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Encryption agnostic classifiers of traffic originators
and their application to intrusion detection
Daniele Canavese, Leonardo Regano, Cataldo Basile, Gabriele Ciravegna and Antonio Lioy

Abstract—Monitoring the security status of a network is a
difficult task and it is even more difficult now, in the era of the
encrypted communications. This paper presents an approach that
leverages classical machine learning techniques to classify and
identify the tools that originated traffic for security monitoring
purposes. Our study proves that classifier can detect with
excellent accuracy the category of tools that generated the
analysed traffic (e.g. browsers vs. DoS tools), the actual tools (e.g.
Firefox vs. Chrome vs. Edge) and the individual tool versions (e.g.
Chrome 48 vs. Chrome 68). We also discuss how the information
obtained by the classifiers is useful for early detection of DDoS
attacks, potentially fraudulent copies of entire websites, and to
identify sudden changes in users’ behaviour, which might be the
consequence of a malware infection or data exfiltration.

Index Terms—Network traffic anomaly,intrusion detec-
tion,machine learning,DoS attacks,web crawling

I. INTRODUCTION

Last years have seen an emerging trend: secure communi-
cation channels are more and more used to protect integrity
and confidentiality of user communications and web traffic
[11]. Indeed, in 2018, TLS-encrypted web pages accounted
for more than 75% of time spent by users employing two of
the most common web browsers: Google Chrome1 and Mozilla
Firefox2. This trend originates from the need of companies to
protect user data and information from competitors and ISPs,
but as a side effect, secure channels provide huge benefits for
the users: MitM attacks are circumvented and user privacy is
better guaranteed, as sensitive data are not sent in clear.

On the other hand, encryption severely hinders one of the
pillars of the security, the monitoring ability. Indeed, Intrusion
Detection Systems (IDS) and Intrusion Prevention Systems
(IPS) are unable to correctly detect the security relevant events
that require sniffing the payload. At corporate level, the re-
encryption is increasingly being adopted [30]. Secure channels
are forcefully terminated at specific corporate gateways that
inspect the traffic before re-encrypting it towards the final
destinations. This solution is undoubtedly invasive, even if
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1https://transparencyreport.google.com/https/overview
2https://letsencrypt.org/stats/

companies often justify this practice with the need to ensure
the use of company-accepted cryptographic suites. At “politi-
cal” level, lawful interception allows selected and authorized
subjects to force the disclosure of the encrypted traffic, often in
a way that is transparent to the users [14]. Lawful interception
is objectively too invasive and should be used with care (at
least, the law in different countries prescribes this), thus it
cannot work for corporate security.

Our research aims at improving the monitoring abilities of
the defenders without trading off user privacy and security. We
have thus focused our research on determining the tool that
generates the traffic independently of the protection applied
to channels, which has practical relevance yet has not been
consistently explored. We concentrated on machine learning
classification systems. Indeed, machine learning has shown
great effectiveness in several fields of the computer security,
including the monitoring [10], [5].

Determining if machines are able to identify the tool that
generated the traffic regardless of encrypted or cleartext con-
tent (e.g. with TCP connection information only) is, in our
opinion, an interesting question per se, as well as knowing
if tools (better, the peculiarities of their implementations)
leak information that may allow machines to recognize them.
Nonetheless, answering these questions has important impli-
cations and applications to network security. For instance, in
a typical corporate network environment, users surf the web
for personal or business purposes with browsers. It is very
unlikely that non-tech-savvy users use command line browsers
(e.g. curl or wget). Detecting the use of these tools is an
anomaly and may be the evidence that a user computer has
been compromised by malware connecting to its command
and control site. Moreover, Distributed Denial of Service
(DDoS) and web forgery attacks attacks could be detected
by identifying the tool that generates the traffic. The former
resorts to a myriad of instances of specific tools to generate
a huge amount of traffic, the latter uses crawlers to create
offline copies of entire web sites. Hence, even this non-
exhaustive list of attacks that a monitoring system can detect
with traffic originator information can clarify that gathering
tool information may be useful for security purposes.

The main contribution of this paper is a study on the
possibility for classical machine learning approaches to de-
tect the software that generated the traffic and how to use
the detected information for monitoring purposes. We have
considered in our study three categories of software tools: web
browsers, web crawlers, and network stress tools (i.e. tools
for DDoS), as significant yet non-exhaustive representative of
tools that generate traffic in the today’s network. For each
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category, we have considered the traffic generated by several
tools (e.g. Chrome, Firefox, GrabSite, SlowLoris) and, for
a selection of tools, we have considered multiple versions
(e.g. Firefox 42.0, 62.0 and 68.0). We have evaluated the on-
line detection of tools, versions, and categories, i.e. we have
verified if the detection is possible as soon as packets are
received, that is, before the whole connection is terminated.
Therefore, our study covers both live anomaly detection and
post-mortem analysis, the availability of capture data being the
only requirements.

To the best of our knowledge, this is the first work that uses
ML-based approaches not only to classify the content of the
sniffed traffic or to recognize tool-specific application layer
protocols (using time-series or network connection statistics),
but it focuses on identifying and categorizing the entities that
generated the traffic from the security point of view.

Our analysis has showed several interesting results, some
are sketched here and detailed in the rest of the paper. The
classifiers trained to determine the categories of tools that
generate traffic showed a high accuracy, with an F-score
and AUC of 96%. Furthermore, the classifiers were able to
identify new browsers, i.e. browsers not considered in the
training set, but they were not able to recognize unknown
web crawlers, and network stress tools, which were confused
with tools in other categories. We have deduced that browsers
manifest peculiar fingerprints, and different browsers, either
because of the human beings behind them or because of
their intrinsic characteristics, have similar fingerprints. When
training additional classifiers to detect the tools that generate
the traffic, we noticed a good accuracy even if not as good
as for categories (AUC = 93%). Classifiers trained to detect
specific tool versions were less accurate but still effective
(AUC = 91%). In most cases, when a classifier was wrong
with a browser, it selected a wrong version of the same tool.

The performance of the classifiers depends on the num-
bers of packets examined, the more the packets the better
the accuracy. However, after six packets the performance
of the classifiers stabilizes. Hence, they could be used in
monitoring systems for online threat detection. Moreover, this
study presents additional research issues to investigate on the
possibility to use this approach for monitoring purposes.

The rest of the paper is organized as follows. Section II
illustrates the application scenarios and the high-level objec-
tives of our research. Section III presents the categories of
tools that generate traffic that we have collected as data set
for our experiments as well as the detailed research objectives.
Then, the Section IV presents the data set that is used for the
training and testing of the classifiers described in Section V
together with all the numerical results. Section VI sketches
possible applications of the classifiers to a monitoring system.
Section VII summarizes the findings of our research and
discusses further works that may help answering the open
questions. Finally, Section VIII presents the relevant works
in the field and Section IX draws conclusions.

II. MOTIVATING EXAMPLES

The high-level objectives of our research is to investigate
novel uses of ML techniques that can improve the state of

the art of monitoring controls. The idea is to define classifiers
that can be perform checks that are not available in current
IDS/IPS tools or are not possible with traditional monitoring
systems based on statistical data.

• As a first objective, we would like to improve the
capability of early detection of DDoS attacks, because
discovering DDoS too late strongly reduces the chances
of successful reactions [24] [26] [9] [13].

• Another research objective is identifying the web crawlers
(and telling them apart from web browsers in a trustwor-
thy manner) to block the most aggressive or misbehaving
ones, both to avoid stressing the site resources and to
avoid that they clone an entire website for attack purposes
(e.g. web forgery).

• We are interested in determining if is possible to support
anti-malware systems to detect infections by identifying
the anomalous use of web tools to access unusual re-
sources. For instance, we are interested in identifying
when tools that are expected to be used by tech-savvy
people (e.g. command line tools) are used by non-expert
employees, which may be an evidence of a malware that
reaches its command and control sites.

• Finally, we would like to detect changes in the web
navigation user habits. For instance, we are interested in
detecting when a user changes the web browser or if he
is using at the same time more than one tool.

We stress that we want to achieve our objectives without
threatening the user privacy. However, as an additional objec-
tive, if re-encryption is used or at the endpoints, we would
like to detect mismatches in the information extracted from
the actual HTTP requests (e.g. tools declaring a fake User
Agent).

�
external users

,
Internet

c
preventive

security control

#
Corporate
Services

û
monitoring control

�
employees

Corporate LAN

Fig. 1: Company network scenario.

We have identified two main sample application scenarios
for the application to an IDS of the results that can be obtained
with the our classifiers. The first one is a typical corporate
scenario, where preventing and monitoring security controls
are used to defend the corporate network perimeter. In this
case, the security administrators configure a border firewall
and couple it with a monitoring system, like an IDS/IPS (see
Figure 1 for a possible graphical representation). In most
cases, internal users are recognizable in an unequivocal way,
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e.g. because of a static IP address of sniffed MAC address.
Therefore, their behaviour can be monitored.

�
good users

F
bad users

�
classification and
reaction service

#
third party

serviceé

Fig. 2: SECaaS scenario.

The second scenario is the implementation of the SE-
CaaS (SECurity as a Service) paradigm, where companies
outsource the security of their IT infrastructure to a trusted
third party, which provides such security services remotely,
without requiring on-premises hardware [17]. In this scenario,
the SECaaS provider3 acts as a front-end of a third party
service. It may enforce, in place of a web service owner, a set
of defensive measures, like TLS-protected channels and Web
Application Firewalls. Moreover, it sells monitoring services,
i.e. it observes all the connections and looks for anomalies,
optionally, it can react to unexpected events. In a SECaaS
scenario, DPI is usually not feasible for both technical (i.e.
encrypted connections) and lawful reasons (e.g. compliance to
the European GDPR). Instead, we envision the use of advanced
detection techniques, like the ones we propose in this paper,
which can gather relevant monitoring information from en-
crypted communications, even if recognising individual users
is harder.

Another application scenario is cloud computing as browser
identification can be used to monitor anomalies when access-
ing to SaaS (Software as a Service) instances. Moreover, the
DDoS early detection also applies to software networks, as it
can protect both SDN (Software Defined Networks) controllers
and NFV (Network Function Virtualization) components [24],
[33].

III. TRAFFIC OF INTEREST

The motivation of our work is discovering if ML approaches
are able to identify the software that has originated the traffic
from the data captured in the network, instead of classifying
the data itself.

In this paper, we will refer to tool as a specific software
application able to produce traffic. For instance, Chrome
is an instance of web browser whereas GrabSite is an in-
stance of web crawler. Tool instances (also referred to as
tool versions) are specific releases of a tool. For instance,
Chrome version 68.0.3440.84 is a tool instance as well as
GrabSite version 2.1.16. We have only considered the TCP
connections generated by selected tools instances belonging
to three tool categories: 1) web browsers; 2) web crawlers;
3) network stress tools. Indeed, our goal is to determine if

3As an instance of SECaaS provider, see Cloudfare https://www.cloudflare.
com.

tool identification is feasible, not to exhaustively classify all
the possible tools, categories, and instances.

A. Tool categories

The three categories of tools we have considered all have
their peculiarities that make them interesting for detection
purposes.

1) Web browsers: Web browsers are the tools that users
employ to surf the Internet. Moreover, they can also be used
to access music and video streaming services. While consider
superfluous to further details browsers and their features, as
the reader is certainly aware of them, we report that web
browsing and video streaming together constitute the major
part of Internet traffic4.

2) Web crawlers: Web crawlers, known also as spiders or
spiderbots, are web applications that automatically browse web
pages by recursively following hyper-links. Crawlers are used
by web search engines (e.g. Google Search, Yahoo Search,
DuckDuckGo) to download web pages that are later analysed
to extract relevant keywords and metadata useful to index (or
spider) them.

Web crawlers may cause resource consumption on the target
web servers. They download several pages in a short time
frame, often in parallel, and can revisit pages repeatedly in
order to keep web search engines indexes synchronized with
the actual state of the pages [8]. To mitigate this problem,
the robot exclusion standard5has been defined. Websites de-
velopers may expose a text file, named robots.txt, to
instruct web crawler, with machine-readable indications, about
the exclusion of unnecessary or sensitive pages. Moreover,
web crawlers that are allowed to index pages, can be filtered
with the User-Agent field [12].

Nonetheless, crawlers must voluntarily abide to the indica-
tions listed in the robots.txt file. A misbehaving crawler
may cause significant slowdowns in web server, potentially
preventing legitimate users to access the hosted web pages.
Even if a Web Application Firewall (WAF)6, can filter the
HTTP Requests by the User-Agent or other fields (e.g.
IP addresses), such checks may be bypassed. A crawler may
spoof the User-Agent fields, e.g. by using a web browser
one, or send its requests through a proxy having a non-
blacklisted IP address.

Finally, web crawlers may be support tools for dangerous
attacks. Web scraping consists in automatically downloading
a whole website to offline extract valuable data, e.g. to
harvest the email addresses needed for marketing campaigns
or phishing attacks7. Also, a copy of a website can be brought
on-line, in an attack known as Website forgery, which consists
in duplicating a web site to deceive users of the legitimate
website to reveal sensitive information, e.g. login credentials
of an e-banking website [32].

4https://www.sandvine.com/hubfs/downloads/phenomena/
2018-phenomena-report.pdf

5http://www.robotstxt.org/orig.html
6https://www.owasp.org/index.php/Web Application Firewall
7https://www.owasp.org/index.php/Phishing

https://www.cloudflare.com
https://www.cloudflare.com
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
http://www.robotstxt.org/orig.html
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Phishing
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3) Network stressing tools: A Denial of Service (DoS) is
an attack aiming to halt the fruition of a network services by
its intended users [22]. For example, a DoS attack may target
a web server to prevent access from legitimate users (volume-
based attacks).

A DoS attack can be performed by sending a great amount
of messages to the target machine to consume server resources
(e.g. bandwidth, CPU time, memory), and cause a slow-
down of the server until it is unable to provide the intended
services. To deploy such attacks, a great bandwidth would
be needed. To get around this limitation, attackers typically
execute Distributed DoS attacks (DDoS). A great deal of
machines launch a coordinated attack against a single target.
The owners of computers involved in DDoS attacks may not be
aware of it, for example if their machines have been infected
by a malware that enables attackers to take control of them
[34]. For example, the Low Orbit Ion Cannon (LOIC)8 attack
tool operates by flooding the target with TCP or UDP packets,
providing also an ”hivemind” feature to coordinate remote
machines in executing a DDoS attack.

Another set of DoS attack tools targets a specific protocol,
by exploiting some of its legitimate features (protocol attacks).
For example, HTTP Slow DoS attacks aim at exhausting
web servers resources by establishing a high number of low
bandwidth connections with the victim [6]. Indeed, the attacker
does not flood the victim, he slowly sends legitimate HTTP
requests on connections that are forcefully maintained open
for long periods through the HTTP Keep-Alive mechanism 9).
In this work, we considered the HTTP Slow DoS attacks worth
to investigate, as they are difficult to recognize with existing
methods without resorting to DPI.

Finally, another type of DoS attack exploits vulnerabilities
of the application or daemon providing the service (application
attacks). Typically, the attacker sends to the server non-
standard messages that have been crafted to target a specific
vulnerability. Depending on the vulnerability the attacker can
also force the service to stop or the server to crash. As an
example, we report a vulnerability of the Apache HTTP Server
which has been used to execute DoS attacks10. The mod md
Apache Module, which implements automatic SSL certificate
provisioning11, can be forced by a specifically crafted HTTP
request, to dereference a NULL pointer12, causing a segmen-
tation fault that halts the web server execution.

B. Tools and tool instances

We have selected different tools that we consider represen-
tative of each of the three tool categories (see Table I. In
particular we have considered four of the most used browsers
at the moment of this writing, namely, Chrome, Firefox, Edge,
and Opera. We have considered more than one version of
Chrome (48.0.2564.109 and 68.0.3440.84) and Firefox (42.0,

8https://sourceforge.net/projects/loic/
9https://tools.ietf.org/id/draft-thomson-hybi-http-timeout-01.html#rfc.

section.2
10http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8011
11https://datatracker.ietf.org/doc/draft-ietf-acme-acme/
12http://cwe.mitre.org/data/definitions/476.html

62.0, and 68.0) to perform additional tests of our detection
abilities.

Moreover, we have considered five tools as representatives
of the web crawlers. Three of them, namely Wget13, Wpull14

and Curl15, are not web crawlers per se. Rather, they are
command line browsers that are used into more sophisticated
scripts and tool as web crawler engines. On the other hand,
GrabSite16 and HTTrack17 are two open source programs that
have been designed and engineered to backup entire web sites.
Both tools are GUI-based, thus being usable also by non-
experienced users, and are equipped with advanced features to
optimize web crawling and disk usage. For instance, they avoid
duplication of content shared among pages and endless loops,
and may selectively ignore pages based on user-defined regular
expressions. HTTrack is also able to update existing offline
website copies, only downloading new or modified pages.

Finally, we have considered five tools in the category of
the network stress tools, namely GoldenEye, HULK, RudyJS,
SlowHTTPTest, and SlowLoris. For example, Slowloris18 is
a tool designed to perform HTTP Slow DoS attacks. HTTP
Unbearable Load King (HULK)19 and its evolution GoldenEye
20 operate in a similar way. They only differ on the method
they use to keep the connections with the server opened, the
former leverages the HTTP 1.0 Keep-alive header and the
latter the HTTP 1.1 Cache-Control options21. RUDY (R-U-
Dead Yet?)22 is another tool that attacks the HTTP protocol.
This tool analyzes the target web page to identify forms
that can be filled by the user, and then performs a huge
HTTP POST request to fill such form, sending it as slowly
as possible, also in this case with the objective of keeping
the connection with the web server open as long as possible.
Finally, SlowHttpTest23 tool is another tool that implements
various techniques for HTTP DoS attacks, including the ones
implemented by SlowLoris and RUDY.

Almost all of these tools are available both for Microsoft
Windows and for Linux (maybe different versions), but Mi-
crosoft Edge that is only available for Windows Operating
systems. Therefore, we have considered traffic generated by
the same tools from both the OSes, as explained in Section IV.
https://www.overleaf.com/8172285512rskjnrqvbfcg

C. Computing traffic statistics

Since we aim at detecting the tools that generate the traffic,
also in encrypted channels, the payload cannot be used as
it is not intelligible. Thus for our analyses we resorted to the
flow statistics of the TCP connections. The statistics have been

13https://www.gnu.org/software/wget/
14https://github.com/ArchiveTeam/wpull
15https://curl.haxx.se/
16https://github.com/ArchiveTeam/grab-site
17https://www.httrack.com/
18https://github.com/gkbrk/slowloris
19https://github.com/grafov/hulk
20https://wroot.org/projects/goldeneye/
21https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
22https://www.cloudflare.com/learning/ddos/ddos-attack-tools/

r-u-dead-yet-rudy/
23https://tools.kali.org/stress-testing/slowhttptest

https://sourceforge.net/projects/loic/
https://tools.ietf.org/id/draft-thomson-hybi-http-timeout-01.html#rfc.section.2
https://tools.ietf.org/id/draft-thomson-hybi-http-timeout-01.html#rfc.section.2
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8011
https://datatracker.ietf.org/doc/draft-ietf-acme-acme/
http://cwe.mitre.org/data/definitions/476.html
https://www.gnu.org/software/wget/
https://github.com/ArchiveTeam/wpull
https://curl.haxx.se/
https://github.com/ArchiveTeam/grab-site
https://www.httrack.com/
https://github.com/gkbrk/slowloris
https://github.com/grafov/hulk
https://wroot.org/projects/goldeneye/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/r-u-dead-yet-rudy/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/r-u-dead-yet-rudy/
https://tools.kali.org/stress-testing/slowhttptest
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APPLICATION CATEGORY WINDOWS LINUX

Chrome 48.0.2564.109 browser Í Í
Chrome 68.0.3440.84 browser Í Í
Firefox 42.0 browser Í Í
Firefox 62.0 browser Í Í
Firefox 68.0 browser + Í
Edge 42.17134 browser Í +
Opera 62.0.3331.66 browser Í +

GoldenEye 3.49.2 stress tool Í Í
HULK 1.0 stress tool Í Í
RudyJS 1.0.0 stress tool Í Í
SlowHTTPTest 1.6 stress tool + Í
SlowLoris 7.70 stress tool Í Í

Curl 7.55 web crawler Í Í
GrabSite 2.1.16 web crawler + Í
Httrack 3.49.2 web crawler Í Í
Wget 1.19 web crawler Í Í
Wpull 2.0.1 web crawler Í Í

TABLE I: Tools and versions we have selected for our
experiments.

computed with the TCP Statistic and Analysis Tool (Tstat)24, a
traffic measurement tool developed by the Telecommunication
Networks Group25 of Politecnico di Torino. Tstat is able to
compute a large number of traffic statistics, both on transport
layer protocols (TCP and UDP) and on application layer
protocols (HTTP, RTP, RTCP, XMPP). Tstat works both for
TCP Complete and TCP Nocomplete flows. Flows that have
been terminated by a packet with either the FIN/ACK or
RST TCP flags set, or that may be deemed terminated since
no packet belonging to the flow has been observed after a
configurable timeout, fall into the first category, while other
flows are deemed active and fall in the second category.
Supporting nocomplete flows permits the use of our approach
in cases where classification of live traffic is necessary, e.g. in
IDS/IPS. Therefore, we concentrated on both types of flows,
thus considered the statistics that are available for both TCP
complete and nocomplete flows, which are contained in the
Core/Basic TCP Set26.

D. Research questions

The research objectives reported in Section II can be for-
mulated in a more precise way in form of research questions
(RQ):
RQ 1 Is a system based on ML able to determine the category

of the tool that generated the traffic?
RQ 2 Is a system based on ML able to recognize the tool that

generated the traffic?
RQ 3 Is a system based on ML able to recognize an unknown

version of a known tool and/or correctly categorize it?
RQ 4 Can a system based on ML be updated to recognize

additional tools and/or tool versions?
RQ 5 Is a system based on ML able to perform the recog-

nition implied by the previous research question on-line,
i.e. before waiting that the connection is terminated?

24http://tstat.polito.it/
25https://www.tlc-networks.polito.it/
26http://tstat.polito.it/measure.shtml#log tcp complete

Being able to positively answering the question RQ 1 is
important as it can allow identifying network stress tools
or web crawlers thus anticipating the impact of attacks of
resource consumption.

Analogously, RQ 2 may determine if ML-based approaches
allow identifying the tools that users are employing thus
determining when users change their behaviour. Moreover, it
can make attacks deducted by answers to RQ 1 even more
precise.

RQ 3 asks if tools have a specific fingerprint and preserve
it in different versions so that it is possible to identify the
future versions of a tool without the need of performing the
training of the classifiers. Note that this research question
does not imply that we are interested in determining when
a completely new tool, thus completely unknown to the
classifiers, is producing the sniffed traffic, as we consider this
task outside the scope of our work.

Answering RQ 3 could allow identifying important user be-
haviour related to the security, e.g. when they update browsers
of when they revert to previous versions of tool for instance
to avoid security restrictions.

In case new tools or versions of tools are of interest from
the security point of view, it is important to know how easy
is to maintain up to date the classifiers. An answer to RQ 4
would give the solution.

Finally, RQ 5 permits the understanding of the applicability
of the classifiers to monitoring systems, that is, if they can
be used live, in IDS, or they best fit post-mortem forensic
analysis.

IV. DATA SET CREATION

The data set used to perform the tools’ classification consists
of the traffic statistics computed on the network captures
we have collected. The data set preparation consisted in two
phases: the acquisition of selected network captures and the
computation of the statistics on these captures.

Note that, each TCP connection is a sample used to train
or test our classifiers. The analysis of each flow in isolation
allows our approach to be independent of the number of users
simultaneously active at the moment of the detection. This
characteristic is helpful also for detecting volumetric attacks,
such as some denial-of-service attacks, since we can train a
classifier in a small controlled environment and use it to detect
larger scale DoS attacks.

A. Network captures acquisition

In order to have a data set with a significant level of
variety, we decided to gather all our captures on two different
machines with two different operating systems: Windows
10 and Debian/GNU Linux (with kernel 4.17.0, 4.18.0, and
4.19.0). All of our captures where performed using WireShark
2.6.4 by using tshark, its command line interface. Table I lists
all the applications that we used to build our data set.

In order to have a more realistic scenario, we captured the
browser traffic when we were manually surfing the Internet
with Chrome, Firefox, Edge, and Opera. All the other captures
where instead performed using ad-hoc Python 3 scripts, since

http://tstat.polito.it/
https://www.tlc-networks.polito.it/
http://tstat.polito.it/measure.shtml#log_tcp_complete
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this is a more common scenario when performing DoS attacks
or downloading an entire web site. For the command line tools
we used the default parameters.

Being unable to find a testbench for the web sites to use for
these kind of experiments, we have decided to randomly select
to navigate web sites taken from the most popular ones27. We
have not used any automatic approach. We avoided the use
of browser automation frameworks (e.g. Selenium28) since
they could introduce unwanted patterns in the navigation of
the selected websites. The people involved in the captures
was requested to manually navigate such sites following their
normal behaviour. Moreover, to increase the variability of data
acquisition, three different persons, after having navigated the
most popular sites have been asked to to reach additional web
sites of their choice. It should be noted that such websites
embedded video streams (e.g. YouTube), thus the captures
contain also multimedia content.

Once we gathered all the capture files, we cleaned them up
by using the tshark filters in order to remove unnecessary
background connections (such as UDP packets and connec-
tions not related to the tools in analysis).

original capture

split into truncated captures

truncated
capture #1

truncated
capture #2

launch tstat launch tstat launch tstat

statistics #1 statistics #2 statistics #3

Fig. 3: Our network statistics extraction work-flow.

Since we want to verify whether our approach could work
on-line, that is while a TCP connection is still open and not
yet terminated, we created multiple truncated version of all our
captures by following the work-flow depicted in Figure 3. In
short, we used tshark to generate multiple truncated capture
files for each one of our original capture files by putting a
hard limit on the each packet arrival time, thus retaining only
the received segments of each TCP connection29. Then, we
launched tstat on each of the truncated captures files (and
the original ones) to compute their network statistics.

tstat offers 44 statistics that are common to the two cate-
gories of TCP connections. However, since we are interested in
performing a shallow packet inspection, we decided to ignore
all the features that Tstat evaluates resorting to DPI techniques,
thus reducing their number to 31. In addition to these values,
we also added a new Boolean feature that reports if a TCP
connection has been gracefully terminated or not. Table II

27https://en.wikipedia.org/wiki/List of most popular websites
28https://www.seleniumhq.org/
29We decided to use a timeout instead of truncating the TCP sequence

number to keep potential out-of-order packets.
30Actually this can be only 0 or 1 since a proper TCP implementation will

reset a connection after receiving a RST packet.

FEATURE UNIT

# packets (both directions) packets
# packets with payload (both directions) packets
# retransmitted packets (both directions) packets
# out of sequence packets (both directions) packets
# packets with ACK set (both directions) packets
# packets with ACK set and no payload (both directions) packets
# packets with FIN set (both directions) packets

# packets with RST set (both directions)30 packets
# packets with SYN set (both directions) packets
# payload bytes excluding retransmissions (both directions) bytes
# payload bytes including retransmissions (both directions) bytes
# retransmitted bytes (both directions) bytes
flow duration ms
relative time of first payload packet (both directions) ms
relative time of last payload packet (both directions) ms
relative time of first ACK packet (both directions) ms
TCP connection correctly terminated boolean

TABLE II: TCP statistics used as classification features.

summarizes the TCP flow statistics31 that we decided to use
as classification features and that we used to build our final
data set from both the truncated and original capture files.

In order to increase the variability of our data set we decided
to add connections generated by different versions of the same
tools (e.g. Firefox 42.0 and 62.0) running under different OSes
(i.e. Windows and Linux).

B. Data set statistics

By using the work-flow described in Section IV-A, we
obtained 1219466 TCP flows of which 185547 are gracefully
terminated and 1033919 are non-terminated. When building
the data set we decided to discard all the connections only
containing one packet since they carry too few information
that can be used to train some machine learning algorithms.

Table III shows some average traffic statistics grouped by
application. A quick look at the restricted number of statistics
reported in Table III allows the formulation of simple yet
important considerations.

• The browser connections are, in average, the longest ones
(i.e. in average they last about half a minute, while all
the other connections last at most five seconds) — this is
probably due to the fact that browsers are usually human-
driven32, while all the other tools are automatized by
means of scripts;

• Web crawlers request a lot of data (bytes) from target
servers — this is coherent with their typical behavior,
since they tend to download entire web sites indiscrimi-
nately;

• Network stress tools have a similar behavior to web
crawlers thus the former cannot be easily distinguished
from the latter by a quick visual inspection of the traffic
statistics (thus the need for AI).

31Note that most table rows represent two statistics, one from the client to
the server and another one in the opposite direction.

32This is respected in our data set since we collected the browser captures
without using scripts or browser automation frameworks, even if they exists
(e.g. Selenium at https://www.seleniumhq.org/).

https://en.wikipedia.org/wiki/List_of_most_popular_websites
https://www.seleniumhq.org/
https://www.seleniumhq.org/
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TOOL INSTANCE OS COUNT CLIENT SIDE SERVER SIDE DURATION

PACKETS BYTES PACKETS BYTES [ms]

Chrome 48.0.2564.109 Linux 5,264 44.22 1,998.69 58.85 60,032.10 28,438.63
Chrome 48.0.2564.109 Windows 8,976 23.47 2,536.64 32.04 31,296.28 38,006.89

Chrome 68.0.3440.84 Linux 1,933 67.55 4,062.74 116.42 150,830.23 29,989.34
Chrome 68.0.3440.84 Windows 8,153 20.90 2,675.26 29.06 30,445.84 40,167.00

Edge 42.17134.1.0 Windows 28,913 23.14 2,024.09 21.69 21,782.88 12,693.36
Firefox 42.0 Linux 2,551 57.10 4,849.41 89.16 105,808.44 33,218.93
Firefox 42.0 Windows 6,142 29.57 2,462.07 43.92 50,346.47 21,035.63
Firefox 62.0 Linux 2,658 62.86 4,360.09 90.95 107,950.76 37,402.74
Firefox 62.0 Windows 8,323 44.66 3,039.47 66.16 77,539.21 32,559.49
Firefox 68.0 Linux 819 54.05 2,070.60 79.80 100,400.66 18,579.62

Opera 62.0.3331.66 Windows 8,953 25.25 1,913.91 47.86 53,401.82 40,414.49

Curl 7.55.1 Windows 1,604 31.20 649.63 53.38 65,814.02 431.33
Curl 7.61.0 Linux 1,434 67.34 416.75 90.77 119,766.43 806.24

GrabSite 2.1.16 Linux 3,666 368.80 3,928.34 582.88 1,802,525.31 15,423.33
Httrack 3.49.2 Linux 10,624 14.84 834.19 16.92 16,901.24 802.33
Httrack 3.49.2 Windows 2,975 22.07 1,637.59 36.44 44,863.53 8,644.35

Wget 1.11.4 Windows 2,849 92.61 1,024.64 184.09 249,312.02 2,076.60
Wget 1.19.5 Linux 2,234 176.12 3,549.99 326.44 430,592.15 3,624.39
Wpull 2.0.1 Linux 1,374 139.08 1,313.92 204.50 284,275.69 8,342.97
Wpull 2.0.1 Windows 1,112 86.31 1,146.56 226.41 310,694.03 8,824.09

GoldenEye 2.1 Linux 123,662 16.10 854.75 30.23 36,591.57 2,318.79
GoldenEye 2.1 Windows 664,133 12.49 789.77 19.36 21,910.12 1,240.32

HULK 1.0 Linux 47,130 7.93 782.25 6.66 4,885.02 778.93
HULK 1.0 Windows 246,465 5.29 533.41 4.18 2,233.53 6,890.59

RudyJS 1.0.0 Linux 1,452 13.13 731.00 12.01 3,646.56 17,576.82
RudyJS 1.0.0 Windows 2,116 10.10 701.99 10.30 3,133.69 14,530.37

SlowHTTPTest 1.6 Linux 10,999 8.64 1,406.35 6.82 3,492.74 11,969.76
SlowLoris 0.1.4 Linux 6,367 5.40 164.22 3.97 48.30 13,392.93
SlowLoris 0.1.5 Windows 6,585 5.16 165.01 3.81 47.43 13,881.58

TABLE III: Network statistics of examined captures per tool instance (average).

V. TRAINING AND RESULTS

We trained three different random forests for classifying the
network traffic in the three categories listed in Section III (web
browsers, web crawlers and network stress tools), another one
for identifying the traffic generator tool and the last one for
detecting the specific tool instance. Random forests are the
implementation of the idea of ensemble learning, combining
weak classifiers of the same type to produce a strong classifier.
Random forest implement ensemble learning with decision
trees [3], built in a random fashion, with each decision tree
trained using only a random subset of features and training
sets samples. They have been firstly introduced by Ho [16],
and have been extended by Breiman [4] with the concept of
bootstrap aggregating, also known as bagging, which is used
to increase accuracy in case of noisy data and avoid overfitting.
They are robust, versatile, quite resilient to overfitting and
handle well noisy data, making them an excellent choice for
building a network traffic classifier.

We performed the classifier training and testing using MAT-
LAB 2019a (via the TreeBagger class) on our university HPC
cluster named Legion33.

To verify the research questions posed in Section III-D,
we designed all our experiments in order to evaluate if our
classifiers were able to:
• classify new flows generated by tools included in the

training set;

33See http://hpc.polito.it, whose main information is reported in Table IV
for additional information.

INTERCONNECTION Infiniband EDR 100 Gib/s
SERVICE NETWORK gigabit Ethernet 1 Gib/s
CPU 2x Intel Xeon Gold 6130 @ 2.10 GHz
NODES 14
CORES 448
RAM 5.376 TB DDR4 registered ECC
OS CentOS 7.6.1810 with OpenHPC 1.3.8.1
SCHEDULER SLURM 18.08.8

TABLE IV: PoliTO’s Legion HPC cluster information.

• identify a completely unknown tool not included in the
training set – in particular we wanted to assess the
ability of our classifiers to evaluate an unknown browser
(Opera), new network stress tool (SlowHTTPTest) and
web crawler (GrabSite);

• categorize a new tool version whose previous releases
are already present in the training set – in particular we
evaluated our random forests abilities to identify Firefox
68.0, given that our classifiers were trained using some
connections generated by Firefox 42.0 and 62.0;

• check if the classifiers, after adding to the training set
the information about a new version of a tool improves
or maintains the detection abilities of the classifiers on
the other tools.

A. Training classifiers

We performed the training of our classifiers in three con-
secutive steps. First, 1) we split the data set in a training
and test sets; 2) we searched for the random forests’ optimal

http://hpc.polito.it
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hyper-parameters; 3) we performed the actual random forests
training.

1) Training and test sets: In a first phase, we trained the
classifiers with all the connections generated by the tools
reported in Table I but Firefox 68.0, Opera, GrabSite and
SlowHTTPTest.

The training set has been built from the entire data set after
having performed these steps:

1) we removed all the TCP connections that had been
generated by using the Firefox 68.0, Opera, GrabSite and
SlowHTTPTest;

2) we picked at random 80% of the remaining TCP flows
in the original non-truncated capture files;

3) we added in the training set all the TCP flows selected
during the previous phase and all their truncated versions.

After these steps, the training set consisted of 1075520
samples, while all the remaining ones become our test set
(143946 samples). This method ensures that no potential
information is shared between the two sets, since a TCP
connection and its related truncate versions can only be used
for the classifier training or during its a-posteriori analysis, but
not for both.

We have then generated two different test sets:
• the Known Tools test Set (KTS), containing the test set

samples related to the applications also present in the
training set (this collection has 119321 observations);

• the Unknown Tools test Set (UTS), consisting of only
the test set samples generated by Opera, GrabSite,
SlowHTTPTest and Firefox 68.0.

2) Hyper-parameter optimization: Choosing the right
hyper-parameters is an important aspect that can significantly
increase the accuracy of a classifier. Their choice is non-trivial,
since it can depends on a multitude of factors. Fortunately, a
good selection of hyper-parameters can be obtained by treating
this problem as an optimization one, where the variables
are the hyper-parameters and the objective function is the
maximization (or minimization) of a classification statistic.
Instead of maximizing the classification accuracy, we decided
to maximize the average 5-fold cross-validation [19] Rk statis-
tic [15], which is the extension of the Matthews correlation
coefficient to multi-class problems. Having a k × k confusion
matrix C, this value can be computed as:


Rk(C) =

N (C)
D1(C)·D2(C)

N(C) =
∑

l

∑
m

∑
n

(
Cl,l · Cm,n − Cl,m · Cn,l

)
D1(C) =

√∑
l(
∑

m(Cl,m) · (
∑

n |n,l

∑
o Cl,o))

D2(C) =
√∑

l(
∑

m(Cl,m) · (
∑

n |n,l

∑
o Co,l))

The maximum value of Rk is 1, while the minimum is
between -1 and 0 and depends on the data set class distribution.
The Rk statistic has two main advantages over most of the
more traditional metrics. First, it works well with unbalanced
data sets (as in our case), differently from several metrics such
as the classification accuracy. Second, it is somehow more
informative than traditional performance measures, since it
takes into account all the possible classifications and misclas-
sifications in the confusion matrix. The F-score, for instance,

ignores the true negatives, therefore optimizing this statistic
can potentially lead to unbalanced classifiers.

We used a process of Bayesian optimization to compute
the ideal hyper-parameters by maximizing the Rk coefficient
[23]. We performed a hyper-parameter optimization with a
conservative timeout of 24 hours (using 32 cores on the HPC),
even if our optimization logs showed that the Rk statistic
started to become stable after about a couple of hours.

In particular we chose to optimize the following hyper-
parameters: 1) the number of trees; 2) the number of features
for training each tree; 3) the fraction of the training set used
for training each tree; 4) the maximum number of splits per
tree; 5) the algorithm used to compute the splits (maximizing
the Gini’s diversity index or the deviance reduction [3]); 6) the
minimum number of samples per leaf. Table V summarizes the
results of this optimization phase for the three classifiers.

3) Random forest training: Once found the optimal hyper-
parameters, we used them for the actual training of the random
forests.

B. Category classification
We trained a random forest for classifying the traffic in the

three categories listed in Section III: web crawlers, network
stress tools and web browsers.

Training time on the HPC took about 13 minutes. Table VI
reports the performance metrics we have computed on the
training set, via a 10-fold cross-validation, with the known
tools test set. The precision, sensitivity, specificity, AUC and F-
score metrics were devised to validate only binary classifiers,
so we extended them to a multi-class problem by using the
macro-averaging technique [28]. That is, we computed four
values for each statistic by treating our random forest as a
collection of four binary classifiers (one for each class), and
averaged together these values to obtain the final result.

Table VII reports the confusion matrix computed on the
known tools test set and shows that we can classify a flow
with excellent accuracy. The precision, sensitivity (also known
as recall) and specificity have high values, meaning that our
classifier has a very low false positive/negative rate. Since our
initial data set is imbalanced, the classification accuracy is not
the most suited metric to validate our classifier. For this reason,
we included also the AUC (Area Under Curve) statistic, which
is not dependent on the data set samples distribution.

Browsers, web crawlers and network stress tools produce
very similar connections (all in all, they are TCP connections).
Sometimes they make use of the same underlying network
libraries. Despite these similarities, they are usually correctly
classified by our random forest. Only the web crawlers show
inaccurate results, as they are confused with browsers in about
10% of the cases. Nonetheless, this behaviour is not unex-
pected, as crawlers and browsers download data by sending
proper HTTP requests. It is interesting to note, however, that
network stress tools are confused more often with browsers
than with web crawlers.

Figure 4 plots the AUC of our classifier depending on the
number of packets in the examined flow on KTS.

The general trend is that the classifier performance tends
to increase as the number of exchanged data increases. By
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HYPER-PARAMETER CATEGORY CLASSIFIER TOOL CLASSIFIER INSTANCE CLASSIFIER

number of trees 194 61 51
number of features for training each tree 22 10 14
training set percentage for training each tree 85 84 99
maximum number of splits per tree 126184 143560 97336
algorithm used to compute the splits GDI GDI GDI
minimum number of samples per leaf 2 2 14

TABLE V: Optimal hyper-parameters for the three classifiers.

STATISTIC
CATEGORY CLASSIFIER TOOL CLASSIFIER INSTANCE CLASSIFIER

TRAINING CV KTS TRAINING CV KTS TRAINING CV KTS

accuracy [%] 99.57 98.96 98.73 96.98 96.00 95.47 95.05 94.29 93.21
precision [%] 96.65 93.86 92.30 85.21 81.17 77.86 78.46 74.30 67.79
sensitivity [%] 99.79 96.27 93.61 98.45 92.62 86.67 98.09 92.46 82.42
specificity [%] 99.85 98.69 98.34 99.66 99.52 99.45 99.62 99.56 99.48
AUC [%] 99.82 97.48 95.98 99.05 96.07 93.06 98.86 96.01 90.95
F-score [%] 98.18 95.03 92.93 89.86 85.27 81.25 85.86 81.25 73.45
Rk 0.97 0.93 0.92 0.94 0.92 0.91 0.91 0.89 0.87

TABLE VI: Performance metrics for our classifiers.

PREDICTED

BROWSER NET STRESSER CRAWLER

A
C

T
U

A
L BROWSER 6994 289 119

NET STRESSER 638 108759 161
CRAWLER 205 100 2056

TABLE VII: Confusion matrix of the category classi-
fier on KTS.
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Fig. 4: AUC of the category classifier vs. exchanged packets.

only looking at the first two packets of a TCP connection, our
random forest has an AUC of 82.61%, showing a mediocre
performance. However, from the second packet onward, the
accuracy increases significantly. Once a connection reaches
six exchanged packets, the AUC stabilizes, being above 94%
(indicated by the horizontal red line in the plots). That means
that, for detection purposes, a sensor equipped with our
classifiers should observe at least six packets to be able to
identify the traffic originators in a trustworthy manner.

C. Tools classification

We also trained a second random forest to classify the TCP
streams according to their generator tools (with the optimal
hyper-parameter reported in Table V). This classifier identifies
the eleven applications listed in Table III, namely Chrome,
Curl, Edge, Firefox, GoldenEye, Httrack, HULK, RudyJS,
SlowLoris, Wget and Wpull. The total training time of the
random forest was about four minutes on our HPC.

Table VI reports performance statistics computed on the
training set, with a 10-fold cross-validation approach and on

KTS. The task of identifying the tool that produces a TCP
stream is intuitively harder than only detecting the categories.
This conjecture has been proved by our experiments, the
overall performance of this classifier are lower with respect
to the one presented in Section V-B. Nonetheless, results are
satisfactory as we obtained an AUC of 93.06% on the KTS.

Tables VIII and IX respectively report the classifier confu-
sion matrix computed on the KTS observations where the last
column contains the accuracy per row and the confusion matrix
where the rows and columns were grouped by category. All
the applications can be identified with an accuracy greater than
76%. The network stress tools (GoldenEye, HULK, RudyJS
and SlowLoris) can be detected with a very high accuracy,
even if the classifier only analyzes a single flow at time
to reach its decision. For detection purposes, evaluating the
concurrent presence of multiple flows generated by the same
network stress tool can allow performing an easily and early
detection of the beginning of a DoS attack.

On the other hand, our random forest exhibits less precision
when predicting browsers. This might be due to the variability
introduced by the human intervention on the TCP stream
features. A user can in fact close a connection before its
termination (e.g. before a video has been completely down-
loaded) or keep it open, while all the other tools have a more
deterministic approach, allowing a better classification.
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Fig. 5: AUC of the tool classifier vs. exchanged packets.

Also in this case, we report in Figure 5 the AUC trend
when the number of exchanged packets increases. As for the
classification of tool categories, the general trend is that the
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PREDICTED

CHROME EDGE FIREFOX GOLDENEYE HULK RUDY SLOWLORIS CURL HTTRACK WGET WPULL ACC. [%]

A
C

T
U

A
L

CHROME 1917 191 128 116 23 0 2 7 9 5 10 79.61
EDGE 97 2715 116 40 5 0 0 8 3 16 5 90.35

FIREFOX 244 76 1516 71 18 0 8 19 26 2 9 76.22

GOLDENEYE 736 169 310 75931 1132 66 1 16 106 21 374 96.28
HULK 274 34 103 389 28262 10 1 0 8 11 27 97.06
RUDY 1 1 4 3 2 267 0 0 3 2 4 93.03

SLOWLORIS 0 0 12 0 0 0 1253 6 19 0 0 97.13

CURL 9 14 8 7 1 1 0 270 5 7 4 82.82
HTTRACK 14 15 9 12 5 0 5 5 1229 0 0 94.98

WGET 11 8 22 25 3 2 0 20 4 367 11 77.59
WPULL 10 12 13 33 3 0 0 2 5 7 183 68.28

TABLE VIII: Confusion matrix of the tool classifier on KTS.

PREDICTED

BROWSER NET STRESSER CRAWLER

A
C

T
U

A
L BROWSER 7000 283 119

NET STRESSER 1644 107317 597
CRAWLER 145 97 2119

TABLE IX: Confusion matrix of the tool classifier on the KTS,
grouped by category.

classification performance increases as the number of packets
increases. After about 6 exchange packets the AUC stabilizes
with a value that is always above 89% (showed by the red
line in the plot). With respect to the category classification,
however, the performance is slightly lower, most likely due to
the higher difficulty of the classification task.

D. Tool instances classification

Finally, we created a random forest to identify all the 16 tool
instances in our training set. Table V reports the optimal hyper-
parameters of our classifier, which took about three minutes
and half to train on our HPC cluster.

Table VI reports performance statistics computed on the
training set, using a 10-fold cross-validation approach and on
the KTS. The tool instance random forest shows an adequate
performance that is, however, less accurate than the other
classifiers. This is further evident in the confusion matrices
depicted in Table X and XI.

PREDICTED

BROWSER NET STRESSER CRAWLER

A
C

T
U

A
L BROWSER 7000 229 173

NET STRESSER 3101 105750 707
CRAWLER 151 75 2135

TABLE X: Confusion matrix of the instance classifier on the
KTS, grouped by category.

Identifying the tool and also its version number is a hard
task since it depends on a variety of factors, such as changes
in the code of the tool as it evolves over the time, but also
the introduction of new network libraries. Nonetheless, most
of the tools can be detected with a good level of accuracy
(above 80%), but some are apparently stealthier than other.
Web crawlers are the easiest ones to identify, indeed, all
the predictions are correct in at least the 94%. On the other

hand, browsers are the most difficult ones for the classifiers.
However, by looking at the data, they are often confused with
other browsers. For instance, Firefox 42.0 is most of the time
misclassified as Firefox 62.0 and viceversa. Chrome is more
easily confused with Edge than with Firefox and, surprisingly,
with Goldeneye. We also noted that, in general, Goldeneye, is
easily confused with browsers, as well as HULK. Both should
have something in common, also with browsers, as Goldeneye
is confused the most with HULK and viceversa.

We have considered the Wget version 1.11 that has been
released 9 years before the version 1.1934. They do not seem to
have a common fingerprint. The same consideration applied to
Curl. Even if the version 7.61.0 has been released about a year
after the 7.55.135, there have been several releases that may
have hidden the fingerprints. On the other hand, for SlowLoris
we have considered two consecutive versions (0.1.5 two years
after 0.1.436), they are correctly identified or confused between
each other. Finally, the accuracy of the classifier is in general
lower when instances of the same tools are confused with each
other. Therefore, research is needed to evaluate classification
for real world usage, i.e. with larger training sets containaing
several instances of several tools.
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Fig. 6: AUC of the instance classifier vs. exchanged packets.

Figure 6 reports the plot of the macro-averaged AUC of
the tool instance classifier vs the exchanged packets. As in
the other two cases, six packets are usually enough to have a
stable AUC, which never goes below 89%.

E. Classification of unknown tools

Classification of the tools were not used during the training
phase (i.e. Firefox 68.0, Opera, GrabSite and SlowHTTPTest),

34https://en.wikipedia.org/wiki/Wget
35https://curl.haxx.se/docs/releases.html
36https://pypi.org/project/Slowloris/#history

https://en.wikipedia.org/wiki/Wget
https://curl.haxx.se/docs/releases.html
https://pypi.org/project/Slowloris/#history
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PREDICTED

CH48 CH68 ED FI42 FI62 GO HU RU SL0.1.4 SL0.1.5 CU7.55.1 CU7.61.0 HT WG1.11 WG1.19 WP ACC. [%]

A
C

T
U

A
L

CH48 1022 134 125 25 46 45 8 0 0 4 4 0 10 6 6 10 70.73
CH68 110 639 70 32 44 43 10 0 0 2 2 0 5 0 1 5 66.36

ED 124 58 2608 71 47 32 5 1 0 2 2 13 8 9 18 7 86.79

FI42 67 57 64 519 120 26 5 0 0 7 8 3 14 0 4 8 57.54
FI62 47 52 24 151 744 27 6 0 0 6 13 0 12 0 2 3 68.45

GO 438 1070 360 183 431 74116 1427 207 0 14 26 6 204 68 31 281 93.98
HU 110 302 59 48 86 413 28004 29 0 5 1 1 29 10 9 13 96.17
RU 0 1 1 0 2 1 2 271 0 1 0 0 3 2 0 3 94.43

SL0.1.4 0 0 0 0 0 0 0 0 559 8 0 0 0 0 0 0 98.59
SL0.1.5 0 0 0 7 3 0 0 0 14 679 2 0 18 0 0 0 93.91

CU7.55.1 3 0 0 1 3 4 0 0 0 0 129 0 2 1 0 2 88.97
CU7.61.0 5 0 5 3 1 0 0 1 0 0 1 150 3 6 2 4 82.87

HT 4 15 18 3 8 6 5 0 0 5 4 0 1225 0 1 0 94.67

WG1.11 5 3 0 9 0 16 1 3 0 0 4 5 2 196 2 3 78.71
WG1.19 1 10 0 0 15 0 0 0 0 0 0 7 1 3 183 4 81.70

WP 7 7 15 2 8 24 4 3 0 3 0 0 12 7 2 174 64.93

TABLE XI: Confusion matrix of the tool instance classifier on KTS (where CH = Chrome, CU = Curl, ED = Edge, FI =
Firefox, GO = Goldeneye, HT = HTTtrack, HU = HULK, RU = RUdyJS, SL = Slowloris, WG = Wget and WP = Wpull).

Firefox 68.0 Opera SlowHTTPTest GrabSite
0

20
40
60
80

100

browser stress tool web crawler

Fig. 7: Classification of the unknown tools.

however, showed mixed results. Figure 7 shows the classifica-
tion results of the UTS.

On the one hand, we note that Firefox 68.0 and Opera
samples have been identified as browser respectively with a
fraction of 79% and 65%, which is a good level of accuracy
for tools that were not considered during the training phase of
our classifiers. This proves that the behaviour of browsers is
understandable by a machine, which is thus able to recognize
the same patterns in the traffic generated by other tools. A
slightly better performance on Firefox than with Opera can be
justified by the fact that the training set included two previous
versions of the same browser, while the Opera browser was
completely unknown for our classifiers.

On the other hand, Grabsite and SlowHTTPTest were not
correctly classified as a web crawler and a network stress tool,
the accuracy was 18% and 36%, respectively. Our interpreta-
tion of these results is that the network fingerprints of web
crawlers and network stress tools appears to be very specific
of the tool that generated the examined packets. For instance,
an interesting example that seem to confirm the hypothesis
of tool-instance specific fingerprints derives from the classifi-
cation of SlowHTTPTest, which internally uses the the same
basic approach of RudyJS and Slowloris. Nonetheless, even if

we included several samples of these two DoS applications,
our classifier had great difficulty in recognizing it as another
instance of a network stress tool. This is probably related to the
fact that RudyJS is written in JavaScript, Slowloris in Python
and SlowHTTPTest in C. The use of different technologies
and libraries seems to alter enough the fingerprint making their
identification very difficult.

Firefox 62.0, present in the training set has been classified
as a browser in 97% of the cases in the KTS, while Firefox
68.0, unkown to the classifier, is only correctly identified with
an accuracy of 79%. We can then conclude that close versions
of the same browser already show evident differences in the
traffic they generate to be able characterize their fingerprint.

Finally, GrabSite completely fooled our classifier. Since it
was recognized as a web crawler only in 18% of the cases.

F. Updating the training set with new products

We added Grabsite, SlowHTTPtest, and Opera in the train-
ing set and trained the classifiers without re-optimizing the
hyper-parameters, to simulate quick-and-dirt updates of the
classifiers (e.g. fast reaction in critical conditions). As ex-
pected, the new classifier was less accurate (with an AUC
of 93.25%): Grabsite was correctly recognised as crawler in
just 14% of the cases, Opera as browser in 66% of the cases,
and SlowHTTPtest in just 36%. Discussing the causes for these
poor results was uninteresting (e.g. not enough trees, too small
trees), as we proved that there are cases where quick-and-dirt
updates do not work. Nonetheless, after performing the full
training process (as in Section V-A), the performance of the
classifier were comparable to the performance of the classifier
trained on KTS only (accuracy on the test set was 98.43%
and the AUC was 95.70%) and Grabsite, SlowHTTPtest, and
Opera were properly predicted with accuracy 87.98%, 86.18%,
and 97.04%, respectively.
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VI. USE OF CLASSIFIERS FOR MONITORING

The next step of our work has been to evaluate how
the results produced by our classifiers could be used for
monitoring purposes. We present here a set of examples of
detection rules, using classifiers outputs, for a standard IDS
architecture inspired by the Zeek (formerly known as Bro)
framework. The effectiveness of the detection abilities has
been evaluated based on the classifier accuracy measurements.
The classifier would generate three detection events:
• category recognized: when, after reading nc packets, the

classifier decrees that the connection has been generated
by a tool in the category_name

event (category,connection,category_name)

• tool recognized: when, after reading nt packets, the
classifier decrees that the connection has been generated
by tool

event ( tool, connection , tool_name )

• instance recognized: when, after reading ni packets, the
classifier decrees that the traffic of connection has been
generated by tool_instance

event ( instance, connection , tool_instance )

The parameters nc , nt , and ni are considered a configuration
parameter of the sensors generating the events. Based on these
events we have first investigated the possibility to perform an
error detection using the three generated events to improve
the detection abilities (i.e. reduce false negatives and false
positives).

We have considered three Boolean values (obtained by
comparing predicted vs. real values) for the cross validation:
1) the inferred category is correct, 2) the inferred tool is
correct, 3) the category of the inferred tool equals the inferred
category 4) the inferred tool instance is correct, and 5) the
category of the inferred tool instance equals the inferred
category, and 6) the tool the inferred tool instance is a version
of, equals the tool inferred by the tool classifier.

The Boolean values obtained by comparing guesses from
different classifiers are important as they allows determining
(when working on test cases or real data) if classifiers are in
disagreement. Nonetheless, this check cannot recognise cases
where all the classifier are wrong in a coherent way, e.g., no
errors are visible if Grabsite is confused as (browser, Firefox,
and Firefox 42.0) by the category, tool, and instance classifiers.
By considering all the connections regardless of the number
of exchanged packets, in about C2 = 95.2% of the cases both
tool and category were correct, and all the three classifiers
were correct in C3 = 92.6% of the cases. By only considering
category and tool classifiers, in about the I2 = 1.8% of the
cases it was possible to infer that were errors in one of the
two classifiers, and only S2 = 3% were stealth to the cross
check. By using excluding the cases where errors are detected,
the tool classifier increases its performance from 95.47% to
96,97%, however, for 14.94% of the cases recorded as errors
the classifier was correct (overall 0.44%).

By also considering the Boolean relations concerning the
instance classifier, I3 = 4.7% were recognizable errors in one
of the three classifiers and S3 = 2.7% were stealth errors. In
this case, by ignoring errors, the performance of the instance

classifier increases from 93.21% to 95.67% and 9.89% of the
errors were indeed correct predictions of the instance classifier
(overall 0.27%). If only connections longer than 10 packets are
considered, the previous six percentage become C2 = 97.8%,
C3 = 95.6%, I2 = 0.5%, S2 = 1.6%, I3 = 2.4%, and S3 =
1.6%. Moreover, by excluding the errors, the classification was
correct in 97.36%.

Building on the classifiers, we can write a few correlation
rules that tell that an alarm needs to be raised:
• if more than X ‘category recognised events’ in the last T

seconds report a network stress tool,
• if more than X ‘tool recognized events’ in the last T

seconds report a tool in the network stress tool category
• if more than X ‘instance recognized events’ in the last

T seconds report an instance of a tool in the network
stress tool category (same tool or different tools may have
different thresholds)

• if more than X ‘category recognised events’ in the last T
seconds report a web crawler

• if more than X ‘tool recognized events’ in the last T
seconds report a web crawler from the same IP/IP range

• if the ‘category recognised events’ report non-browsers
from IP in the list of IP addresses/subnets where you
don’t expect to have connections made by non-browsers

VII. ANALYSIS OF RESULTS AND RESEARCH DIRECTIONS

We summarize here the main findings of our research and
discuss how they allow answering the Research Questions we
have asked in Section III-D.

Yes we can identify categories. (RQ 1). Our results prove
that (supervised) classifiers trained with traffic generated by a
set of tools can reliably determine the category of the tool that
generated the new traffic, only if the traffic was generated with
a tool already considered in the training set. On the other hand,
determining the category of a tool that was not considered
in the training set is challenging, as classifiers only worked
reasonably good for browsers whereas they were completely
wrong for network stress tools and web crawlers.

Yes we can identify tools, but less accurately (RQ 2).. Our
results proved that if (supervised) classifiers are trained with
traffic generated with a set of tools, they can reliably assign
the sniffed traffic to the originating tools, provided that these
tools were in the training set. However, these classifiers are not
as accurate as the ones that just determine the category. Deter-
mining other versions of the tools considered in the training
seems challenging, yet not impossible, at least for browsers.
However, more extensive studies would be needed to confirm
these hypotheses. Also in this case, we envision improvements
from the use of semi-supervised methods. Indeed, recognising
tools that are not in the training set can improve the accuracy
and effectiveness of decisions of monitoring systems.

Identify tool instances is more difficult (RQ 3). Our
results proved that supervised ML-based classifiers trained
with traffic generated with a set of tools can identify the
version of the tool that produced the traffic with reasonable
accuracy. It is very worth investigating how the accuracy
of classifiers changes if several instances of the same tool
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are considered (e.g. from 3 to 20/30 versions of firefox
and Chrome). Indeed, it would be interesting to check the
evolution of the software fingerprint as well as to improve the
performance of a correlator that cross-checks these values to
make more precise decisions.

Early DoS detection is feasible. We have noted that
network stress tools that are considered in the training set
manifest a clear fingerprint that the classifiers are able to
detect. Therefore, we conclude that it is possible to determine
if a site is under a volume-based or protocol DoS attacks.
This detection can be performed very early and the confidence
of this detection can be even bigger if data from concurrent
classification of more flows are aggregated. Nonetheless, more
effort is needed to understand if a similar approach can work
for another class of DoS attacks that is not covered by our
work: application attacks.

Early but not too early (RQ 4). Our data proved that a
reasonably accurate prediction requites at least 5 packets and
AUC stability is reached after 10 packets. An IDS/IPS should
not make decisions based on classifications made on few
packets. However, classifiers only work on a single flow. An
IDS/IPS considering the global security status of the network
in the last time frame can achieve much better correlations and
decisions. Designing an IDS correlator that properly leverages
this kind of classifiers is a challenging (industrial) research
that can impact on monitoring.

A browser is always a browser or a human being is
always a human being (RQ 2,RQ 3)? Browsers have been
recognized also when their data sets were not considered in the
training set. A possible explanation is that the way browsers
interact with web sites is standard, e.g. prefetching pages,
loading complex pages with multiple requests. Nonetheless,
our data do not allow us to establish if these peculiarities
are of the tools and their communication libraries or they are
generated by the fact that they are directly driven by humans.
Further research is needed to better motivate this evidence and
to separate human patterns from tools patterns, which may be
useful for monitoring.

New web crawlers and network stress tools, new fin-
gerprint, new training (RQ 4). Unsurprisingly, our result
showed that our classifiers, based on supervised methods,
have troubles in classifying unknown tools (which are not
browsers). Unsupervised or semi-supervised methods should
be tested in these cases.

New tool version almost always implies new training
(RQ 5). Our results showed that tools may have a fingerprint
and this fingerprint may occasionally be preserved in the next
versions. Also in this case a disclaimer applies as this result
was more evident for browsers where the “human effect”
cannot be isolated. It would have been desirable to have
specific tool fingerprints, which propagate through versions.
However, to have accurate classifiers we are condemned to
train supervised classifiers with all the tools of interest to make
them effective for monitoring purposes. Further studies would
be needed to better characterize how this fingerprint propagates
in close version (e.g. 62.0 vs. 63.0) for longer periods of
time (e.g. in the last 10 years). And research would check
if unsupervised and semi-supervised methods can see patterns

in the data that allow classifiers to properly label unknown
tools and versions.

Quick updates do not work. As largely expected, if
new tools are added into the training set, classifiers trained
reusing previously computed hyper-parameters have poor per-
formance. Only when a full training is performed, the classi-
fiers perform well.

Malware may be detected if it uses known tools and
libraries. Our analysis proved, that tools and libraries can be
easily recognised. Therefore, training classifiers with connec-
tions generated by malware and by libraries the malware uses,
can allow detecting when connections are generated by these
really unwanted tools. In this case, data sets with malware
communications can be used in future research to prove this
hypothesis, which resembles what already done in literature
for detecting skype and attacks (see Section VIII).

User habits only for known tools. In corporate scenario,
where a reliable association exists between IP addresses, being
able to recognise tool instances can help administrators in
determining when old browser with known vulnerabilities are
used. An interesting improvement may consider adding se-
mantic information to determine anomalous users’ behaviour,
like the average level of competence of people working hours,
and the knowledge (and history) of tools used.

Detect (browser) liars. Given the reasonably good accuracy
of our classifiers, whenever the decrypted payload is accessible
to a monitoring system or a security control (e.g. re-encryption
or at the endpoint servers or cleartext communications), a
comparison is possible, e.g. to determine potential liars and
attacks aiming at bypassing local HTTP filters. An analysis
could determine all the cases where this comparison is bene-
ficial and how such comparisons can impact the security and
its performance in terms of false positives and negatives.

Threats to validity. We have identified a set of threats
to validity of our results. First, we have only covered a
limited number of tool categories. It is not guaranteed, but
plausible, that similarly trained classifiers can be as accurate
as the ones presented here. The same consideration applies
to classifiers for tools and tool instances. Selected different
tools and different versions of the tools could lead to different
accuracy results. Also, considering very large sets of tools and
considering several instances of the same tools can change
the accuracy results. However, the fact that the methodology
that we have adopted follows the best practice ensures that
Our classifiers are based on random forests. Other classifiers
may work better. Nonetheless, we have selected them based on
previous analysis on effectiveness of classical ML approaches
and performed an internal validation against neural networks.
Then, all our classifiers have been built using Matlab. Python-
based approaches could reach slightly better results. Nonethe-
less, better classifiers may only confirm the correctness of
this approach and reduce the impact of current limitations.
Furthermore, we did not isolate, by design, the effect of the
tools from the effect of the OS-specific and other shared
libraries, which could lead to a better analysis. An analysis
of the used libraries, at least for open source applications,
could help in performing a more careful analysis. Finally,
the considerations about the application of the classifiers to
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monitoring (as in Section VI) miss an additional evaluation in a
real context. However, the absence of labels in real traffic data
and the limited coverage of tools the classifiers is currently
able to identify compared to the real traffic (together with the
network security policy of our institution) would have made
this validation completely significant.

VIII. RELATED WORKS

This section surveys related traffic classification techniques
and its applications to encrypted communications. Traffic
classification used to rely on port number. Since their accuracy
decreased with the advent of dynamic ports, new classifiers
relied on Deep Packet Inspection (DPI) techniques. The advent
of encrypted traffic, however, reduced the accuracy of these
techniques too. As a result, methods based on traffic flow
statistics and time series analysis stand out as they only use
unencrypted headers.

Reported works despite belonging to this latter category,
are very different from each other. They differ for the goal
of the classification, the type of feature employed, and for the
Machine Learning (ML) method adopted. First, the goal of the
classification strongly depends on the problem to solve, which
may be the identification of a specific application generating
the data flow (Skype, Torrent, Chrome, Facebook), the traffic
type (browsing, video chat, downloading), the protocol type
(UDP, TCP, FTP), the destination website (Google, YouTube),
and the type of ongoing attack (Crawling, R2L, U2R, DOS,
Probe). Second, the type of features employed in the clas-
sification may vary a lot. Following the classification given
by Rezaei et al. [27], there are three types of input features
commonly used: Time Series + Header, Statistical Features,
Payload + Header. Payload analysis is still used when an end-
to-end approach is employed, in which the classifier itself - a
neural network generally - extracts its own representation of
raw data. At last, feature selection strongly affects the model
selection as well as the required computational complexity. As
reported by Rezaei, in case of statistical features, classical ML
algorithms and MLP reach the best results without overfitting,
while Payload data require more complicated models as CNN
or CNN+LSTM. Time series, instead, have medium complex-
ity and all previous algorithms have been used in literature. In
the following, some of the most important works are briefly
reported whereas Table XII reports a comparison of their main
characteristics.

In an early work on applying machine learning techniques
to application protocol classification in encrypted traffic, Bar-
Yanai et al. in [2] proposed a novel algorithm which combines
K-means and K-NN to classify traffic data (HTTP, SMTP, POP,
Skype, eDonkey, BitTorrent, Encrypted BitTorrrent, RTP and
ICQ). Authors claim their method is accurate and fast enough
to be used in a real-time environment. Nonetheless, the flow
classifier needs 100 packets, if available, or at least 15 packets.

Naseer et al. investigates the suitability of deep leaning
(DL) approach for anomaly detection [25]. They trained dif-
ferent DL architectures, namely Auto Encoders, Convolutional
Neural Network (CNN), Long Short-Term Memory on the
NLSKDD dataset, which includes four attack typologies: DoS,

U2R, R2L, and Probe. Their comparison against classical
ML techniques showed that DL techniques improve of a
few percentage points classical ML accuracy at the cost of
at least three order of magnitude higher training time. This
work confirmed that, despite employing GPU testbed, DL
techniques are not suitable for an online environment yet.

Wang et al. introduced the end-to-end learning in the context
of traffic classification [31]. They employed a 1D CNN on raw
data of the SCX VPN-nonVPN dataset to classify 12 classes of
traffic types. Data have been pre-processed into two different
ways: either the first 784 bytes were taken from the whole
packet or just from the 7th layer. Their study showed that
considering all layers rather than only the 7th leads to higher
classification accuracy. Nevertheless, authors did not report
any results in terms of training or evaluating time nor they
did a full comparison against traditional techniques.

Chen et al. in [7] used deep neural network to classify IP
traffic. They employed a classic 2D CNN after having pro-
jected 6 time-series features into a multi-channel image. They
introduced of a novel Sequence-to-Image technique (Seq2Img)
based on Reproducing Kernel Hilbert Space (RKHS) embed-
dings and used it to convert 6 features (both static and dynamic
size, inter-arrival time and direction of the packets) through the
RKHS embedding into a 6-channel image used by the CNN to
determine traffic class. They identified either the APP (Skype,
Facebook, Instagram, etc.) or the protocol (FTP, HTTP, SSH,
etc.) used to generated the data. They claim the proposed
framework may be used online, as only 10 packets are needed,
but the work lacks training and evaluating time.

The work of Balla et al. aimed at performing real-time de-
tection of web-crawler [1]. As in this paper, authors employed
decision tree to understand whether the ongoing session was
started by a human or a crawler. In our paper, we have also
classified the specific crawler tool producing the traffic. Hence,
we can argue that this paper generalize this previous work.

The most similar work in literature has been presented by
Vargas et al. [29]. Authors created a Bayesian Network model
capable of correctly classify different types of attack such as
worms and brute force attacks (DoS, DDoS) while using Time
Series. Reported accuracy, True negative rate, True positive
rate and False positive rate are impressively high even though
no comparison is made with any other methods. Besides, only
terminated flows are considered, thus, as reported by authors,
their method cannot be employed online.

Miller et al. identified specific web pages within websites
and deduced some of its content with an accuracy of 87% [21].
After having clusterized the data set based on ingoing and
outgoing packet dimensions information, a Hidden Markov
Model classifer concluded the job. Authors reported that
attacks based on their method could expose ”Personal details
including medical conditions, financial and legal affairs and
sexual orientation”. Authors also proposed a possible mitiga-
tion, which decreases web page classification accuracy of 27%
with a little increase in traffic volume. A similar work but
in a completely different context was proposed by Koch and
Rodosek [18] who attempted to detect potentially dangerous
command sequences within SSH traffic. They proposed a novel
IDS that detects attacks based on the probabilities of certain
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PAPER YEAR TRAFFIC CLASSIFICATION ATTACK CLASSIFICATION ML METHOD FEATURE TYPE

This work 2019 Í browser identification Í DOS, crawling random forest statistical features
Bar-Yanai et al. [2] 2010 Í protocol identification + K-means, k-NN time series
Naseer et al. [25] 2018 + Í DOS, U2R, R2L, probe AEs, CNN, LSTM statistical features
Wang et al. [31] 2017 Í ISCX VPN-nonVPN + 1D CNN payload inspection
Balla et al. [1] 2011 + Í crawling decision trees statistical features
Vargas-Munoz et al. [29] 2018 + Í DoS, DDoS, worms Bayesian network time series
Lopez-Martin et al. [20] 2017 Í RED IRIS + RNN, CNN, RNN time series
Miller et al. [21] 2014 Í single web pages + logistic regression, HMM bag of Gaussian
Koch and Rodosek [18] 2010 + Í R2L, U2R over SSH clustering time series
Chen et al. [7] 2017 Í protocol or app identification + RKHS, CNN time series

TABLE XII: Overview of machine learning methods for traffic classification.

command sequences. Each command is classified according to
the nearest cluster of command features learned by the system.
Authors claimed that, besides being only a prototype, the
system can be used in a general context as it is based on flow
evaluation only. However, the ever-changing SSH scenario,
where new commands are introduced yearly, strongly limits
the usability of this approach.

IX. CONCLUSIONS

In this paper we have presented our approach for the
classification of the tools that generate user traffic. Based on
machine learning, out approach categorizes the tools by only
analyzing the traffic statistics computed on the network and
transport ISO/OSI layers. Our set of random forest classifiers
is not only able to identify the category of the tools (browser,
network stress tool and web crawler), but also the specific
tool used to generate such traffic (e.g. Chrome vs. Firefox).
The classifiers we have trained have two major advantages
when compared to existing works. First, they can be used
to categorize live traffic, which is paramount to use them in
IDS/IPS scenarios. Then, being able to cope equally well with
both clear and encrypted traffic, they do not need to resort to
Deep Packet Inspection to correctly work.

In the near future, we plan to integrate our approach into
existing IDS tools, such as Zeek and Suricata. In addition, we
will investigate the use of deep learning techniques to further
increase the accuracy of our methodology, especially when
detecting the specific versions of the tool used to generate
the analyzed traffic. Furthermore, we will try to extend our
approach also to UDP traffic. This will let us to support for
example the increasingly widespread QUIC protocol. Also,
this will extend the applicability of our DoS identification
approach to DRDoS (Distributed Reflective DoS) attacks,
since these are mainly based on exploiting UDP-based services
(e.g. DNS). In addition, we plan to explore the performance of
other machine learning approaches on this task, in particular
semi-supervisioned algorithms and deep learning techniques.
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