
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic Layer Freezing for Communication Efficiency in Cross-Device Federated Learning / Malan, Erich; Peluso,
Valentino; Calimera, Andrea; Macii, Enrico; Montuschi, Paolo. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN
2327-4662. - 11:4(2024), pp. 6072-6083. [10.1109/JIOT.2023.3309691]

Original

Automatic Layer Freezing for Communication Efficiency in Cross-Device Federated Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JIOT.2023.3309691

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981803 since: 2023-09-08T14:24:15Z

IEEE



JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 1

Automatic Layer Freezing for Communication
Efficiency in Cross-Device Federated Learning

Erich Malan Graduate Student Member, IEEE, Valentino Peluso Member, IEEE, Andrea Calimera Member, IEEE,
Enrico Macii Fellow, IEEE, Paolo Montuschi Fellow, IEEE

Abstract—Federated Learning (FL) is a collaborative machine
learning paradigm where network-edge clients train a global
model under the orchestration of a central server. Unlike tradi-
tional distributed learning, each participating client keeps its data
locally, ensuring privacy protection by default. However, state-
of-the-art FL implementations suffer from massive information
exchange between clients and the server. This issue prevents the
adoption in constrained environments, typical of the Internet-
of-Things domain, where the communication bandwidth and the
energy budget are severely limited. To achieve higher efficiency
at scale, the future of FL calls for additional optimizations to
reach high-quality learning capability with lower communica-
tion pressure. To address this challenge, we propose Automatic
Layer Freezing (ALF), an embedded mechanism that gradually
drops a growing portion of the model out of the training and
synchronization phases of the learning loop, reducing the volume
of exchanged data with the central server. ALF monitors the
evolution of model updates and identifies layers that have reached
a stable representation, where further weight updates would
have minimal impact on accuracy. By freezing these layers, ALF
achieves substantial savings in communication bandwidth and
energy consumption. The proposed implementation of the ALF
mechanism is compatible with any FL strategy, requiring min-
imal effort and without interfering with existing optimizations.
The extensive experiments conducted using a representative set of
FL strategies applied to two image classification tasks show that
ALF improves the communication efficiency of the baseline FL
implementations, ensuring up to 83.91% of data volume savings
with no or marginal losses of accuracy.

Index Terms—Federated Learning, Internet of Things, Convo-
lutional Neural Networks, Communication, Optimization.

I. INTRODUCTION & MOTIVATION

With the increasing computing power of mobile devices
and sensor nodes [1], and the recent advances in training
and compression of deep learning pipelines [2]–[4], complex
Convolutional Neural Networks (ConvNets hereafter) are now
being deployed at the edge, near the data source, enabling
distributed intelligent services with a higher privacy standard,
better performance, and improved scalability. Unfortunately,
pushing the inference stage out of the cloud is not enough to
ensure complete data protection, as third parties still need data
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to handle the model training. At the core of the problem is
the enforcement of regulations that prevent aggregating raw
data into centralized databases stored in the cloud, eventually
overseas, limiting the operationalization of machine learning.
This aspect slows the adoption of machine learning at scale in
many application domains. A valuable solution is Federated
Learning (FL) [5], a distributed learning paradigm where in-
dependent clients cooperate in training a global model without
sharing their raw data, nor among themselves or with the
central service’s provider.

Among the many embodiments of the FL paradigm, a key
difference lies in the possible relationships between the clients
participating in the training. In cross-silo FL, the participating
clients are geo-distributed data centers belonging to multiple
institutions or organizations (e.g., hospitals of the national
health systems [6]). In cross-device FL, the target of this work,
the participating clients are edge devices, often tiny devices
like low-power sensor nodes and mobile devices, belonging
to different owners. Cross-device FL implementations can be
found in mobile keyword prediction [7], emoji prediction [8],
malware detection [9], and network traffic optimization [10].
Although the working principle behind cross-device FL was
proven feasible, several limitations still prevent its widespread
diffusion to more general and complex tasks. The first limi-
tation concerns the functional metric, namely, the quality of
training. Cross-device FL involves a large number of clients,
each of them storing non-independent, identically distributed
(non-IID) and imbalanced data. Moreover, some clients can
be unavailable due to a limited energy budget or unreliable
connection; for example, smartphones may participate in the
training only if connected to a WiFi network. Those two
issues affect the prediction quality achievable by FL, resulting
in substantial accuracy losses compared to results attainable
with conventional centralized training. The recent literature
introduced many FL variants [11]–[16] that help mitigate
the accuracy gap. The second limitation concerns the extra-
functional metrics instead. The learning process involves fre-
quent synchronizations between the participating clients and
the central server, generating massive data volumes running
above capacity in many contexts. For instance, in a typical
IoT setting, the download and upload bandwidths are limited
to 0.75MB/s and 0.25MB/s, respectively [17]. Moreover,
since the communication energy grows proportionally with the
volume of exchanged data [18], the energy budget becomes
a key aspect to consider on the client side. Finding new FL
implementations that care about data volumes and not accuracy
only is therefore paramount.
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With this aim, we introduce Automatic Layer Freezing
(ALF), an optimization mechanism to alleviate the communi-
cation burden in cross-device FL for ConvNets. The working
principle of ALF consists of the progressive removal of sub-
portions of the model from the training loop, which helps
reduce the parameters exchanged with the central server as
the learning moves on. ALF operates on a per-layer basis,
leveraging the property that layers in a ConvNet require
different numbers of training iterations to reach their final
representation.

Even though the layer freezing mechanism had already
been explored, especially in centralized training settings, e.g.,
in [19], a cross-device FL scenario introduces additional chal-
lenges that are not yet fully explored. Indeed, the contribution
of our work is twofold. First, to investigate the feasibility of
automatic layer freezing in cross-device FL implementations.
Second, to introduce a feasible, low-overhead embodiment of
the freezing mechanism compatible with existing FL strate-
gies.

The proposed ALF implementation consists of a server-
side plug-in component that supervises the evolution of the
models’ updates gathered from the participating clients over
successive learning iterations. The outcome of the monitoring
procedure is a layer-wise stability index used as a proxy to
understand whether a layer can be frozen permanently till the
end of the learning process. The central server updates the
participating clients regarding the frozen layers, enabling the
elimination of these layers from the backpropagation process
to save computational resources.

We conducted an extensive experimental validation using
different FL strategies and a representative set of ConvNets
for image classification over two datasets. The collected results
yield the following findings and achievements:

• ALF offers a valuable option to reduce the communica-
tion cost of FL with no or negligible impact on the model
accuracy. Depending on the benchmark, ALF enables data
volume reduction up to 83.91%.

• ALF can be integrated into conventional FL strategies
with minimal effort. As test cases, we considered three
state-of-the-art strategies, namely, FedAvg [20], Fed-
Prox [11], and FedOpt [15]. ALF improves the quality of
results in all cases and maximizes the benefits of more
efficient learning strategies.

• The automatic procedure embedded in ALF can de-
tect when and which layers can be frozen and adapt
the optimization process depending on the strategy, the
model, and the dataset under analysis. Moreover, ALF
outperforms freezing strategies like [21] based on the
manual selection of layers, showing higher flexibility in
different experimental settings.

The rest of the paper is organized as follows. Section II
summarizes the main components and the working flow of
a generic FL strategy. Section III reviews previous works
on communication-efficient FL and layer freezing in neural
network training. Section IV describes the implementation
details of the proposed ALF mechanism. Section V reports
the experimental setup and shows the collected results. Fi-
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Fig. 1. Schematic view of a Federated Learning framework.

nally, Section VI concludes the paper by discussing the main
achievements of our study.

II. FEDERATED LEARNING

The schematic view in Fig. 1 depicts the essential compo-
nents of an FL framework. The main actors are the central
server and a fleet of N clients. In a cross-device setting,
which is the target of this work, the clients belong to a large
pool of heterogeneous devices like smartphones, tablets, smart
cameras, and, more generally, edge nodes with limited com-
putational resources, small energy budgets, and unstable con-
nectivity. The central server coordinates the learning process
and hosts the global version of the model; the edge devices
collect and hold a local dataset used for the in-situ training
of the model. Each local dataset differs in size and number
of classes, i.e., the training samples are non-independently
and identically distributed (non-IID) across different devices.
Moreover, for each local dataset, the available classes follow
uneven distributions, i.e., the local dataset is imbalanced.

The global learning runs for a predefined number of itera-
tions, called communication rounds. As shown in Fig. 1, each
round consists of five stages summarized as follows:

1) Clients Sampling. The central server checks the status
of all the participating clients, and a subset of online
devices is selected to contribute to the training. Specif-
ically, the server randomly picks a fraction of online
devices according to a predefined hyper-parameter called
the participation ratio (e.g., 10% of the total devices),
which is a knob for resource balancing.

2) Model Download. The selected clients download the
latest version of the global model from the central server.

3) Local Training. Each client trains the model with its
local dataset. The training iterates over multiple epochs,
whose number E is another hyper-parameter that defines
the synchronization frequency with the central server.
E is commonly set to low values (e.g., 5 or 10) to
balance the computing energy (needed for training) and
the communication cost (consumed for uploading the
model). Also, smaller values mitigate the divergences
from the global model.

4) Models Upload. The selected clients upload the updated
version of their local models to the central server.

5) Models Aggregation. The central server updates the
global model, aggregating the local models gathered
from the clients. As detailed in Section III-A3, different
aggregation methods exist.
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III. RELATED WORKS

In this section, we first summarize existing approaches to
improve communication efficiency in cross-device FL (Section
III-A). We then focus on previous related works that explored
the freezing mechanism during training, both for centralized
and federated setups (Section III-B).

A. Communication-efficient Federated Learning

Improving communication efficiency in cross-device FL
settings is an optimization problem that can be approached at
different stages of the FL workflow and leveraging different
knobs. We grouped existing principal techniques using a tax-
onomy that reflects the four main options available. Interested
readers may refer to [22] for a comprehensive review of other
solutions.

1) Synchronization: The primary source of the commu-
nication overhead originates from the frequent synchroniza-
tion between the central server and the clients during the
download/upload stages (stages 2 and 4 described in Section
II). The pioneering work introduced in [20], referred to as
FedAvg, follows a simple yet efficient strategy that plays with
the number of local training epochs E as an optimization
knob. Specifically, all the clients upload their model versions
after E epochs of local training, with E as a pre-defined
constant. With lower E, the achievable accuracy increases
as information is shared more frequently with the central
server and all the participating clients. However, more frequent
synchronization results in higher communication costs. The
accuracy vs. communication trade-off analysis reported in [20]
suggests that slightly increasing E (e.g., E = 5 as a rule of
thumb), the communication cost gets sensibly reduced without
(or with marginal) loss of accuracy. In the experimental sec-
tion, we further explore the impact of E, making a parametric
comparison with our ALF strategy.

More complex schemes proposed a finer control of the syn-
chronization rate, for example, with an adaptive tuning of E
at different levels of (i) spatial granularity, i.e., per-layer [23]–
[25]) or per-weight [26], (ii) temporal granularity, i.e., varying
E across different rounds [27], (iii) device granularity [28],
i.e., adjusting E according to the clients progresses in training.
ALF differs from those adaptive strategies as once a layer is
frozen, it stays untouched until the end of the learning process.
Although this choice might seem too coarse, our experiments
validate its efficiency (see Section V-B1).

2) Training Optimization: The most common procedure to
train a ConvNet relies on the cross-entropy loss, which is
also the most natural choice for local training in a cross-
device FL setting. However, the cross-entropy loss shows an
inferior performance when applied to imbalanced datasets.
This problem is well-known in centralized training and ex-
acerbated in FL, where the label distribution is highly skewed
by definition. Motivated by this observation, many researchers
focused on developing training loss functions that try to
reduce the negative impact of imbalanced and non-IID data
on model convergence. The most representative example is
FedProx [11], which introduces a regularization term to the
loss function to penalize local updates diverging from the

global model. Further studies [12], [13], [16] reported that this
strategy brings benefits only for specific settings, motivating
the introduction of more sophisticated loss functions and
training procedures. However, there is no consensus on the
best option, which may change depending on the task or
context. Moreover, complex loss functions require additional
computing resources, a potential issue for edge devices with
limited resources.

Although conceived to improve accuracy rather than com-
munication efficiency, the training optimization methods im-
prove the convergence time of the learning process, indi-
rectly reducing the number of rounds and hence the overall
transmission costs required for a pre-defined accuracy level.
For completeness, we investigated the interplay of ALF with
FedProx and different training variants.

3) Aggregation Optimization: FedAvg implements the ag-
gregation stage averaging the weights gathered from the par-
ticipating clients. Despite its extensive adoption, the averaging
scheme suffers from convergence issues due to (i) data hetero-
geneity across the clients and (ii) partial clients’ participation.
Several optimizations of the aggregation procedure can speed
up the training convergence and, as a by-product, benefit
the communication costs, as the model may reach the same
accuracy in fewer rounds. This is the same principle of training
optimizations.

FedNOVA [14], for instance, proposed a pre-aggregation
stage where the model updates get normalized based on the
client’s status. FedOpt [15] introduced a more general formu-
lation of the aggregation problem. Specifically, it defines three
main steps in the aggregation stage, summarized as follows.
First, the central server computes the differences between the
current global weights and the local weights update received
by the clients. Then, it aggregates these differences through
averaging. The outcome, referred to as pseudo-gradient, is
finally fed to a standard solver for training neural networks
like Adam [29], Adagrad [30], or YOGI [31], which is in
charge of updating the global model weights. In practice, the
intuition behind FedOpt is to compute the gradients of the
global model artificially, avoiding the back-propagation (the
pseudo-gradients), thus enabling the same optimization meth-
ods deployed in classical centralized training for calculating
the weight updates. The authors of [15] observed that FedAvg
is a specific case of the FedOpt formulation, where the solver
is SGD with a learning rate equal to 1. Experimental results
show FedOpt (with Adam as optimizer) outperforms FedAvg,
both in terms of accuracy and communication efficiency,
demonstrating that the aggregation method plays a central
role in the performance of FL. We included FedOpt in our
assessment to study the interaction of ALF with a more
efficient aggregation method.

4) Model Compression: Alternative optimization strategies
play with the compression of the model to reduce the size
of data exchanged. The most common examples rely on
pruning [32], quantization [33], or a combination of the
two [34]. The model compression can be applied on the client
side to reduce the transmission cost during the uploads or
on the server side [35] for reducing the cost in download.
In both cases, the resource usage increases dramatically due
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to the extra workload for model compression/decompression
stages, both on the client and server sides. On the contrary,
ALF concurrently alleviates the arithmetic workload and the
communication burden (in both directions, client-to-server
and server-to-client), as the number of arithmetic operations
for back-propagation and the exchanged data volumes are
inversely proportional to the number of frozen layers.

B. Training optimization with Parameters Freezing

This section reviews previous works that proposed the
freezing principle to optimize the training of ConvNets. We
first focus on freezing strategies for centralized settings, where
the parameters’ freezing mechanism aims to accelerate the
training stage. We then focus on techniques dedicated to
FL, where the parameters’ freezing mechanism was applied
explicitly to improve communication efficiency.

1) Parameters Freezing in Centralized Training: Most of
the freezing techniques applied in centralized training settings
work on a per-layer basis. Keeping a layer constant enables the
training loop to skip the back-propagation for the parameters
belonging to that layer, resulting in faster execution. We can
classify layer freezing methods into two main categories,
adaptive and permanent freezing. In the former category,
layers can be frozen and unfrozen across different training
iterations. The selection of the layers to train can be ran-
dom [36] or guided by specific proxies, like the magnitude
of the weight updates across consecutive epochs [37] or the
classification accuracy measured on a calibration set [38]. In
the latter category, once a layer is frozen, its parameters are
kept constant until the end of the training, i.e., unfreezing is
not allowed.

The most representative implementation of permanent freez-
ing in centralized training was reported in [19]. The procedure
monitors the similarity of the intermediate activations during
training to decide whether a layer reached convergence; if so, it
can be frozen for the remaining epochs. It is worth emphasiz-
ing that this method cannot be ported in a federated context
because monitoring the intermediate activations requires the
availability of data on the server side.

2) Parameters Freezing in Federated Learning: Only a
few works investigated the potential of parameter freezing
in federated contexts and for different purposes. Specifically,
a series of works [39], [40] applied layers freezing to re-
duce the computational effort during the local training and
to incentivize the clients’ participation at each round. In
such case, the freezing is adaptive because the subset of
frozen layers does change along different training rounds and
across the clients. Concerning permanent parameters’ freezing,
FedPT [21] proposed a method to reduce communication
costs. The idea is to statically select a subset of layers to
train from the beginning to the end of the learning process,
leaving the remaining layers set to random values. Besides
the substantial accuracy losses one may incur, selecting the
trainable layers is a manual process that cannot ensure op-
timality. Our preliminary analysis conducted in [41] further
investigated the potential of permanent freezing, proposing an
incremental freezing scheme that follows the topological order

Stability Monitor

s1 s5s2 s3

s 2

µ

s 1 s 5s 3

Freezing Logic

Fig. 2. Schematic view of a Federated Learning framework with ALF.

of the model’s layers according to a schedule manually defined
at the beginning of the learning process.

ALF addresses the layers’ selection problem by relying
on a fully automatic procedure that probes the evolution of
the client’s model updates. We adopted FedPT as a baseline
for comparison to quantify the benefits of our automatic
mechanism compared to a manual approach.

IV. FL WITH AUTOMATIC LAYER FREEZING

A. Overview

We designed the ALF mechanism as a pluggable component
that can be embedded in any FL strategy with minimal effort.
The schematic diagram of Fig. 2 shows the integration of ALF
in a generic FL flow, illustrating a snapshot of the federated
training of a ConvNet made of a set of layers L (|L| = 5
in the figure). The ALF mechanism operates on the central
server, relieving the edge clients of additional computations.

ALF comprises two blocks, the stability monitor and the
freezing logic. The stability monitor takes the model updates
from the clients as input and returns a layer-wise stability
index sl, with l ∈ L. The stability index is an aggregated
measure used as a proxy to assess layer convergence (more
details in the following subsection); it ranges from 0 to 1, with
values closer to 0 indicating minor variations of the weights
across successive rounds. The freezing logic compares sl with
a user-defined stability threshold µ to check whether a layer
can be frozen: if sl < µ, the layer l is deemed stable and can
be frozen till the end of the learning process. The stability
threshold µ is a hyper-parameter that serves as a control knob
to trade off accuracy vs. communication cost (more details in
Section V-B3).

In the example of Fig. 2, the fourth layer of the ConvNet
has been frozen in a previous round, as indicated by the white
box. The layer freezing reduces the data volume transmitted
during the download and upload phases, as the frozen layer
does not participate in the local training and synchronization
phases. The other layers (represented by colored boxes) still
participate in the learning process. After the model uploads,
the stability monitor calculates sl for the updated layers (1,
2, 3, and 5). In the figure, s3 < µ, therefore, the third layer
of the global model gets frozen. The server broadcasts this
information during the following rounds, allowing the clients
to skip the local training of the newly frozen layer. Note that
the model aggregation and the computation of the stability
index are independent processes. This makes ALF compatible
with any aggregation method.
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TABLE I
NOTATIONS.

Notation Description

R Total number of communication rounds
r Current communication round, r ∈ [1, R]
K Set of participating clients
Kr Subset of clients selected for training at round r, Kr ⊂ K
Θr Global model at round r
Θr

k Local model of client k at round r, k ∈ Kr

Dk Local dataset of the client k
E Number of local training epochs
L Set of layers with learnable parameters
T r Set of trainable layers at round r
wr

l,k Weights of the layer l (l ∈ L) belonging to the local model generated by the client k.
sl Stability index of layer l
µ Stability threshold

B. Implementation Details
The pseudo-code in Algorithm 1 describes the workflow

of an FL strategy integrating ALF. Table I summarizes the
notations in use. We considered a distributed architecture with
a central server that coordinates a set of edge devices acting
as clients. Each client k holds its local dataset Dk with private
access. The server initializes the global model Θ1 with random
weights (line 1) and defines the set of trainable layers T 1

(line 2). Initially, T 1 comprises all the layers with learnable
parameters, i.e., the set L.

Following a synchronous FL scheme, the learning flow
iterates for R communication rounds (lines 3–23). Within
each round r, the server samples a subset of clients Kr

(line 4). Each selected client k downloads the timestamps
(globalTimestepl) of the latest update for each layer l of the
global model Θr (line 6). If the local version of the layer
(localTimestepl) is older than that of the global model (line 7),
the client downloads from the server the updated weights of
the layer l (line 8). Even though the timestamp is a source of
additional information not needed in conventional FL schemes,
it counts 8 bytes per layer, a marginal overhead if compared
to the model size (from kBs to MBs). Then, the client trains
the model on its local dataset for a predefined number of
epochs E, producing an updated local version of the model
Θr

k (line 9). The training involves only the layers in T r, which
are those uploaded to the server (lines 10–11). After receiving
the local updates, the server runs the aggregation, yielding a
new model Θr+1 for the next training round (line 12).

The server is in charge of the ALF mechanism (lines 13–
23), consisting of the stability monitor (lines 15–21) and the
freezing logic (lines 22–23). For each trainable layer (line 14),
the stability monitor calculates an aggregated form of the
layer’s weights wr

l via a weighted average of the layer updates
wr

l,k received from the clients (line 15). Then, it computes
the difference ∆l between the current and previous round’s
aggregated weights (line 16). The exponential moving average
enables monitoring the updates’ trend over longer observation
windows. Specifically, mr

l is the exponential moving average
of the aggregated weights difference (line 18) and pr

l is the
exponential moving average of its magnitude (line 19); we
set α = 0.95. The ratio between the element-wise absolute

Algorithm 1: Workflow of an FL strategy with ALF.
1 Θ1 ← Random model initialization
2 T 1 ← L
3 for r = 1,...,R do
4 Sample a subset Kr of clients

/* Clients Optimization */
5 for k ∈ Kr do in parallel
6 for l ∈ L do
7 if globalTimestepl < localTimestepl then
8 Download layer l of Θr

9 Θr
k ← TRAIN(Θr , Dk, E, T r)

10 for l ∈ T r do
11 Upload layer l of Θr

k

/* Server Optimization */
12 Θr+1 ← AGGREGATE(Θr

k, k ∈ Kr)
/* Automatic Layer Freezing */

13 T r+1 ← T r

14 for l ∈ T r do
/* Stability Monitor */

15 wr
l ← 1∑

k∈Kr |Dk|
·
∑

k∈Kr |Dk| ·wr
l,k

16 ∆l ← wr
l −wr−1

l

17 ∆abs
l ← Element-wise absolute values of ∆l

18 mr
l ← α ·mr−1

l + (1− α) ·∆l

19 pr
l ← α · pr−1

l + (1− α) ·∆abs
l

20 nr
l ← Element-wise absolute values of mr

l
pr
l

21 sl ← Average all the elements of nr
l

/* Freezing Logic */
22 if sl < µ then
23 T r+1 ← T r+1 \ {l}

values of the resulting quantities produces nr
l , whose values

range from 0 to 1. Finally, the stability monitor calculates the
stability index sl as the element-wise average of nl, returning
the layer stability index sl (line 21). As a last step, the
freezing logic applies the thresholding policy (lines 22–23):
if the stability index sl is lower than the stability threshold µ
(line 22), store l in the set of frozen layers Θr+1 (line 23).

Calculating the stability index sl involves element-wise
operations only, with a resulting complexity that grows linearly
with the size of the involved tensors. Specifically, the most
complex operation is the computation of wr

l (line 15), where
the number of elements equals the number of weights in wr

l,k
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Fig. 3. Layer-wise stability index for a 5-layer ConvNet (CNN-5) trained on CIFAR-10 with FedAvg (2000 rounds).

TABLE II
LAYER-WISE DESCRIPTION OF THE CNN-5 MODEL AND ITS MEMORY

FOOTPRINT. THE SIZE OF THE LAST LAYER VARIES WITH THE NUMBER OF
CLASSES – 10 FOR CIFAR-10 (100 FOR CIFAR-100).

Name Layer Type Memory (MB)

conv1 2D Convolution 0.019
conv2 2D Convolution 0.391
fc1 Fully-connected 2.406
fc2 Fully-connected 0.289
fc3 Fully-connected 0.007 (0.074)

Total Bias 0.003 (0.003)
Total Weights 3.112 (3.179)

times the number of selected clients in Kr (which is in general
≪ the total number of clients). In the following operations
(lines 16-21), the number of elements equals the number
of weights in the layer. Since element-wise operations can
be processed in parallel by server-side CPUs/GPUs used for
model aggregation, the computational overhead of the stability
monitor is negligible.

As a side note, we point out that the presented flow can
work with any implementation of the TRAIN and AGGREGATE
procedures. The ALF procedure operates independently as a
standalone process. We demonstrated this feature with exten-
sive experiments where we applied ALF to different training
and aggregation methods (see Section V).

For a preliminary validation of the stability index, we inte-
grated the stability monitor in a conventional FL scheme based
on FedAvg without freezing. This is equivalent to running the
workflow described in Algorithm 1 dropping the lines 22–
23. The results are reported in Figure 3, which shows the
evolution over 2000 rounds of the layer-wise stability index
of a 5-layer ConvNet trained on the CIFAR-10 dataset (more
details about the experimental setup are reported in Section
V-A). The plots show a clear trend: despite marginal oscil-
lations, the stability index decreases as the learning process
proceeds, demonstrating that the proposed stability monitor
offers valuable information about the layer’s convergence.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Models & Datasets: The experimental setup consists of
two ConvNets with different memory footprint and number
of layers. The first benchmark is a 5-layer ConvNet (CNN-
5) suited for tiny IoT applications and borrowed from [20].
The network comprises two convolutional layers (conv1 and
conv2) with 64 5 × 5 filters, two fully-connected layers

TABLE III
LAYER-WISE DESCRIPTION OF THE VGG-9 MODEL AND ITS MEMORY

FOOTPRINT. THE SIZE OF THE LAST LAYER VARIES WITH THE NUMBER OF
CLASSES – 10 FOR CIFAR-10 (100 FOR CIFAR-100).

Name Layer Type Memory (MB)

conv1 2D Convolution 0.003
conv2 2D Convolution 0.071
conv3 2D Convolution 0.282
conv4 2D Convolution 0.563
conv5 2D Convolution 1.126
conv6 2D Convolution 2.251
fc1 Fully-connected 8.002
fc2 Fully-connected 1.002
fc3 Fully-connected 0.020 (0.196)

Total Bias 0.007 (0.008)
Total Weights 13.319 (13.495)

(fc1 and fc2) with 394 and 192 neurons, respectively, and a
final linear layer (fc3) that returns the prediction logits. The
second network is a more complex 9-layer ConvNet (VGG-9)
based on the VGG architecture [42], which can be ported on
mobile devices with higher computational resources. Tables II
and III collect the memory footprint of each layer for the two
ConvNets. The total memory is a proxy of the communication
cost for downloading (and uploading) the model from (to) the
central server; the reported numbers refer to a standard 32-bit
floating-point precision. We applied the ALF mechanism to
the layers’ weights only as the biases require just a few kBs
of data exchange.

The ConvNets were trained using two datasets for image
classification, CIFAR-10 and CIFAR-100 [43], using a stan-
dard split for training and testing. We applied a standard
pre-processing pipeline for data augmentation based on a
random crop followed by random horizontal flip and cutout.
We split the training datasets across 100 clients with non-
IID and imbalanced data partitions to emulate a cross-device
setting. Similar to previous works [15], [21], the splits were
obtained following a Dirichlet distribution with a concentration
parameter equal to 0.3. This partitioning configuration allows
each client to hold few or eventually no data samples in some
classes.

2) FL Strategies, Training & Evaluation: The training
is distributed across 100 clients, with a 10% participation
rate, iterating over 2000 rounds. The local training executes
Stochastic Gradient Descent (SGD) for E = 5 epochs, batch-
size 50, and weight decay 1e−3. The learning rate follows a
polynomial decay schedule with an initial value of 0.1. Unless
otherwise noted, we selected the same hyperparameters in all
the experiments.
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TABLE IV
TRAINING EVALUATION OF DIFFERENT FL STRATEGIES W/O AND W/ ALF. RESULTS ON CNN-5 FOR THE CIFAR-10 AND CIFAR-100 DATASETS

(UNLESS OTHERWISE NOTED, E = 5).

CIFAR10 CIFAR100
Top-1 ∆Top-1 CC (GB) Savings Top-1 ∆Top-1 CC (GB) Savings

FedAvg 74.83±1.34 - 121.59 - 41.38±0.28 - 124.18 -
FedAvg E=10 73.91±1.96 -0.92 60.80 50.00% 37.68±0.41 -3.70 62.09 50.00%
FedAvg w/ PT-conv 53.71±2.97 -21.12 105.64 13.12% 26.12±0.38 -15.26 108.23 12.84%
FedAvg w/ PT-fc1 69.11±2.40 -5.72 27.83 77.11% 39.02±0.42 -2.36 30.42 75.50%
FedAvg w/ ALF µ = 0.11 77.10±0.18 2.27 68.12 43.98% 41.93±0.03 0.55 39.73 68.01%
FedAvg w/ ALF µ = 0.12 76.20±0.14 1.37 37.67 69.02% 39.87±0.04 -1.51 26.30 78.82%
FedAvg w/ ALF µ = 0.13 75.87±0.20 1.04 27.88 77.07% 39.56±0.03 -1.82 20.18 83.75%

FedProx 75.05±1.38 0.22 121.59 0.00% 41.17±0.26 -0.21 124.18 0.00%
FedProx w/ ALF µ = 0.11 77.35±0.15 2.52 69.89 42.52% 41.44±0.03 0.06 38.40 69.08%

FedOpt 76.25±0.08 1.42 121.59 0.00% 42.03±0.07 0.65 124.18 0.00%
FedOpt w/ ALF µ = 0.11 76.52±0.01 1.69 36.17 70.25% 41.10±0.00 -0.28 26.20 78.90%
FedOpt w/ ALF µ = 0.12 76.25±0.01 1.42 30.84 74.64% 40.96±0.01 -0.42 22.78 81.66%
FedOpt w/ ALF µ = 0.13 75.85±0.00 1.02 27.81 77.13% 40.37±0.01 -1.01 19.98 83.91%

TABLE V
TRAINING EVALUATION OF DIFFERENT FL STRATEGIES W/O AND W/ ALF. RESULTS ON VGG-9 FOR THE CIFAR-10 AND CIFAR-100 DATASETS

(UNLESS OTHERWISE NOTED, E = 5).

CIFAR-10 CIFAR-100
Top-1 ∆Top-1 CC Savings Top-1 ∆Top-1 CC Savings

FedAvg 81.12±1.09 - 520.29 - 49.18±0.23 - 527.17 -
FedAvg E=10 81.23±1.63 0.11 260.15 50.00% 48.78±0.31 -0.40 263.59 50.00%
FedAvg w/ PT-conv 43.05±2.41 -38.07 352.92 32.17% 18.43±0.51 -30.75 359.80 31.75%
FedAvg w/ PT-fc1 79.15±1.61 -1.97 208.50 59.93% 43.70±0.20 -5.48 215.38 59.14%
FedAvg w/ ALF µ = 0.11 83.41±0.07 2.29 365.15 29.82% 49.52±0.05 0.34 392.71 25.51%
FedAvg w/ ALF µ = 0.12 83.10±0.06 1.98 242.11 53.47% 48.56±0.04 -0.62 140.50 73.35%
FedAvg w/ ALF µ = 0.13 82.66±0.04 1.54 151.24 70.93% 47.99±0.03 -1.19 87.46 83.41%

FedProx 81.13±1.24 0.01 520.29 0.00% 49.86±0.22 0.68 527.17 0.00%
FedProx w/ ALF µ = 0.11 83.04±0.05 1.92 347.92 33.13% 49.77±0.06 0.59 392.44 25.56%

FedOpt 84.14±0.12 3.02 520.29 0.00% 53.81±0.11 4.63 527.17 0.00%
FedOpt w/ ALF µ = 0.11 84.20±0.01 3.08 158.04 69.62% 52.99±0.00 3.81 132.79 74.81%
FedOpt w/ ALF µ = 0.12 84.16±0.00 3.04 145.35 72.06% 52.30±0.00 3.12 115.44 78.10%
FedOpt w/ ALF µ = 0.13 83.72±0.00 2.60 128.88 75.23% 51.55±0.00 2.37 104.40 80.20%

For an exhaustive assessment, we conducted a comparative
analysis considering different underlying FL strategies, each
of them corresponding to a specific optimization (please refer
to Section III) as listed below:

• Synchronization. As a baseline, we considered the stan-
dard FedAvg [20] strategy. We studied the impact of
synchronization frequency by running experiments with
two different numbers of epochs: E = 5, E = 10. For
E = 10, we halved the number of rounds to 1000 so that
the number of local training steps keeps the same, yet
with a halved communication cost.

• Training Optimization. To estimate the potential benefits
of more efficient local training, we considered the training
procedure proposed by FedProx [11], where a regulariza-
tion term (referred to as the proximal term) was added
to the client’s loss function. We set the scaling factor of
the proximal term to 1e−4.

• Aggregation Optimization. We considered the Fe-
dOpt [15] strategy with the Adam solver. Specifically,
we set the Adam learning rate to 5e−3 with a polynomial
decay schedule, first momentum 0.9, second momentum
0.99, and adaptivity 1e−3.

• Parameters Freezing. To assess the efficiency of the
proposed automatic freezing mechanism, we considered
FedPT [21] as an alternative strategy in which the se-
lection of frozen layers is manually defined and fixed at
the beginning of the training. Specifically, we explored
two implementations denoted with PT-conv and PT-fc1. In
the former, all the convolutional layers are frozen; in the
latter, only the first fully-connected layer is frozen, which
is the layer with the largest memory footprint for the two
ConvNets under analysis. In both implementations, the
training was conducted within the FedAvg strategy.

For the evaluation, we probed the evolution of the classifica-
tion accuracy of the global model on the test set. Specifically,
we computed the moving average over a fixed window of
30 communication rounds, following the procedure in [15].
This filtering suppresses the oscillations due to the intrinsic
instability of the training process, enabling a more reliable as-
sessment. Moreover, we measured the client’s communication
cost in the upload and download phases for synchronization
with the central server. All the experiments were run within
an emulation strategy developed with PyTorch, version 1.9.
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TABLE VI
NUMBER OF COMMUNICATION ROUNDS BEFORE FREEZING (AND

ACCURACY GAP TO THE END OF TRAINING). VALUES REPORTED FOR
EACH LAYER OF THE CNN-5 MODEL TRAINED WITH DIFFERENT VALUES

OF µ (0.11, 0.12, AND 0.13). RESULTS ON CIFAR-10.

0.11 0.12 0.13

FedAvg
w/ ALF

conv1 269 (-7.34) 254 (-6.81) 238 (-7.15)
conv2 617 (-4.75) 478 (-3.81) 423 (-4.15)
fc1 1194 (-2.90) 635 (-3.42) 456 (-4.14)
fc2 1212 (-1.80) 658 (-1.88) 489 (-2.02)
fc3 214 (-9.81) 200 (-10.63) 189 (-10.58)

FedOpt
w/ ALF

conv1 246 (-5.22) 234 (-5.73) 209 (-6.97)
conv2 407 (-2.99) 356 (-3.72) 318 (-4.03)
fc1 616 (-2.68) 521 (-3.27) 469 (-2.03)
fc2 646 (-1.18) 562 (-1.02) 511 (-2.20)
fc3 212 (-7.06) 200 (-8.68) 187 (-8.82)

B. Results

1) Training Evaluation: Tables IV and V report the average
accuracy, the relative standard deviation over the last 30
rounds, and the communication cost at the end of training
for the selected networks and datasets. The tables consist
of three sections, one for each FL strategy under analysis
(FedAvg, FedProx, and FedOpt), collecting the results with
and without the ALF mechanism. We also considered different
values of the stability threshold µ, showcasing the impact of
this parameter on the training efficiency.

Our first analysis focused on the FedAvg strategy. We
validated alternative optimization strategies for communica-
tion reduction, i.e., synchronization frequency tuning (FedAvg
E = 10) and parameter freezing with FedPT (FedAvg w/ PT-
conv1 and FedAvg w/ PT-fc1). Looking at the results on CNN-
5 (Table IV), these strategies ensure communication savings
at the cost of a substantial accuracy drop. Specifically, with
E = 10, the accuracy losses range from −0.92% for CIFAR-
10 to −3.70% for CIFAR-100. Similarly, FedAvg w/ PT-fc1
cuts the communication cost by 77.11% (75.50%) for CIFAR-
10 (CIFAR-100) with −5.72% (−2.36%) lower accuracy.
This demonstrates that freezing from the beginning of the
training causes excessive accuracy degradation. Moreover,
the results highlight another important limitation of manual
freezing: the wrong selection of the frozen layers leads to sub-
optimal solutions. For instance, PT-conv brings larger accuracy
losses (down to −21.12% for CIFAR-10) with lower savings
(13.12%). This finding motivates the need for an automatic
mechanism to detect when and which layers to freeze for
concurrent accuracy and communication cost improvement.

The proposed ALF mechanism, as demonstrated by the re-
ported results, targets this specific need instead. On CNN-5 for
CIFAR-10, FedAvg w/ ALF outperforms its competitors in all
evaluation metrics and can reach even higher accuracy levels
than the baseline implementation. The stability threshold µ
works as a knob to balance the transmission cost, as the layers
get frozen sooner with higher values of µ. With µ = 0.13,
FedAvg w/ ALF requires a communication cost close to that of
FedAvg w/ PT-conv (27.88GB vs. 27.83GB) reaching much
higher accuracy (75.87% vs. 69.11%). On CIFAR-100, with
larger values of µ (0.12 and 0.13), we achieved lower accuracy

TABLE VII
NUMBER OF COMMUNICATION ROUNDS BEFORE FREEZING (AND

ACCURACY GAP TO THE END OF TRAINING). VALUES REPORTED FOR
EACH LAYER OF THE CNN-5 MODEL TRAINED WITH DIFFERENT VALUES

OF µ (0.11, 0.12, AND 0.13). RESULTS ON CIFAR-100.

0.11 0.12 0.13

FedAvg
w/ ALF

conv1 683 (-1.11) 447 (-0.86) 348 (-1.28)
conv2 716 (-0.60) 490 (-0.20) 381 (-0.59)
fc1 641 (-2.20) 420 (-1.56) 319 (-2.28)
fc2 512 (-3.55) 336 (-3.08) 259 (-3.93)
fc3 451 (-4.33) 279 (-4.54) 223 (-5.39)

FedOpt
w/ ALF

conv1 381 (-2.08) 372 (-1.92) 325 (-1.84)
conv2 499 (-0.42) 439 (-0.60) 383 (-0.61)
fc1 430 (-1.44) 371 (-1.93) 323 (-1.87)
fc2 254 (-4.06) 222 (-5.02) 205 (-4.63)
fc3 168 (-7.16) 162 (-7.31) 158 (-6.93)

than the baseline FedAvg (−1.82% in the worst case), but still
far better than the other optimization strategies.

The experiments with FedProx and FedOpt further high-
light the efficiency of ALF and its flexibility under different
settings. Note that the adopted FL strategies require the same
communication cost because the only differences compared to
FedAvg lie in the local training (FedProx) or the server aggre-
gation (FedOpt). Still, no modification is operated during the
transmission phases. In all strategies, the learning encompasses
the same number of rounds, and the communication cost of
each round keeps constant during the process, regardless of
the impact of the model updates on the final prediction quality.
Instead, ALF modulates the communication volume depending
on the evolution of the clients’ updates, gradually lowering
the amount of data exchanged as the learning moves on.
Therefore, its integration guarantees a substantial reduction
in the communication cost (up to 83.91%), still retaining
competitive accuracy levels.

The results on the VGG-9 model (Table V) reinforce the
above observations, showing that ALF works even with a
more complex network. Moreover, the comparative assess-
ment reveals an important interplay between ALF and the
optimization brought by more advanced FL schemes. This
can be inferred by comparing the results of FedAvg and
FedOpt with ALF with µ = 0.11. In both cases, applying
ALF improves efficiency, yet with different results. Combining
FedOpt and ALF maximizes accuracy and communication
costs for all datasets. The benefits can be observed mainly
on CIFAR-100, where FedAvg w/ ALF (µ = 0.11) shows
0.34% accuracy improvements with 25.51% of savings, while
FedOpt w/ ALF ensures 3.81% higher accuracy with 74.81%
lower communication cost. This trend suggests that the more
advanced model aggregation proposed by FedOpt accelerates
the layers’ stability, activating the ALF freezing logic sooner,
which leads to higher accuracy and communication savings.

To better understand the impact of the model aggregation
method on the layers’ stability, we recorded the number of
rounds after which each network layer got frozen. For the
sake of simplicity, we only report the analysis on CNN-
5 (Tables VI and VII). Higher values of µ accelerate the
freezing of all layers in both strategies. However, the most
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TABLE VIII
COMMUNICATION COST IN GB OF DIFFERENT FL STRATEGIES W/O AND
W/ ALF (µ = 0.11). RESULTS ON CNN-5 FOR THE CIFAR-10 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

74.0 58.55 50.42 52.59 50.13 28.70 27.91
74.5 64.81 60.01 63.59 59.87 32.71 28.12
75.0 100.31 67.97 97.70 69.61 33.13 31.91
75.5 - 68.03 - 69.70 55.02 36.09
76.0 - 68.05 - 69.84 58.85 36.09
76.5 - 68.06 - 69.84 71.56 36.10
77.0 - 68.09 - 69.85 - -

TABLE IX
COMMUNICATION COST IN GB OF DIFFERENT FL STRATEGIES W/O AND

W/ ALF (µ = 0.11). RESULTS ON CNN-5 FOR THE CIFAR-100 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

39.0 39.86 32.94 39.55 32.16 24.96 21.95
39.5 44.46 36.19 49.49 37.70 27.69 25.02
40.0 58.18 39.10 58.55 37.90 30.36 25.66
40.5 79.35 39.24 80.35 38.13 32.97 25.87
41.0 103.88 39.43 111.20 38.31 40.42 26.10
41.5 - 39.64 - - 50.04 -
42.0 - 39.72 - - 88.35 -

interesting finding is that, for a fixed µ, every layer gets frozen
sooner in FedOpt than in FedAvg. Considering µ = 0.11 on
the CIFAR-10 dataset (Table VI), fc1 is frozen after 1194
rounds in FedAvg and 616 rounds in FedOpt. ALF was able
to adapt to the underlying learning algorithm. If the network
layers converge quicker to their final representation due to a
more efficient FL scheme, then ALF can detect the improved
stability and control the layer freezing accordingly. Moreover,
a comparison between CIFAR-10 (Tables VI) and CIFAR-
100 (Table VII) reveals the freezing round and the freezing
order do change depending on the training dataset, suggesting
that the layers’ convergence depends on data, and not just
the network topology or the learning strategy. On CIFAR-10,
conv1 is frozen before fc2, whereas on CIFAR-100, it is the
opposite. This consideration further justifies the need for an
automatic mechanism to drive the layers freezing.

Tables VI and VII also report the difference between the
accuracy reached when the layers are frozen and the final
accuracy achieved at the end of training. When ALF freezes
the first layer (8% to 22% of the training progress, depending
on the dataset and the FL setting), the model accuracy is far
from the final value (from -7.06% to -10.63% for CIFAR-10,
from -4.33% to -7.31% for CIFAR-100), which means ALF
activates the freezing mechanism before the model converges
to a stable accuracy. The final accuracy is achieved by updating
only a progressively smaller subset of the layers, indicating
that training and synchronizing all layers is unnecessary for
model convergence.

2) Accuracy vs. Communication Cost Trade-offs: The com-
munication volume can be shrunk by reducing the number
of rounds, still preserving accuracy. This solution is straight-
forward and orthogonal to any strategy and optimization
method. However, the kind of FL strategy adopted affects the

TABLE X
COMMUNICATION COST IN GB OF DIFFERENT FL STRATEGIES W/O AND
W/ ALF (µ = 0.11). RESULTS ON VGG-9 FOR THE CIFAR-10 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

81.0 255.98 271.23 272.37 271.32 85.59 94.91
81.5 430.28 354.10 - 346.98 98.60 99.84
82.0 - 363.97 - 347.16 101.20 101.40
82.5 - 364.21 - 347.32 122.01 121.44
83.0 - 364.38 - 347.88 140.74 138.01
83.5 - - - - 202.13 157.82
84.0 - - - - 283.56 157.85

TABLE XI
COMMUNICATION COST IN GB OF DIFFERENT FL STRATEGIES W/O AND

W/ ALF (µ = 0.11). RESULTS ON VGG-9 FOR THE CIFAR-100 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

49.0 489.74 392.34 297.59 283.57 78.55 77.85
49.5 - 392.61 430.44 386.08 83.56 86.17
50.0 - - - - 89.36 90.06
50.5 - - - - 105.17 105.50
51.0 - - - - 110.71 110.33
51.5 - - - - 133.11 131.90
52.0 - - - - 140.76 132.29
52.5 - - - - 153.14 132.55
53.0 - - - - 181.35 132.59
53.5 - - - - 294.43 -

achievable performance. To evaluate the potential benefits, we
monitored the evolution of the global model’s test accuracy
over time, annotating the communication cost needed to reach
predefined accuracy thresholds Ath for the three FL strategies
under analysis. Specifically, we considered the conventional
implementation and the integration with ALF for each FL
strategy.

Table VIII summarizes the results for the CNN-5 trained
on the CIFAR-10 dataset. Dashes in the table indicate that the
corresponding FL strategy failed to reach the target accuracy
within 2000 rounds (i.e., the total number of rounds). For
ALF, the results refer to a setting with µ = 0.11. As
already demonstrated by previous studies [11], [35], more
advanced FL schemes, like FedProx and FedOpt, show faster
convergence than FedAvg, reducing the data exchange needed
to achieve a predefined level of accuracy. Specifically, FedProx
brings slight reductions of few GBs (e.g., for Ath ≥ 75.0% the
cost reduces from 100.31GB down to 97.70GB). In contrast,
FedOpt ensures substantial improvements in both accuracy
and performance. The integration of ALF further increases
the achievable savings for all strategies and accuracy levels.
The most impressive case is FedOpt, where ALF enables
substantial communication cost savings, from 71.56GB to
36.10GB for 76.5% of accuracy.

Similar considerations hold for the CIFAR-100 dataset (Ta-
ble IX). Under their standard implementation, the adopted FL
strategies need substantial overhead to improve the accuracy
by a few percentage points. For instance, to increase accuracy
from 39.0% to 41.0%, FedAvg consumes 64.02GB more
data (from 39.86GB to 103.88GB), FedOpt 15.46GB (from
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TABLE XII
COMMUNICATION COST IN GB OF FEDOPT W/O AND W/ ALF FOR DIFFERENT VALUES OF THE STABILITY THRESHOLD µ. RESULTS ON CNN-5 FOR THE

CIFAR-10 DATASET.

FedOpt w/ ALF
Ath FedOpt 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

74.0 28.70 28.70 28.63 28.49 28.45 23.79 28.34 27.91 27.51 27.29 24.50 22.46
74.5 32.71 32.71 32.37 32.41 32.37 32.11 31.80 28.12 30.52 27.71 24.51 22.46
75.0 33.13 33.13 32.92 32.96 32.91 32.65 32.32 31.91 30.60 27.71 24.51 22.48
75.5 55.02 52.65 47.24 46.40 45.78 45.02 40.77 36.09 30.63 27.72 24.52 -
76.0 58.85 58.63 54.43 53.30 51.97 45.72 40.84 36.09 30.75 - - -
76.5 71.56 65.89 62.23 60.96 52.02 45.95 40.93 36.10 - - - -
77.0 - 87.11 74.94 61.24 52.36 - - - - - - -
77.5 - 96.87 - - - - - - - - - -

TABLE XIII
COMMUNICATION COST IN GB OF FEDOPT W/O AND W/ ALF FOR DIFFERENT VALUES OF THE STABILITY THRESHOLD µ. RESULTS ON CNN-5 FOR THE

CIFAR-100 DATASET.

FedOpt w/ ALF
Ath FedOpt 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

39.0 24.96 24.96 24.96 24.80 21.94 21.83 21.58 21.95 21.82 19.51 17.25 15.81
39.5 27.69 27.69 27.69 26.56 24.97 24.88 24.06 25.02 22.18 19.70 17.43 -
40.0 30.36 30.36 30.36 28.62 27.58 27.20 26.37 25.66 22.34 19.87 17.47 -
40.5 32.97 32.97 32.97 33.05 31.61 31.99 30.06 25.87 22.66 - - -
41.0 40.42 40.42 39.47 38.63 38.01 36.82 30.23 26.10 22.68 - - -
41.5 50.04 49.84 47.05 42.76 41.05 - 30.30 - - - - -
42.0 88.35 63.19 60.00 53.32 44.66 - - - - - - -
42.5 - 82.36 66.90 - - - - - - - - -

24.96GB to 40.42GB). In contrast, FedOpt w/ ALF calls
for 4.15GB more only (from 21.95GB to 26.10GB). This
observation proves that, as the learning process proceeds, only
small portions of the local models should be trained and
synchronized with the global model.

As already stated, layer freezing can reduce the maximum
achievable accuracy. FedOpt w/ ALF is about 1% less accu-
rate than FedOpt w/o ALF. However, ALF guarantees 41%
of accuracy with only 26.10GB, while, with a comparable
cost (27.69GB), the conventional FedOpt achieves 39.5% of
accuracy. Notice that ALF offers the possibility to trade off
accuracy and communication cost with a fine-tuning of the
stability threshold µ, as it will be detailed in Section V-B3.

The analysis of the VGG-9 experiments confirms what was
observed for CNN-5 (Tables X and XI). At lower accuracy
levels, ALF might require higher communication cost, yet with
a small difference of few GBs. Indeed, in the early phases
of learning, just a few layers are frozen. Hence, the impact
of freezing on the data volume is initially low. However, the
savings increase at higher accuracy levels as the transmission
cost per round gradually reduces. This effect is evident in
CIFAR-100, where FedOpt w/ ALF requires less than 1GB
to increase accuracy from 51.5% to 53%.

3) Sensitivity Analysis: As discussed in Section V-B1, the
stability threshold µ acts as a control knob for tuning the
freezing mechanism. A sweeping analysis, with µ ranging
from 0.05 to 0.15, step 0.01, on the CNN-5 model for both
CIFAR-10 and CIFAR-100, is reported in Tables XII and XIII.

Although there is no closed-form solution to identify the
most suitable value of µ for a given accuracy or communi-
cation budget, it is clear that multiple values of µ guarantee
high accuracy and cost reductions simultaneously. For CIFAR-

10, eight configurations of ALF reach 76.5% accuracy with
savings ranging from 7.92% (µ = 0.05) to 49.54% (µ = 0.11)
compared to the conventional implementation of FedOpt. Sim-
ilarly, for CIFAR-100, four configurations guarantee accuracy
higher than 42.0% (µ ≤ 0.08). In general, lower values of µ
ensure better accuracy than FedOpt w/o ALF, with competitive
or lower data volume (as for CIFAR-100 with µ ≤ 0.06).

4) Convergence Time: We investigated the effects of the
ALF mechanism on the convergence time, ensuring the layers
freezing does not affect the training time. To provide a proxy
of the training duration, we measured the number of rounds
needed to reach a predefined set of accuracy thresholds for
all the FL strategies under analysis (Tables XIV-XVII). The
results refer to an ALF setting with µ = 0.11. In most cases,
the ALF mechanism reduces the number of rounds if compared
with the baseline implementations. The best case is for CNN-5
trained on CIFAR-100 (Table XV), where ALF achieves 41.0%
of accuracy with 981 fewer rounds than the standard FedAvg
(1672 vs. 691). Therefore, ALF maximizes communication
savings thanks to the combined effects of smaller transmitted
payloads and fewer rounds. In some settings, we observed
a slight increase in rounds due to ALF. This happens for
VGG-9 trained with FedProx and FedOpt in particular (Tables
XVI and XVII). Nevertheless, the overhead is rather quite
limited, just a few tens of rounds, with a worst-case of 70
rounds for Ath ≥ 53.0 in VGG-9 on CIFAR-100 trained with
FedOpt (Table XVII). Regarding this overhead, one should
consider that the total training time depends on the round
duration and not just the number of rounds. That opens to some
additional considerations. The effect of ALF is to shorten the
round duration by alleviating the workload of local training
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TABLE XIV
ROUND-TO-ACCURACY OF DIFFERENT FL STRATEGIES W/O AND W/ ALF

(µ = 0.11). RESULTS ON CNN-5 FOR THE CIFAR-10 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

74.0 962 864 864 860 471 467
74.5 1065 1046 1045 1045 537 471
75.0 1649 1207 1606 1242 544 543
75.5 - 1215 - 1254 904 669
76.0 - 1221 - 1285 967 684
76.5 - 1234 - 1296 1176 873
77.0 - 1591 - 1307 - -

TABLE XV
ROUND-TO-ACCURACY OF DIFFERENT FL STRATEGIES W/O AND W/ ALF

(µ = 0.11). RESULTS ON CNN-5 FOR THE CIFAR-100 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

39.0 641 533 636 525 401 367
39.5 715 592 796 632 445 423
40.0 936 655 942 650 488 449
40.5 1277 670 1293 677 530 473
41.0 1672 691 1790 722 650 585
41.5 - 756 - - 805 -
42.0 - 1799 - - 1422 -

and data transmission phases. Indeed, the training duration is
proportional to the number of operations needed for updating
the model weights, which inversely correlates with the number
of frozen layers increasing over time. Furthermore, ALF
shortens the communication time needed for synchronization
(in both the download and upload phases) by reducing the size
of the transmitted payloads. As a result, the increased number
of rounds does not necessarily lead to longer training time or
worse performance.

VI. CONCLUSION

This work introduced ALF, an automatic mechanism for
layer freezing aimed at reducing communication costs in cross-
device FL. ALF monitors the evolution of the models’ updates
generated by the clients to detect stable layers, i.e., layers
whose updates bring marginal or no improvement to the
prediction capability of the global model. Also, ALF integrates
a freezing logic that keeps the weights of the stable layers con-
stant in the local and global models, avoiding the need for their
synchronization and, hence, the corresponding transmission
costs. Extensive validation on different experimental settings
demonstrated the benefits of ALF, showing that the proposed
mechanism brings concurrent improvements in accuracy and
communication efficiency. Moreover, we proved that ALF is
embeddable into existing FL strategies with minimal modifi-
cations of the standard flow. All the operations of ALF are
performed on the central server, avoiding additional overhead
on the resource-constrained clients. Most importantly, when
integrated into more advanced FL strategies, ALF can leverage
complementary strategies operating at different levels, e.g.,
local training or central aggregation, to accelerate the layers
freezing and maximize the achievable accuracy and savings
through joint optimization.

TABLE XVI
ROUND-TO-ACCURACY OF DIFFERENT FL STRATEGIES W/O AND W/ ALF

(µ = 0.11). RESULTS ON VGG-9 FOR THE CIFAR-10 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

81.0 983 1044 1046 1047 328 365
81.5 1653 1473 - 1599 378 384
82.0 - 1632 - 1606 388 390
82.5 - 1642 - 1613 468 469
83.0 - 1650 - 1708 540 540
83.5 - - - - 776 691
84.0 - - - - 1089 726

TABLE XVII
ROUND-TO-ACCURACY OF DIFFERENT FL STRATEGIES W/O AND W/ ALF

(µ = 0.11). RESULTS ON VGG-9 FOR THE CIFAR-100 DATASET.

FedAvg FedProx FedOpt
Ath w/o ALF w/ ALF w/o ALF w/ ALF w/o ALF w/ ALF

49.0 1857 1787 1128 1163 297 297
49.5 - 1932 1632 1686 316 329
50.0 - - - - 338 344
50.5 - - - - 398 404
51.0 - - - - 419 424
51.5 - - - - 504 542
52.0 - - - - 533 558
52.5 - - - - 580 591
53.0 - - - - 687 757
53.5 - - - - 1116 -
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