can be
configured to use any of the models present in Lava. Currently,
Lava offers two implementations of the Leaky Integrate and
Fire (LIF) neuron, one in hardware, known as hard-coded,
and one in software, known as micro-coded, and one micro-
coded implementation of the Sigma-Delta Neuron (SDN).
Executing the same tests with different models allows for a
direct comparison between them.

The input to the network is generated by a Lava Spiker
process, which outputs spikes at regular intervals and is
modeled to run on one NC. The delay between the spikes is
chosen so that a spike is propagated to the last layer before a
new one is generated. The interconnection weights and neuron
parameters are chosen so that each neuron does not generate
an output spike until it receives a spike in all of its inputs.
This guarantees that the spikes generated by the Spiker process
travel from one layer to the next and reach the last layer.

a) Fully connected SNN: In this topology, all neurons
from one layer are connected to all the neurons of the next
layer, using a Lava Dense process for the interconnections.
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Fig. 2. (a) Fully connected network with 3 layers and 3 neurons per layer.
(b) One-to-one network with 3 layers and 3 neurons per layer.

All layers have the same number of neurons. The user can
personalize the number of layers and neurons per layer. An
example with LIF neurons is represented in Fig. 2a.

With this configuration, we aim to evaluate the performance
of the Loihi 2 hardware when the number of connections
among neurons is high, so that the available synaptic memory
(which is required for the connections) gets depleted before
the available number of neurons inside each NC.

The suite allows reducing the percentage of active neurons
in each layer, which by default is set to 100%, by setting to
zero the corresponding weights of the Dense process. Running
the tests with different percentages of active neurons is useful
to investigate how the spiking activity affects communication
performance.

b) Convolutional SNN: In this topology, the connection
between layers is performed using a Lava convolutional pro-
cess. This process allows us to configure the connection using
a multi-dimensional matrix known as filter that contains the
weights used during the convolutional operation.

With this configuration, the user can analyze the perfor-
mance of the convolutional connection for different network
and filter sizes.

c) One-to-One SNN: This test is a special case of the
convolutional, using as filter a 1x1 matrix. The resulting
topology is depicted in Fig 2b, where the i-th neuron from
a layer is only connected to the i-th neuron of the next layer.
With this configuration we reduce the number of connections
between neurons, lowering the memory occupation required
by each neuron. This allows us to verify the behavior of
the platform when mapping the maximum allowed number
of neurons in each NC.

2) SNNs with LMT: With this category, the aim is to
evaluate the LMT processor when it makes part of an SNN.
Code execution in the LMT, communication between LMT
and NCs and between LMT and a host CPU are considered.
Since the evaluation of resource utilization or neuron models
running on the NCs is not performed here, for these tests we
maintain a fixed topology and model by employing a fully
connected network of LIFs.

a) LMT as Spiker: The LMT is configured to run C
code that generates spikes periodically, and those spikes are
propagated to the rest of the network. The performance can
be compared to that of the network mapped only to NCs, to
understand if the execution of the C code and the communica-

tion between the LMT and the first layer of neurons represent
a bottleneck for the network.

b) LMT as Receiver: The LMT is connected at the end
of the network and receives the spikes generated by the last
layer. The LMT does not perform any computation on the
received data, so this test allows us to examine the impact
of the communication between NC cores and LMT in the
duration of the spiking phase.

c) LMT as Bridge: This test targets spikes transfer be-
tween Python models running on the host CPU and NC cores,
with the LMT serving as a bridge between them. We use
the Lava processes PyToNxAdapter and NxToPyAdapter. The
network is split, one half running on the CPU using Python
models, and the other running on Loihi 2 NCs.

E. Time measurement

1) CPU–CPU: Lava uses SharedMemory objects from the
multiprocessing Python module to implement the commu-
nication between CPU processes. To measure the transmission
time between them we use the perf_counter_ns() function
from the time Python module.

2) CPU–LMT: Communication between the Python pro-
cess running on the CPU and the C process running on the
LMT device is all handled by Lava, as long as the declared
interfaces are compatible. Time measurement is performed
with the same approach described for CPU–CPU tests, by the
process(es) running on the host PC.

3) NC–NC and NC–LMT: These two connections reside
entirely in the Loihi 2 hardware, so metrics are obtained using
the Lava profiler tools.

4) LMT–LMT: Lava only supports the execution of one
process targeting the LMT embedded processor2, so it is not
possible to implement single or multiple transfer tests with
the two processes running on the LMT. This Lava limitation
also impacts the parallel and collective MPI-inspired tests, as
only one of the participating processes can be executed on the
LMT.

5) CPU–NC: Lava does not support direct communication
between the host CPU and Loihi 2 NCs.

III. RESULTS AND DISCUSSION

To the best of our knowledge, ours is the first micro-
benchmarking effort specifically designed for the Lava frame-
work and the Loihi 2 hardware. Even though it is still a
work in progress, we have taken considerable steps forward, as
we completed the software architectural design of the micro-
benchmarking suite and we implemented tests covering the
main three hardware backends: host CPU; Loihi 2 embedded
processor; Loihi 2 neuron cores. The delivered suite is modular
and easily extendable with new tests or supported hardware.
Users can interact with the suite from high-level Python APIs
to choose the tests to run and generate HTML reports with
the obtained data.

2As declared in the known issues in the Lava GitHub repository
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Fig. 3. Transmission time for: (a) CPU-CPU single transfer tests as a function of the message size; (b) CPU-LMT single transfer tests as a function of the
message size; (c) CPU-CPU unidirectional multiple transfer test as a function of the message size, for several number of messages; (d) CPU-LMT unidirectional
multiple transfer test as a function of the message size, for several number of messages.

A. Execution example
We present an example run of three tests: PingPing, Ping-

Pong and Unidirectional, using the host CPU and the Loihi 2
embedded processor, to demonstrate the performance mea-
surement plots that can be currently generated with our suite.
However, we refrain from performing any analysis on them,
as it is out of the scope of this work. The analysis is indeed
intended to be performed by the user of the suite according
to the specific goal and characteristics of the executed tests.

1) Single transfer tests: Figs. 3a and 3b show the transmis-
sion time as a function of the message size for the CPU–CPU
and CPU–LMT connections, respectively. We executed both
tests with data sizes ranging from 1 to 2048, and for each
size we performed 25 repetitions. From the results, we don’t
observe any clear correlation between the required transmis-
sion time and the message size, but there is a clear difference
between both connection types, as CPU–LMT communication
is around three orders of magnitude slower than the CPU–CPU
counterpart.

2) Unidirectional test: Figs. 3c and 3d show the transmis-
sion time as a function of the message size, for different
numbers of messages, for the CPU–CPU and CPU–LMT
connections, respectively. For both tests, we used data sizes
ranging from 1 to 512. For the CPU–CPU connection we
configured the number of messages ranging from 1 to 512,
while for the CPU–LMT we had to limit this range because,
for this type of connection, Lava only supports a maximum of

32 messages. For each combination of number of messages
and data size, we performed 25 repetitions. We observe a
correlation between transmission time and the number of
messages. There is however an exception to this correlation
in the CPU-LMT connection when using 32 messages. As for
the single transfer tests, the CPU–LMT connection is three
orders of magnitude slower than the CPU–CPU version.

B. Use case examples

We briefly introduce two possible use cases of how the
results from running the suite could be used.

1) Lava/NxCore developer: A Lava or NxCore developer
may be interested in understanding how the Lava framework
and the NxCore compiler behave when the number of neurons
and layers to map into the Loihi 2 hardware change. By
running the SNNs tests with different parameter values, the
developer may find weak points in the compiler, for which
the utilization of memory and cores is sub-optimal.

2) Lava user: An user of the Lava framework working on
an application requiring real-time processing of data, may need
to understand how the spiking time behaves as the size of the
network increases, for different neuron models. Running the
SNNs tests can help them find, for each neuron model, the
largest network that is still capable of processing the data in
the required time frame.



C. Future work

Even though the suite in its current state is functional and
can be run for a set of tests, as a work in progress, there is
still room for improvement. We have finished the design of all
the tests described in Tables I and II. However, we have not
completed the implementation and testing for all of them; this
activity is currently in progress.

More tests should be designed to increase the coverage of
Lava and Loihi 2 features like, for instance, the use of hier-
archical Lava processes, virtual ports and data transformation,
on-chip learning (learning Dense and LIF processes), usage
of custom neurons described in micro-code and multi-chip
connectivity.

The generated report could be improved as well. Currently,
it contains plots as those shown on Figs. 3a to 3d for each
of the configuration parameters of the executed tests. More
informative plot types and statistical information might be
added. Finally, we plan to offer more flexibility to the users
in the plots to be generated through a configuration file.

IV. CONCLUSIONS

In this paper, we introduced the Lava Micro-Benchmarking
Suite, a collection of tests specifically designed to assess the
performance of the Lava framework and the Loihi 2 hardware.
Our work fills the gap of a missing micro-benchmarking tool
for Lava and Loihi 2. The suite is modular and can be easily
extended to support other types of benchmarking procedures
and neuromorphic platforms. It has been designed following
the Lava developer guidelines so that it can be integrated as
an extension of the Lava framework. We also presented some
test examples to show the results the suite can provide.

The suite needs to be extended with more tests so that it
can reach a high coverage of Lava and Loihi 2 features, and it
should be updated when there are breaking changes in Lava,
or when new hardware backends (e.g. GPUs) are supported.

We expect that the results obtained from running our suite
can provide insights to Lava / Loihi 2 developers and users
and that these insights can be used to advance the field of
neuromorphic computing.
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