
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A DSP shared is a DSP earned: HLS Task-Level Multi-Pumping for High-Performance Low-Resource Designs /
Brignone, Giovanni; Lazarescu, Mihai T.; Lavagno, Luciano. - ELETTRONICO. - (2023), pp. 551-557. (Intervento
presentato al convegno 2023 IEEE 41st International Conference on Computer Design (ICCD) tenutosi a Washington
(USA) nel 06-08 November 2023) [10.1109/ICCD58817.2023.00089].

Original

A DSP shared is a DSP earned: HLS Task-Level Multi-Pumping for High-Performance Low-Resource
Designs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICCD58817.2023.00089

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981775 since: 2024-01-24T09:31:31Z

IEEE

A DSP shared is a DSP earned:
HLS Task-Level Multi-Pumping for

High-Performance Low-Resource Designs
Giovanni Brignone, Mihai T. Lazarescu, Luciano Lavagno

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino

Turin, Italy
{giovanni.brignone, mihai.lazarescu, luciano.lavagno}@polito.it

Abstract—High-level synthesis (HLS) enhances digital hardware
design productivity through a high abstraction level. Even if the
HLS abstraction prevents fine-grained manual register-transfer
level (RTL) optimizations, it also enables automatable optimiza-
tions that would be unfeasible or hard to automate at RTL.
Specifically, we propose a task-level multi-pumping methodology
to reduce resource utilization, particularly digital signal processors
(DSPs), while preserving the throughput of HLS kernels modeled
as dataflow graphs (DFGs) targeting field-programmable gate
arrays. The methodology exploits the HLS resource sharing to
automatically insert the logic for reusing the same functional
unit for different operations. In addition, it relies on multi-
clock DFGs to run the multi-pumped tasks at higher frequencies.
The methodology scales the pipeline initiation interval (II) and
the clock frequency constraints of resource-intensive tasks by
a multi-pumping factor (M). The looser II allows sharing the
same resource among M different operations, while the tighter
clock frequency preserves the throughput. We verified that our
methodology opens a new Pareto front in the throughput and
resource space by applying it to open-source HLS designs using
state-of-the-art commercial HLS and implementation tools by
Xilinx. The multi-pumped designs require up to 40% fewer DSP
resources at the same throughput as the original designs optimized
for performance (i.e., running at the maximum clock frequency)
and achieve up to 50% better throughput using the same DSPs as
the original designs optimized for resources with a single clock.

Index Terms—Dataflow architectures, FPGA, high-level synthe-
sis, multi-pumping, resource sharing

I. INTRODUCTION

High-level synthesis (HLS) raises the abstraction level of
electronic design automation tools to improve the digital hard-
ware designer’s productivity. The high abstraction precludes
some low-level manual optimizations, making the quality of
results (QoR) of HLS circuits inferior to those manually op-
timized at the register-transfer level (RTL), especially for the
area and maximum clock frequency [1]. On the other hand,
we deem the HLS description introduces new optimization
opportunities at a high level.

We focus on HLS designs modeled as dataflow graphs
(DFGs) (e.g., with dataflow in Xilinx Vivado/Vitis HLS [2],
hierarchy in Siemens Catapult HLS [3], or task functions in
Intel HLS compiler [4]). Modeling HLS designs as DFGs

proved its effectiveness both in industrial [5], [6] and academic
[7], [8] projects.

A DFG is a set of parallel computational tasks (C/C++
functions in HLS) communicating asynchronously through
first-in-first-out (FIFO) queues. HLS tools typically implement
DFGs as single-clock dataflow graphs (SCDFGs), where all
the tasks share the same clock signal. Many modern HLS
tools do not support multi-clock designs [2], [4]. Nevertheless,
we can generalize SCDFGs to multi-clock dataflow graphs
(MCDFGs) by assigning each task to a dedicated clock domain.
The generalization enhances the tasks’ flexibility and maximum
frequency, limited only by the critical timing path local to
the task rather than the global one. Clock architectures of
modern field-programmable gate array (FPGA) system-on-
chips (SoCs) seamlessly support multiple clocks, and the area
overhead for safe clock domain crossing (CDC) is negligible
since the tasks already communicate through FIFOs, which
can be configured with independent read and write clocks with
comparable resource utilization [9].

Multiple clock domains allow optimizations like multi-
pumping, which reduces the area while preserving the through-
put by reusing M times a resource, usually a digital signal
processor (DSP) unit in the FPGA context, clocked at a fre-
quency M times larger than the rest of the system. Designers
typically apply the technique at RTL by manually inserting the
custom logic to share the resource and safely perform CDC.

In this work, we achieve multi-pumping at the task level by
tuning only the high-level parameters of the tasks, in particular
the pipeline initiation interval (II), i.e., the clock cycles between
the start of successive pipeline executions, and the clock con-
straint at the task granularity, taking advantage of the MCDFG.
The HLS resource sharing algorithm automatically builds the
logic for sharing the resource within a dataflow task. At the
same time, the inter-task FIFOs allow safe CDC. We focused
on DSPs, which are critical in compute-intensive kernels and
can run at high frequencies. However, the technique can multi-
pump any shareable resource, including entire sub-functions.

For example, consider a 2D Convolution HLS kernel by
Xilinx [10], implemented as an SCDFG, as shown in Fig. 1a,
where the rectangular nodes and the arrows represent the tasks

ReadFromMem

Window2D

Filter2D

WriteToMem

250
MHz

(a) SCDFG

× × · · · × ×250
MHz

(b) State-of-the-art Filter2D

× · · · ×500
MHz

(c) Double-pumped Filter2D

Fig. 1. Task-level multi-pumping saves resources at equal throughput for HLS
of dataflow graphs (DFGs). The Filter2D task from a 2D Convolution kernel
[10] (a) is double-pumped (c) by doubling its clock frequency and II to save
half of the multipliers of the single-clock solution (b).

and the FIFOs, respectively. At each iteration, the Filter2D
task processes a convolution window of up to 15×15 elements,
which requires computing 225 multiply and accumulate (MAC)
operations bound to DSPs. Thus, an II of 1 cycle requires 225
DSPs. On the other hand, scaling the II to 2 cycles implies that
a new pipeline iteration starts every two clock cycles. Therefore,
the pipeline has two cycles to compute the 225 operations.
Hence, thanks to resource sharing, the HLS binding allocates
only d225/2e = 113 DSPs, each of which computes two MACs.
Assume that we target a throughput of 250 MSa/s. With the
state-of-the-art (SOTA) SCDFG flow (Fig. 1b), we set the clock
frequency of the whole DFG, including the Filter2D task that
allocates 225 DSPs at 250 MHz. On the other hand, with our
multi-pumping approach (Fig. 1c), we optimize the Filter2D
task by scaling its II to 2 cycles, to save half of the DSPs, and
its clock frequency to 500 MHz, to preserve the throughput.

This paper proposes an area-minimization methodology that
preserves the throughput via task-level multi-pumping for
FPGA HLS designs described as DFGs. Its effectiveness is
validated on open-source designs using the workflow shown in
Fig. 2, which generates an optimized multi-pumped intellectual
property (IP) block from C/C++ source code using SOTA
Xilinx commercial tools [11].

To the best of our knowledge, this is the first work that
combines multiple clock domains with resource sharing in HLS
of DFGs for task-level multi-pumping. The empirical results
show that a new Pareto front opens in the power, performance,
and area (PPA) space, with circuits that use up to 60 % fewer
resources at maximum throughput or achieve up to 50 % higher
throughput with the same resources.

II. RELATED WORK

Our work is mainly related to QoR improvement of HLS
designs by tuning the HLS directives (i.e., the instructions for
the HLS compiler to control hardware optimizations such as
loop pipelining), focusing on multi-clock designs.

Several works [12]–[16] optimize for performance the HLS
directives applied to plain software code not intended for HLS

via design-space exploration (DSE). However, the goals of their
works differ from ours since we optimize for resources while
preserving the throughput of source code already optimized
for HLS. In addition, our methodology avoids time-consuming
DSEs and analytically computes the multi-pumping factor
and, consequently, the corresponding II and clock frequency
constraints. Finally, they all consider only single clock designs,
except for Liang et al. [16] (discussed further in Section II-A).

HLS design optimizations based on multiple clock domains
work at the operation level, assigning domains at the low-level
resource (e.g., adder or multiplier) granularity, typically during
scheduling [17]–[19], or at the task level, assigning domains
at function granularity (i.e., MCDFGs) [16], [20].

A. Operation-level multi-clock in high-level synthesis

Lhairech-Lebreton et al. [17] use multiple clock domains
in HLS to reduce power consumption while preserving the
throughput by halving the operating frequency of two-cycle
operations. We instead focus on area and performance opti-
mizations because power is only a secondary quality metric
for FPGA designs after performance and area.

Canis et al. [18] and Ronak et al. [19] design double-pumped
DSP modules and use them in HLS with custom resource-
sharing algorithms. Theoretically, Xilinx Vitis HLS supports
double-pumped MAC operations through user-callable func-
tions from the dsp_builtins library, but it is undocumented
and faulty [21]. Our approach produces similar results when
double-pumping a task. However, our task-level solution does
not require custom modules, changes to the HLS sharing
algorithm, or changes to the source code. In addition, it can
select multi-pumping factors greater than two, resulting in
larger resource savings.

B. Task-level multi-clock in high-level synthesis

Ragheb et al. [20] focus on extending the LegUp HLS tool to
support MCDFGs synthesis but leave the selection of the clock
frequencies to a suboptimal, time-consuming profiling-based
approach. Our work focuses instead on a general methodology
for exploiting the multiple clock domains. The workflow we
define for building MCDFGs, based on SOTA Xilinx tools, is
just a means to apply our methodology.

Liang et al. [16] propose a DSE methodology for maximizing
the throughput under area constraints for HLS of MCDFG
designs. They iteratively push for performance the HLS loop
directives applied to the bottleneck tasks. If a task is still a
bottleneck after maximally pushing the directives (e.g., when
the pipeline II constraint is 1 cycle), they relax the directives of
every task, increase the clock frequency of the bottleneck task,
and restart the procedure. The goal of our work is different
since we minimize the area while preserving the throughput.
The optimization approaches differ, too, since we optimize all
the resource-intensive tasks independently of whether they are
bottlenecks, and we never push the II constraints, which the
HLS compiler may fail to meet (e.g., due to data dependencies).

Std.
HLS

N

G(V,E) Impl. F Opt. M
Fopt

Iopt

Split
HLS

v0v1vi IPI

DFG charact. M opt. MCDFG synth.

C/C++
source

fbase

IP

Fig. 2. Given the C/C++ source code of a dataflow graph (DFG) application and its base clock frequency, the proposed workflow builds the optimized multi-pumped
IP by (a) analyzing the DFG (DFG charact.), (b) optimizing the multi-pumping factors (M opt.), and (c) synthesizing the multi-pumped IP (MCDFG synth.).

III. BACKGROUND

Given the DFG throughput model defined in Section III-A,
our multi-pumping methodology exploits the resource sharing
executed by the HLS binding step to build the sharing logic.
The relaxed timing mode for the HLS scheduling step ensures
that the II of the pipelines is independent of the target clock
frequency, as explained in Section III-B.

A. Dataflow graph

A DFG G(V,E) is a set of tasks v ∈ V running in parallel
and communicating asynchronously through FIFO channels
e ∈ E.

In HLS, each task is described as a C/C++ function whose
core computational part typically consists of a pipelined loop.
Given a task vi clocked at frequency fi and whose core loop
is scheduled with initiation interval II i, an approximation of
its throughput is

Φi :=
fi
II i

. (1)

The maximum external dynamic random access memory
(DRAM) bandwidth can also limit throughput. However, this
is out of the scope of our methodology since it does not
change the overall throughput and, consequently, the DRAM
bandwidth requirements.

The overall DFG throughput matches the one of the bottle-
neck task (i.e., the task with the lowest throughput)

ΦG := min
vi∈V

Φi. (2)

According to (1), the high-level knobs for tuning the through-
put of task vi are its clock frequency (fi) and initiation interval
(II i). All tasks share the same clock in single-clock dataflow
graphs (SCDFGs). Thus, fi is the same for all tasks and is
bounded by the global (i.e., among all tasks) critical path.
Therefore, only the II i can be tuned independently for each
task. In an MCDFG, on the other hand, the clock frequency
can be set individually for each task. This additional degree of
freedom allows for higher flexibility and tasks frequencies than
SCDFG since the clock frequency of a task is limited only by
its local critical path and not the one of the whole DFG.

B. High-level synthesis

Our multi-pumping technique relies on two key concepts of
the HLS tools: (1) the minimum pipeline II is independent of

the clock frequency constraint when the scheduler works in
relaxed timing mode (i.e., the clock frequency is subordinate to
meet the II constraints), and (2) the level of resource sharing is
directly dependent on the II. Both are implemented by the HLS
back-end that generates the hardware description. The timing
model is used during scheduling and the resource sharing is
done during binding [2].

1) Scheduling: Scheduling assigns operations to specific
clock cycles; thus, it also implements loop and function
pipelining. Designers can constrain the II of the pipelines,
which is lower bound by the resource constraints and the data
dependencies. Consider the data dependence graph (DDG)
modeling the data dependencies in a kernel. Given a cycle
θ in the DDG, we define delayθ as the sum of the delays
of the operations along θ and distθ as the total loop-carried
dependence distance along θ. The lower bound of the II is

IImin := max
θ∈DDG

(
delayθ
distθ

)
. (3)

The associated cycle is called critical [22].
For example, consider the following loop to be scheduled:

for (int i = 0; i < N; i++)
a = a + b;

The read-after-write dependency on a, produced at the i-th
iteration and consumed at the i + 1-th iteration, introduces
a cycle θ in the DDG. delayθ is the latency of the adder
computing a+b. distθ is 1 since a is consumed at the iteration
after it is produced. Therefore, (3) implies that the minimum
II for this loop equals the latency of the adder.

The clock constraints determine how many operations fit
within a clock cycle, thus affecting the depth of the pipelines.
The pipeline depth determines the latencies of its operations,
impacting the critical cycle and, in turn, the II lower bound.
However, the II constraints take precedence over clock con-
straints in relaxed timing mode, yielding lower II pipelines
in exchange for potential HLS timing violations. These are
usually acceptable at HLS time since HLS timing estimations
may be overly pessimistic [1], and downstream implementation
steps may resolve them.

2) Binding: Binding assigns each operation to a compatible
functional unit, depending on resource and performance (e.g.,
clock frequency, II) constraints.

Resource sharing is a crucial binding optimization that
maps operations of the same type to the same functional unit,
scheduled on different clock cycles or under mutually exclusive
conditions (e.g., on different if-then-else branches). The II
constraints directly affect the degree of resource sharing. In
particular, if a pipeline scheduled with an II of IIi cycles com-
putes NOP

i operations (OPs) of the same kind at each iteration,
the binding step allocates NFU

i functional units (FUs), with

NFU
i :=

⌈
NOP
i

IIi

⌉
. (4)

Note that the operations can be either computations or
memory accesses. The functional units associated with the
memory operations are ports proportional to the partitioning
factors (i.e., the number of submemories into which a memory
resource is divided to increase its parallelism). Therefore, larger
II values result in fewer functional units and smaller memory
partitioning factors.

Consider the Filter2D task from the 2D Convolution kernel
introduced in Section I, whose source code is in Fig. 3a.
Assuming a filter of size 2 × 2 (i.e., FILTER V SIZE =
FILTER H SIZE = 2), with the schedule with an II of 1 cycle
(shown in Fig. 3b, where the nodes represent the operations,
and the edges the data dependencies), at the steady-state, four
multiplications are computed in parallel on different data within
the same clock cycle (highlighted by the red rectangle), thus
requiring four DSP-mapped multipliers. With an II of 2 cycles
instead (see Fig. 3c), only two multiplications are computed
per clock cycle. Therefore, the binding step allocates only two
multipliers and shares these among two multiplications.

IV. TASK-LEVEL MULTI-PUMPING

We multi-pump the resources of task vi by simultaneously
scaling by a multi-pumping factor Mi the II and the clock
frequency of vi.

The underlying principles of our approach are:
• (2) allows tuning each task independently without reducing

the overall DFG throughput, as long as the throughput of
the task does not get lower than the bottleneck task one.

• As discussed in Section III-B2, scaling the II of a pipelined
loop by a factor Mi allows reusing the same functional
unit for Mi operations in different clock cycles.

• (1) implies that the task throughput is unchanged if we
scale by Mi the task clock frequency together with the II.

Assume that vi meets the timing constraints up to fmax
i and

computes NOP
i operations mapped to DSPs. Moreover, the

non-multi-pumped tasks are clocked at fbase (i.e., the clock
constraint given by the designer). The maximum multi-pumping
factor for task vi is

Mmax
i := min

(⌊
fmax
i

fbase

⌋
, NOP

i

)
. (5)

It is worth noting that our task-level multi-pumping changes
only the HLS directives while using the HLS tool as a black
box and without requiring manual source code restructuring.
The automation of this step will be the subject of future work.

void Filter2D(hls::stream<window> &window_stream,
hls::stream<char> &pixel_stream)

{
for (int x = 0; x < width * height; x++) {

#pragma HLS PIPELINE II = II_Filter2D
window w = window_stream.read();
int sum = 0;
for (int row = 0; row < FILTER_V_SIZE; row++) {
for (int col = 0; col < FILTER_H_SIZE; col++)

sum += w.pix[row][col] * coeffs[row][col];
}
pixel_stream.write(sum);

}
}

(a) Source code

rd

× ×

+ × ×

+

+

wr

rd

× ×

+ × ×

+

+

wr

rd

× ×

+ × ×

+

+

wr

rd

× ×

+ × ×

+

+

wr

II = 1 cycle

Ti
m

e
(c

yc
le

s)

Loop iteration (#)

(b) Execution with II 1 cycle

rd

× ×

+ × ×

+

+

wr

rd

× ×

+ × ×

+

+

wr

rd

× ×

+ × ×

+

+

wr

II = 2 cycles

Ti
m

e
(c

yc
le

s)

Loop iteration (#)

(c) Execution with II 2 cycles

Fig. 3. The pipeline initiation interval (II) directly affects the resource sharing.
For example, in the Filter2D task (a), the pipeline with II = 1 cycle (b)
computes four multiplications per clock cycle in steady state, while the one
with II = 2 cycles (c) only two. Thus, the latter datapath allocates half of the
multipliers.

V. MULTI-PUMPING WORKFLOW

To validate our task-level multi-pumping, we define a work-
flow from the C/C++ source code to an optimized MCDFG IP
block compatible with Xilinx tools [11], as shown in Fig. 2.
The main steps of the workflow are (A) DFG characterization
to extract the maximum clock frequency and the number of
DSP operations of each task, needed by the later steps, (B) mul-
ti-pumping factor optimization to select the multi-pumping
factor of each task, and (C) MCDFG synthesis to generate the
multi-pumped IP.

A. Dataflow graph characterization

For each task in the DFG G(V,E), we collect the number
of DSP operations (N = {NOP

i ,∀vi ∈ V }) from the reports of
the standard SCDFG HLS. We collect the maximum frequency
meeting the timing constraints (F = {fmax

i ,∀vi ∈ V }) from
the post-implementation reports of the SCDFG. We execute the
implementation with a tight clock constraint (e.g., 500 MHz)
and at the lowest pipeline II, which is the worst case for the
critical cycle (defined in Section III-B). Indeed, when multi-
pumping increases the II, it relaxes the critical cycle, allowing
deeper pipelines and shorter critical paths, thus higher clock
frequencies.

We do not extract F from the earlier-available HLS clock
frequency estimations since they are unreliable [1]. We run
the SCDFG implementation only once, so the overhead is
usually acceptable. However, if a fast flow is required (e.g.,
in early design phases), we can run only the logic synthesis
step without placement and routing. The timing estimations
at the logic synthesis step are more accurate than the one
of the HLS compiler since they have access to lower-level
information. When the estimated maximum frequency is less
than the actual one, we miss chances of saving resources
because of lower multi-pumping factors, as per (5). On the
contrary, if the frequency is overestimated, the timing fails
during implementation.

B. Multi-pumping factor optimization

We select the multi-pumping factors (M = {Mi,∀vi ∈ V })
that minimize the DSP utilization. If vi contains operations
mapped to DSP, we set Mi = Mmax

i , as defined by (5).
Otherwise, we do not apply multi-pumping to vi.

C. Multi-clock dataflow graph synthesis

Xilinx Vitis HLS cannot synthesize MCDFGs directly since
it supports only one clock domain per the design. However,
the dataflow directive generates several independent modules,
one for each task, and interconnects them in a top-level module.
Thus, we run a split HLS, synthesizing each task separately
(i.e., setting it as the top module) with its clock constraint.

The Xilinx HLS binding algorithm guarantees optimal re-
source sharing if guided by resource constraints only. Therefore,
we constrain the number of DSPs according to (4). For instance,
if we multi-pump with a factor Mi a task vi that originally
uses NDSP

i , we constrain its DSPs to
⌈
NDSP
i /Mi

⌉
.

In principle, we could also scale down the memory partition-
ing factors by Mi to reduce on-chip memory resource usage,
namely block random access memories (BRAMs) and registers.
However, we cannot apply this optimization to the test cases
considered in Section VI with Xilinx HLS. Indeed, the tool
ignores the coarser partitioning directives and automatically
partitions the memories, presumably to minimize the pipelines
II, regardless of the provided directives. We plan to revisit the
issue as a more recent version of the HLS tool is available.

Finally, we interconnect the tasks synthesized separately
using the Vivado intellectual property integrator (IPI).

The Xilinx HLS tools use FIFOs as inter-task communication
channels when data are produced and consumed in the same
order; otherwise, ping-pong buffers. Our method could support
both, but since the Xilinx IPI flow does not provide a config-
urable multi-clock ping-pong buffer, we currently only support
FIFO channels using the Xilinx FIFO generator [23]. FIFOs
are configured with independent clocks for read and write ports
when interconnecting tasks assigned to different clock domains.

VI. EVALUATION

We verify the applicability and the advantages in the PPA
space of our task-level multi-pumping workflow, described in
Section V, by applying it to open-source HLS designs.

Our experiments target the embedded platform Zynq Ultra-
Scale+ FPGA SoC hosted by the Avnet Ultra96v1 board [24].
We use Vitis HLS 2022.2 [2] and Vivado HLS 2019.2 [25] for
the synthesis and Vivado 2022.2 [11] for the implementation.

We collect the resource utilization from the post-
implementation reports and the power estimations from the
post-implementation static power analysis. We verify that the
throughput (i.e., the number of output samples produced in the
unit of time) matches the theoretical one by measuring the time
for 10 000 executions in auto-restart mode [2] (to make the
time overhead for control negligible) of the kernels in hardware,
using the PYNQ application programming interfaces [26].

We apply our flow to some open-source HLS designs, in-
cluding (a) the 2D Convolution from the Vitis Tutorials [10]
already introduced in Section I, (b) the Optical Flow from the
Rosetta suite [8], and (c) the virtual molecule screening (VMS)
[27], a drug discovery accelerator.

For each design, we compare the multi-pumped implemen-
tations (M-Pump) with the original ones (Base) and with the
best SCDFG implementations without source code changes
(S-Pump). For the S-Pump implementations, we apply our
flow without the generalization to MCDFG. Thus, if task vi is
“single-pumped” by a factor Si, we scale by Si its II, as with
our original workflow, and the clock frequency of the whole
kernel. The maximum “single-pumping” factor for each task is
lower than the corresponding maximum multi-pumping factor
(defined by (5)) since it is at most

Smax
i :=

 min
∀vi∈V

fmax
i

fbase

 . (6)

Figure 4 shows the tradeoffs between the DSP utilization and
the throughput obtained by varying the base clock frequency
within the range allowed by the critical path of the designs.
The dashed lines represent computation throughputs that ex-
ceed the memory throughput. Thus, the effective throughputs
are, in practice, clipped to the maximum non-dashed value,
corresponding to the maximum memory throughput.

The number of DSPs used by Base designs is independent
of the clock frequency. The plots of the Pump designs are
characterized by a step shape, whose discontinuities correspond
to the IIs changes, which only assume integer values. The
Pump solutions provide different tradeoffs in the throughput

0 100 200 300
0

20

40

60

80

100

Throughput (MSa/s)

D
SP

ut
ili

za
tio

n
(%

)

Base
S-Pump
M-Pump

(a) 2D Convolution

0 100 200 300
0

20

40

60

80

100

Throughput (MSa/s)

D
SP

ut
ili

za
tio

n
(%

)

Base
S-Pump
M-Pump

(b) Optical Flow

0 20 40 60
0

20

40

60

80

100

Throughput (MSa/s)

D
SP

ut
ili

za
tio

n
(%

)

Base
S-Pump
M-Pump

(c) VMS

Fig. 4. Digital signal processors (DSPs) allocated for a given throughput. The M-Pump designs are optimized using the proposed task-level multi-pumping
technique. The M-Pump designs are Pareto-optimal compared to the Base designs, whose DSP utilization is constant since they are optimized by tuning the
clock frequency only, and to the S-Pump designs, which are optimized for area by changing both the II and the global clock frequency of the tasks. The
dashed lines represent the theoretical throughputs achievable with the allocated DSPs, which are unreachable in practice due to memory bandwidth limitations.
The dots show the design points implemented in hardware.

TABLE I
POWER, PERFORMANCE, AND AREA OF THE BENCHMARKS TARGETING A ZYNQ ULTRASCALE+ SOC

LUT PowerThroughput Base
clock

Pump
factors DSP Logic Memory FF BRAM Static Dynamic

Clock
routingDesign

(MSa/s)
Implem.

(MHz) (1) (%) (%) (%) (%) (%) (W) (W) (%)

Base 165 – 64 14 12 9 4 0.3 1.8 1.0
165 S-Pump 330 2 33 15 12 18 4 0.3 2.3 1.0

M-Pump 165 3 23 14 12 18 4 0.3 2.2 2.4

Base 250 – 64 13 12 10 4 0.3 2.0 1.0

2D Convolution
[10]

250 M-Pump 250 2 33 15 12 19 4 0.3 2.8 2.4

Base 150 – 55 36 65 23 20 0.3 2.5 1.0
150 S-Pump 300 2 29 37 65 26 20 0.3 3.2 1.0

M-Pump 150 2, 3 21 37 64 27 20 0.3 3.0 3.8

Base 175 – 55 36 65 23 20 0.3 2.5 1.0

Optical Flow
[8]

175 M-Pump 175 2 33 38 65 27 20 0.3 2.9 2.4

Base 110 – 89 32 23 31 67 0.3 2.0 1.0
28 S-Pump 220 2 44 30 23 31 67 0.3 2.4 1.0VMS

[27]
M-Pump 110 2, 3 42 32 23 37 67 0.3 2.9 3.8

versus DSP space, thanks to the tuning of the pipelines’ II. The
additional degree of freedom of the M-Pump implementations
(i.e., the task clock frequency) makes them always Pareto
optimal.

Both M-Pump and S-Pump designs degenerate to Base
designs (i.e., all the pumping factors to one and no resource
savings) at the highest throughputs since they need the lowest
IIs to reach the best performance. Note that the M-Pump
designs consistently degenerate to Base at throughputs higher
than S-Pump since the multiple clock domains let the multi-
pumped tasks run at the maximum frequency their local critical
path allows. Therefore, the M-Pump designs achieve up to
52 % higher throughput than S-Pump with the same DSPs
in the 2D Convolution test case. Moreover, with the Optical
Flow benchmark, the M-Pump reaches the maximum effective
throughput using 40 % fewer DSPs than the Base.

Table I reports the post-implementation PPA data for the

design points marked with the dots in Fig. 4. We select those
points since their throughputs are the upper extremes of the
last steps of M-Pump and S-Pump within the memory bound.

Comparing the M-Pump designs with the Base ones, the
consistent DSP saving (54 % on average) implies power and
flip-flops (FFs) overheads. The additional power (24 % on
average) is because the multi-pumped tasks are characterized
by greater switching activity due to higher resource reuse and
clock frequencies. The additional FFs (33 % on average) are
inserted by the HLS tool in the multi-pumped tasks to build
deeper pipelines and reach higher clock frequencies.

As expected [9], the PPA overhead for CDC in M-Pump is
negligible. The overhead for routing multiple clocks is also
marginal, as each additional clock domain allocates only 1.4 %
of the available clock routing resources.

In general, the M-Pump solutions Pareto dominate the S-
Pump ones. In fact, at the same throughput, they allocate fewer

DSPs, similar look-up tables (LUTs) and FFs, and consume
less power. This is because the M-Pump designs take advantage
of the multiple clock domains to increase the clock frequency
of the multi-pumped tasks only, thus reaching higher multi-
pumping factors and avoiding power and FF overheads in
the non-multi-pumped tasks. The VMS test case is the only
exception because only a small fraction of its logic runs at the
base clock frequency, while the rest is double or triple-pumped;
thus, the lower-frequency tasks are not enough to balance the
power and FF overhead for the multi-pumped tasks.

VII. CONCLUSION

We propose a task-level multi-pumping technique for saving
hardware resources while maintaining the original throughput
for HLS dataflow designs for FPGAs.

Given an SOTA single-clock DFG, our approach first general-
izes it to a multi-clock DFG. Secondly, it tunes the tasks’ high-
level parameters (i.e., clock frequency and pipeline II) to multi-
pump their functional units. The overhead for generalization
is negligible, thanks to the DFGs structure, which consists
of independent blocks communicating via FIFOs, allowing
for safe CDC, and modern FPGA clock architectures, which
seamlessly handle multiple clock domains even if current HLS
tools do not exploit them.

The experimental results reported in Section VI prove that
our method opens a new Pareto front in the performance versus
DSPs space, saving up to 40 % of resources at maximum
throughput. Moreover, our method does not require any manual
architecture changes from the designer, since it acts only on the
high-level parameters of the tasks and uses the HLS binding
algorithm to automatically generate the resource sharing logic.
Finally, the generalization to multi-clock DFGs simply requires
replacing single-clock with multi-clock FIFOs. Therefore, our
technique is well suited for a fully automated HLS optimization
pass, which will be the subject of future work.

ACKNOWLEDGMENT

This work was partially supported by the Key Digital Tech-
nologies Joint Undertaking under the REBECCA Project with
grant agreement number 101097224, receiving support from
the European Union, Greece, Germany, Netherlands, Spain,
Italy, Sweden, Turkey, Lithuania, and Switzerland.

REFERENCES

[1] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and Z.
Zhang, “FPGA HLS Today: Successes, Challenges, and Opportunities,”
ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, pp. 1–42,
Aug. 2022. DOI: 10.1145/3530775.

[2] Xilinx, Vitis High-Level Synthesis User Guide, Dec. 2022. [Online].
Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.

[3] Siemens EDA, Catapult® Synthesis HLS Bluebook, Apr. 2021. [Online].
Available: https://resources.sw.siemens.com/en-US/e-book-high-level-
synthesis-hls-blue-book.

[4] Intel, Intel® High Level Synthesis Compiler Pro Edition Reference
Manual, Dec. 2022. [Online]. Available: https://www.intel.com/content/
www/us/en/docs/programmable/683349/22-4/pro-edition-reference-
manual.html.

[5] Xilinx, Vitis Accelerated Libraries, 2023. [Online]. Available: https:
//docs.xilinx.com/r/en-US/Vitis Libraries.

[6] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in Int. Symp. Field-Prog. Gate Arrays,
2017, pp. 65–74. DOI: 10.1145/3020078.3021744.

[7] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible Commu-
nication Avoiding Matrix Multiplication on FPGA with High-Level
Synthesis,” in Int. Symp. Field-Prog. Gate Arrays, 2020, pp. 244–254.
DOI: 10.1145/3373087.3375296.

[8] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston,
Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang, “Rosetta:
A Realistic High-Level Synthesis Benchmark Suite for Software-
Programmable FPGAs,” in Int. Symp. Field-Prog. Gate Arrays, 2018,
pp. 269–278. DOI: 10.1145/3174243.3174255.

[9] Xilinx, Resource Utilization for FIFO Generator v13.2, 2022. [Online].
Available: https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fifo-
generator.html.

[10] ——, Design and Analysis of Hardware Kernel Module for 2-D Video
Convolution Filter, May 2022. [Online]. Available: https://xilinx.github.
io/Vitis- Tutorials/2022- 1/build/html/docs/Hardware Acceleration/
Design Tutorials/01-convolution-tutorial/README.html.

[11] ——, Vivado Design Suite User Guide: Release Notes, Installation, and
Licensing (UG973), Oct. 2022. [Online]. Available: https://docs.xilinx.
com/r/en- US/ug973- vivado- release- notes- install- license/Release-
Notes.

[12] A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “AutoDSE: Enabling
Software Programmers to Design Efficient FPGA Accelerators,” ACM
Trans. Des. Autom. Electron. Syst., vol. 27, no. 4, pp. 1–27, Feb. 2022.
DOI: 10.1145/3494534.

[13] Q. Sun, T. Chen, S. Liu, J. Miao, J. Chen, H. Yu, and B. Yu, “Correlated
Multi-objective Multi-fidelity Optimization for HLS Directives Design,”
in Design Autom. Test Eur. Conf. Exhib., 2021, pp. 46–51. DOI: 10.
23919/DATE51398.2021.9474241.

[14] Xilinx, Merlin Compiler, 2022. [Online]. Available: https://github.com/
Xilinx/merlin-compiler.

[15] C. Lo and P. Chow, “Model-based optimization of High Level Synthesis
directives,” in Int. Conf. Field-Prog. Logic Appl., 2016, pp. 1–10. DOI:
10.1109/FPL.2016.7577358.

[16] T. Liang, J. Zhao, L. Feng, S. Sinha, and W. Zhang, “Hi-ClockFlow:
Multi-Clock Dataflow Automation and Throughput Optimization in
High-Level Synthesis,” in Int. Conf. Comput.-Aided Des., 2019, pp. 1–6.
DOI: 10.1109/ICCAD45719.2019.8942136.

[17] G. Lhairech-Lebreton, P. Coussy, and E. Martin, “Hierarchical and
Multiple-Clock Domain High-Level Synthesis for Low-Power Design
on FPGA,” in Int. Conf. Field-Prog. Logic Appl., 2010, pp. 464–468.
DOI: 10.1109/FPL.2010.94.

[18] A. Canis, J. H. Anderson, and S. D. Brown, “Multi-pumping for resource
reduction in FPGA high-level synthesis,” in Design Autom. Test Eur.
Conf. Exhib., 2013, pp. 194–197. DOI: 10.7873/DATE.2013.053.

[19] B. Ronak and S. A. Fahmy, “Multipumping Flexible DSP Blocks for
Resource Reduction on Xilinx FPGAs,” IEEE Trans. Comp.-Aided Des.
Integ. Cir. Sys., vol. 36, no. 9, pp. 1471–1482, Sep. 2017. DOI: 10.
1109/TCAD.2016.2629421.

[20] O. Ragheb and J. H. Anderson, “High-Level Synthesis of FPGA Circuits
with Multiple Clock Domains,” in Int. Symp. Field-Prog. Custom
Comput. Mach., 2018, pp. 109–116. DOI: 10.1109/FCCM.2018.00026.

[21] Xilinx, Ed. “double pumping DSP.” (2019), [Online]. Available: https:
/ / support . xilinx . com / s / question / 0D52E00006iHilaSAC / double -
pumping-dsp (visited on 08/31/2023).

[22] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
pipelining,” ACM Comput. Surv., vol. 27, no. 3, pp. 367–432, Sep.
1995. DOI: 10.1145/212094.212131.

[23] Xilinx, FIFO Generator, 2022. [Online]. Available: https://www.xilinx.
com/products/intellectual-property/fifo generator.html.

[24] Avnet, Ultra96 Hardware User’s Guide, Mar. 2018. [Online]. Available:
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-
HW-User-Guide-rev-1-0-V0 9 preliminary.pdf.

[25] Xilinx, Vivado Design Suite User Guide High-Level Synthesis, Jan. 2020.
[Online]. Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.

[26] ——, PYNQ: Python productivity for Adaptive Computing platforms,
2022. [Online]. Available: https://pynq.readthedocs.io.

[27] T. V. Aa, T. Haber, T. J. Ashby, R. Wuyts, and W. Verachtert, Virtual
Screening on FPGA: Performance and Energy versus Effort, 2022.
arXiv: 2210.10386.

https://doi.org/10.1145/3530775
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://resources.sw.siemens.com/en-US/e-book-high-level-synthesis-hls-blue-book
https://resources.sw.siemens.com/en-US/e-book-high-level-synthesis-hls-blue-book
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/22-4/pro-edition-reference-manual.html
https://docs.xilinx.com/r/en-US/Vitis_Libraries
https://docs.xilinx.com/r/en-US/Vitis_Libraries
https://doi.org/10.1145/3020078.3021744
https://doi.org/10.1145/3373087.3375296
https://doi.org/10.1145/3174243.3174255
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fifo-generator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=fifo-generator.html
https://xilinx.github.io/Vitis-Tutorials/2022-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/README.html
https://xilinx.github.io/Vitis-Tutorials/2022-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/README.html
https://xilinx.github.io/Vitis-Tutorials/2022-1/build/html/docs/Hardware_Acceleration/Design_Tutorials/01-convolution-tutorial/README.html
https://docs.xilinx.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes
https://docs.xilinx.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes
https://docs.xilinx.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes
https://doi.org/10.1145/3494534
https://doi.org/10.23919/DATE51398.2021.9474241
https://doi.org/10.23919/DATE51398.2021.9474241
https://github.com/Xilinx/merlin-compiler
https://github.com/Xilinx/merlin-compiler
https://doi.org/10.1109/FPL.2016.7577358
https://doi.org/10.1109/ICCAD45719.2019.8942136
https://doi.org/10.1109/FPL.2010.94
https://doi.org/10.7873/DATE.2013.053
https://doi.org/10.1109/TCAD.2016.2629421
https://doi.org/10.1109/TCAD.2016.2629421
https://doi.org/10.1109/FCCM.2018.00026
https://support.xilinx.com/s/question/0D52E00006iHilaSAC/double-pumping-dsp
https://support.xilinx.com/s/question/0D52E00006iHilaSAC/double-pumping-dsp
https://support.xilinx.com/s/question/0D52E00006iHilaSAC/double-pumping-dsp
https://doi.org/10.1145/212094.212131
https://www.xilinx.com/products/intellectual-property/fifo_generator.html
https://www.xilinx.com/products/intellectual-property/fifo_generator.html
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/187/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://pynq.readthedocs.io
https://arxiv.org/abs/2210.10386

	Introduction
	Related work
	Operation-level multi-clock in high-level synthesis
	Task-level multi-clock in high-level synthesis

	Background
	Dataflow graph
	High-level synthesis
	Scheduling
	Binding

	Task-level multi-pumping
	Multi-pumping workflow
	Dataflow graph characterization
	Multi-pumping factor optimization
	Multi-clock dataflow graph synthesis

	Evaluation
	Conclusion

