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METHOD AND APPARATUS FOR IMAGE
RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] The present application claims priority to EP
20187576.2, filed Jul. 24, 2020, the entire contents of which
is incorporated herein by reference.

FIELD

[0002] The present disclosure relates to methods and appa-
ratuses for image recognition and, more particularly, to
methods and apparatuses for face or fingerprint recognition,
for example.

BACKGROUND

[0003] Over the last years, huge progresses have been
made in the deep learning community. Advances in the
development of Convolutional Neural Networks (CNN)
have led to unprecedented accuracy in many computer
vision tasks. One of the tasks which has attracted computer
vision researchers since its inception is that of being able to
recognize a person from a picture of his/her face. This task,
which has countless applications, is still far to be marked as
a solved problem. One of the most interesting sub-tasks is
face recognition.

[0004] Given two (properly aligned) input face images, a
goal is to make a decision whether they represent the same
person or not. Farly attempts in the field required the design
of hand-crafted features which could capture the most
significant traits whose values are unique to each person.
Furthermore, they had to be computed from precisely
aligned and illumination normalized pictures. It had become
evident the complexity of handling the non-linear variations
which may occur in face images. Thus, it is not surprising
that many conventional methods tend to fail in non-ideal
conditions.

[0005] A breakthrough in performance was made possible
by means of learned features through CNN-based networks.
As in previous methods, once the features of two test faces
have been computed, a distance measure (typically €2) is
employed for the recognition task: if the distance is below a
certain threshold, the two test faces belong to the same
person, otherwise not. A loss employed to compute such
features may be the softmax cross-entropy. which eventually
showed its limitations. It was found that generalization
ability could be improved by maximizing inter-class vari-
ance and minimizing intra-class variance, wherein intra-
class relates to matching image pairs and inter-class relates
to non-matching image pairs. This strategy was adopted by
accounting for a large margin, in the Euclidean space,
between “contrastive” embeddings, hence the term contras-
tive loss. A further advancement was then the introduction of
the so-called triplet-loss: here, the distance between the
embeddings is evaluated in relative rather than absolute
terms. The introduction of anchor samples in the training
process allows to learn embeddings for which the anchor-
positive distance is minimized and anchor-negative is maxi-
mized. Even though this has led to better embedding rep-
resentations, it has been shown that it is, oftentimes,
complex to train. The focus eventually shifted to the design

of new architectures employing metrics other than {2 to
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provide more strict margins. As a matter of fact, not so strict
margins can easily lead to false positive outcomes.

[0006] Angular distance metrics have been proposed to
enforce a large margin between negative examples and thus
reduce the number of false positives. It was shown that

angular-based loss, in contrast to  2-based losses, enforces
discriminative constraints on a hypersphere manifold,
accounting for the fact that human faces lie on manifold in
a larger space.

[0007] In all of the above-mentioned methods, a pre-
determined analytical metric is used to compute the distance
between two embeddings. Then, the loss function is
designed in order to ensure a large margin (in terms of the
employed metric) between the features of negative couples
and compacting the positive ones. The loss functions mostly
focus on the separability of the facial/fingerprint features,
however, the decision boundaries are complex and arbitrary
which leads to potential errors.

[0008] Thus, there is a need for improvement for machine
learning based decisions on matching or non-matching
image pairs.

SUMMARY

[0009] Embodiments of the present disclosure address the
objective by mapping matching and non-matching image
pairs to predefined statistical distributions that can be easily
separated.

[0010] According to a first aspect of the present disclo-
sure, it is provided an apparatus for image recognition. The
apparatus comprises a machine learning network configured
to map first and second input image data to either a first or
a second predefined target probability distribution, depend-
ing on whether the first and second input image data
correspond to matching or non-matching images. An output
of the machine learning network matching the first target
probability distribution is indicative of matching images and
an output of the machine learning network matching the
second target probability distribution is indicative of non-
matching images.

[0011] According to some embodiments, the first and the
second target probability distribution correspond to a first
and a second multivariate Gaussian distribution with distinct
centers of mass. The first and the second target probability
distribution may be chosen to be Gaussian since the output
of some machine learning networks naturally tends to this
distribution because of the central limit theorem.

[0012] According to some embodiments, the machine
learning network comprises a first machine learning subnet-
work configured to extract respective discriminative image
features from the first and second image data, and a second
machine learning subnetwork configured to map the
extracted first and second discriminative image features to
one of the first and second predefined target probability
distributions.

[0013] According to some embodiments, the first machine
learning subnetwork comprises a Siamese neural network
configured to process the first and second image data in
tandem to compute the first and second discriminative image
features.

[0014] According to some embodiments, the second
machine learning subnetwork comprises a convolutional
neural network comprising an input layer for the first and
second discriminative image features, a plurality of fully
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connected layers to apply a previously trained metric on the
first and second discriminative image features, and an output
layer for an m-dimensional output.

[0015] According to some embodiments, the apparatus
further comprises a preprocessor configured to preprocess
the first and second input image data for alignment of
corresponding first and second images based on a plurality
of predefined image points. This may improve the compa-
rability of the first and second images.

[0016] According to a further aspect of the present dis-
closure, it is provided method for training the apparatus of
any one of the previous claims. The training method
includes feeding image data of pairs of matching or non-
matching images into the machine learning network, adjust-
ing computational weights of the machine learning network
to minimize a difference between the predefined target
probability distributions and statistics of outputs generated
by the machine learning network.

[0017] According to some embodiments, adjusting the
computational weights comprises minimizing a difference
between the first predefined target probability distribution
and a distribution of outputs of the machine learning net-
work in response to pairs of matching images, and mini-
mizing a difference between the second predefined target
probability distribution and a distribution of outputs of the
machine learning network in response to pairs of non-
matching images.

[0018] According to some embodiments, adjusting the
computational weights comprises minimizing the Kullback-
Leibler divergence between the target probability distribu-
tions and the statistics of outputs.

[0019] Hence, embodiments comprise a training device
and an authentication device. The training device is used to
train the matching and non-matching pairs on regularized
predefined distributions. The authentication device uses the
network weights computed by the training device.

[0020] According to yet a further aspect of the present
disclosure, it is provided method for image recognition. The
method includes mapping, using a machine learning net-
work, first and second input image data to either a first or a
second predefined target probability distribution, depending
on whether the first and second input image data correspond
to matching or non-matching images, and deciding for
matching images if an output of the machine learning
network matches the first target probability distribution or
deciding for non-matching images if the output of the
machine learning network matches the second target prob-
ability distribution.

[0021] Embodiments of the present disclosure propose not
only to learn the most discriminative features (first machine
learning subnetwork), but also to jointly learn the best
(possibly highly non-linear) metric to compare such features
(second machine learning sub-network). The only require-
ment is on how the metric should behave depending whether
the features are those coming from positive (matching) or
negative (non-matching) image pairs. In other words, the
metric outcome is regularized to be distributed accordingly
to two different distributions: one for positive and one for
negative input samples.

BRIEF DESCRIPTION OF THE FIGURES

[0022] Some examples of apparatuses and/or methods will
be described in the following by way of example only, and
with reference to the accompanying figures, in which
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[0023] FIG. 1 shows an embodiment of an apparatus for
image recognition;

[0024] FIG. 2 shows first and the second target probability
distributions for the matching and non-matching image
pairs;

[0025] FIG. 3 shows latent vectors of an image pair and

horizontal flips; and

[0026] FIG. 4 shows a method for training an apparatus for
image recognition according to embodiments of the present
disclosure

DETAILED DESCRIPTION

[0027] Various examples will now be described more fully
with reference to the accompanying drawings in which some
examples are illustrated. In the figures, the thicknesses of
lines, layers and/or regions may be exaggerated for clarity.
[0028] Accordingly, while further examples are capable of
various modifications and alternative forms, some particular
examples thereof are shown in the figures and will subse-
quently be described in detail. However, this detailed
description does not limit further examples to the particular
forms described. Further examples may cover all modifica-
tions, equivalents, and alternatives falling within the scope
of the disclosure. Same or like numbers refer to like or
similar elements throughout the description of the figures,
which may be implemented identically or in modified form
when compared to one another while providing for the same
or a similar functionality.

[0029] It will be understood that when an element is
referred to as being “connected” or “coupled” to another
element, the elements may be directly connected or coupled
via one or more intervening elements. If two elements A and
B are combined using an “or”, this is to be understood to
disclose all possible combinations, i.e. only A, only B as
well as A and B, if not explicitly or implicitly defined
otherwise. An alternative wording for the same combina-
tions is “at least one of A and B” or “A and/or B”. The same
applies, mutatis mutandis, for combinations of more than
two Elements.

[0030] The terminology used herein for the purpose of
describing particular examples is not intended to be limiting
for further examples. Whenever a singular form such as “a,”
“an” and “the” is used and using only a single element is
neither explicitly or implicitly defined as being mandatory,
further examples may also use plural elements to implement
the same functionality. Likewise, when a functionality is
subsequently described as being implemented using mul-
tiple elements, further examples may implement the same
functionality using a single element or processing entity. It
will be further understood that the terms “comprises,” “com-
prising,” “includes” and/or “including,” when used, specify
the presence of the stated features, integers, steps, opera-
tions, processes, acts, elements and/or components, but do
not preclude the presence or addition of one or more other
features, integers, steps, operations, processes, acts, ele-
ments, components and/or any group thereof.

[0031] Unless otherwise defined, all terms (including tech-
nical and scientific terms) are used herein in their ordinary
meaning of the art to which the examples belong.

[0032] Embodiments of the present disclosure propose to
learn meaningful features of input images along with a
discriminative metric to be used to compare image features
of pairs of input images, such as facial or fingerprint images,
for example. Well-known literature approaches fix an ana-
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lytical metric to compare e.g. facial features and use the loss
to ensure that the resulting distances are well separated in
case of non-matching image pairs. Embodiments of the
present disclosure are different and add an additional degree
of freedom. A constraint that is imposed through the loss
function is to have a well-behaved latent space, i.e. the
metric space, such that similar images (e.g. related to similar
faces) are compacted while dissimilar images are pushed far
apart.

[0033] FIG. 1 illustrates an apparatus 100 for image rec-
ognition according to an embodiment of the present disclo-
sure. Apparatus 100 can be employed for detecting matching
or non-matching pairs of images, such as matching or
non-matching pairs of face images (i.e., images showing the
same person) or matching or non-matching pairs of finger-
print images (i.e., images showing the same fingerprint), for
example. Further applications are conceivable as well.

[0034] Apparatus 100 comprises at least one machine
learning network 110 which is configured to map first input
image data 102-A and second input image data 102-B to
either a first predefined target probability distribution 120-A
or a second predefined target probability distribution 120-B,
depending on whether the first and second input image data
102-A, 102-B correspond to matching or non-matching
images. The first and second input image data 102-A, 102-B
correspond to a digital representation of first and second
images, respectively. Preferably, apparatus 100 further com-
prises a preprocessor (not shown) which is configured to
preprocess the first and second input image data 102-A,
102-B in order to align the corresponding first and second
images based on a plurality of predefined image points. An
output 111 of the machine learning network 110 matching
the first target probability distribution 120-A is indicative of
matching images (i.e., images showing the same person or
fingerprint) and an output 111 of the machine learning
network 110 matching the second target probability distri-
bution 120-B is indicative of non-matching images (i.e.,
images showing different persons or fingerprints).

[0035] According to an embodiment, machine learning
network 110 may comprise two sub-networks: a first
machine learning subnetwork 112 (FeatureNet) which is
configured to determine respective discriminative image
features 114-A, 114-B (to be trained) from the first and
second image data 102-A, 102-B, and a second machine
learning subnetwork 116 (ModeINet) which is configured to
map the determined first and second discriminative image
features 114-A, 114-B to one of the first and second pre-
defined target probability distributions 120-A, 120-B.

[0036] According to an embodiment, FeatureNet 112 may
be a Siamese neural network which processes pairs of input
images 102-A, 102-B and outputs a pair of image feature
vectors 114-A, 114-B. Thus, FeatureNet 112 may extract the
discriminative image features (e.g. face or fingerprint fea-
tures) from the image space into a d-dimensional feature
vector space. ModelNet 116 may be chosen as a convolu-
tional neural network comprising an input layer for the first
and second discriminative image features 114-A, 114-B, a
plurality of fully connected layers to apply a metric (to be
trained) on the first and second discriminative image fea-
tures 114-A, 114-B, and an output layer for an m-dimen-
sional output. Hence, ModelNet 116, given the image fea-
ture vector pairs 114-A, 114-B, may apply the learned metric
and output a distance which is shaped through the loss
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function. According to embodiments, the two sub-networks
112, 116 may be trained as a single entity to match the
desired behavior.

[0037] One strategy is based on selecting matching image
pairs (intra-class users) and non-matching image pairs (in-
ter-class users) during the training phase, and mapping them
to clearly separated and well-behaved Gaussian probability
distributions 120-A, 120-B. This has been shown to lead to
a good separation between positive and negative samples.
The skilled person will appreciate, however, that also other
predefined target probability distributions 120-A, 120-B are
in principle possible, such as multivariate Laplacian distri-
butions, for example. The choice of the predefined target
probability distributions 120-A, 120-B may depend on the
network structure of ModelNet 116.

[0038] More specifically, FeatureNet 112 takes as input
the pairs of the (face) images, namely matching pairs
(positive examples) as well as a non-matching pairs (nega-
tive example). The loss function should be made in such a
way that the learnt metric of ModelNet 116, when compar-
ing positive examples should output samples following a

first target probability distribution ¥ . Similarly, the output
of the metric when comparing the negative examples should

W
i

follow a second target probability distribution * . Since
both target probability distributions 120-A, 120-B may be
chosen at design phase to have far-enough mass centers, it
becomes easy to draw a hyperplane separating the two
classes.

[0039] The desired target probability distributions ¥, and

m
¥ (for matching and non-matching pairs respectively)
may be defined as two multivariate Gaussian distributions
over a d-dimensional space:

i A (
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may be defined as diagonal covariance matrices and may be
the mean vectors. The predefined target probability distri-
butions 120-A, 120-B may be chosen to be Gaussian since
the output of fully connected layers of ModelNet 116
naturally tends to this distribution because of the central
limit theorem. Further, independence of the variables in the
d-dimensional space may be assumed to simplify the prob-
lem.

[0040] X, and X, may be defined as the pairs of matching
and non-matching (face) images 102-A, 102-B, respectively.
A goal of the machine learning network 110 (including the
sub-networks 112, 116) is to learn an encoding function of

the input pairs z=H(X), where X€{,.%,} such that z~ ¥ _if

=%, and z~ ¥ if =% . In order to enforce the metric output
111, namely z, to follow the intended predefined target
probability distributions 120-A, 120-B, a similarity measure
between distributions may be defined. Adjusting the com-
putational weights of the machine learning network 110
(including the sub-networks 112, 116) may thus comprise
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minimizing a difference (maximizing the similarity)
between the first predefined target probability distribution

¥ and a distribution of outputs z of the machine learning
network in response to pairs of matching images 102-A,
102-B, and minimizing a difference between the second
predefined target probability distribution P, and a distribu-
tion of outputs z of the machine learning network in
response to pairs of non-matching images 102-A, 102-B.
[0041] Some embodiments may rely on the Kullback-
Leibler (KL) divergence which, under the assumption that
the imposed target probability distributions 120-A, 120-B as
well as the network output 111 follow a Gaussian distribu-
tion, allows to obtain a closed-form loss function. A loss
function is a function that maps an event or values of one or
more variables onto a real number intuitively representing
some “cost” associated with the event. Adjusting the com-
putational weights of the machine learning network 110
seeks to minimize an adequate loss function.

[0042] Due to the above assumptions on the network
output 111, we are interested in the statistics of z, for
example of first and second order. For this reason, let us
recall that during training the machine learning network 110
may be given as input a batch of biometric traits XER >
with b being the batch size, thus resulting in ZER ™ after
the encoding. Therefore, we can compute the first and
second order statistics (over a batch) of the encoded repre-
sentations Z_, 7, related to matching (i, ., ) and non-
matching (11, .2 ) input biometric traits resmpect”ively. More
specifically, we have that p, ©=%[Z, 7] and 2, “=var(Z,,
@), where (i) denotes the i-th column and (i) the i-th
diagonal entry.

[0043] Having defined the statistics of both target and
encoded samples distributions, the KL divergence for mul-
tivariate Gaussian distributions (in case of matching input
faces) can be written as:

IV(Z;; Zom:\++(ﬂrm —ﬂam)TZ;; (1, — Hop) |

where pedix T indicates the target (desired) statistics. More
specifically, based on the assumption of independence of the
components of the d-dimensional latent representation, the
target covariance matrices X, , X, may be defined to be
diagonal. On the same line, all the variables may be defined
to have the same mean, e.g., uTm:1dem and an:lden.

[0044] For the case of diagonal covariance £, matrices,
can be rewritten as

(i)
1 o7l Z;Zom ller,, — 0,11,
—-d+ 5 + 3 .

—|log —
(i)
2 I1; Zom TFn 7,

L=

In a similar fashion £, can be obtained by considering the
statistics of both target and encoded distributions in the case
of unauthorized input biometric traits. Then, the loss func-
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tion which the machine learning network 110 has to mini-

mize may be given by £=1/2L +1/2L,, which reaches its
minimum when the statistics of the two generated output
distributions will match that of the target probability distri-
butions 120-A, 120-B. Note that the distribution of the
encoded samples is shaped by only enforcing first and
second order statistics. It has been observed that these
statistics are sufficient to shape the encoded samples distri-
butions to closely follow the target ones. This leads to
conjecture that the encoder output 111 tends to a maximum
entropy distribution (Gaussian) and thus first and secand
order moments are sufficient to shape the latent space as
intended.

[0045] For face recognition most common and well-per-
forming loss functions include large margin feature-based
learning loss used by Arcface (Jiankang Deng, Jia Guo,
Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive
angular margin loss for deep face recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4690-4699, 2019), Cosface (Hao
Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,
Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface: Large
margin cosine loss for deep face recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5265-5274, 2018), and Sphereface (Wei-
yang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Ray,
and Le Song. Sphereface: Deep hypersphere embedding for
face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 212-220,
2017), which is based on angular margin compactness,
Euclidean distance-based loss including contractive loss,
center loss and Triplet loss used by FaceNet (Florian
Schroff, Dmitry Kalenichenko, and James Philbin. Facenet:
A unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 815-823, 2015), VGGFace
(Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al.
Deep face recognition. In bmve, volume 1, page 6, 2015),
and DeepID3 (Yi Sun, Ding Liang, Xiaogang Wang, and
Xiaoou Tang. Deepid3: Face recognition with very deep
neural networks. arXiv preprint arXiv: 1502.00873, 2015).
All of these losses are based on interclass discrepancy and
intraclass compactness either in Euclidean or angular space.
As previously hinted, it becomes clear how all the available
methods rely on known and predefined metrics in order to
assess the features distance.

[0046] The present disclosure approaches the problem
from a different perspective by regularizing the metric space
to well-behaved target probability distributions 120-A, 120-
B. In the it will be shown how the proposed loss function
significantly outperforms all other loss functions across
different datasets. This allows to establish the superiority of
the metric space regularization approach as it leads to
improved performance for the face recognition task.

[0047] For fast convergence, machine learning network
110 may select the most difficult matching and non-match-
ing pairs. Only those pairs may be selected, which fall onto
the low probability regions of the target probability distri-
butions 120-A, 120-B. A rationale behind this choice is that
the machine learning network 110 will naturally tend to put
the most difficult samples in the so-called confusion region,
namely where the tails of the two distributions 120-A, 120-B
intersect. The goal of the machine learning network 110 is to
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map Z, to ¥ andZ,to ¥,. Thus, the hard matching and
non-matching pairs may be selected within the mini-batches
while online training: after every epoch the subset of match-
ing pairs may be selected whose output Z,, is far from the

mass center of ¥ . Similarly, for the non-matching pairs,
those may be selected which result in a Z,, far from the center

of mass of ¥ . The result is that during the following epoch,
the machine learning network 110 will improve as it will be
given as input more and more challenging samples.

[0048] No strict thresholds are necessary in order to per-
form such selection as it will highly decrease the number of
pairs. In turn, first and second-order statistics computed over
a too small mini-batch may result in less statically signifi-
cant values. More in detail, 720 people per batch may be
selected, each of them having at least 5 different images.
This is done to have enough matching and non-matching
pairs after the pairs selection step.

[0049] FIG. 2 depicts how the most difficult matching and
nonmatching pairs 102-A, 102-B may be selected. For fast
convergence, machine learning network 110 may select the
hard matching and non-matching pairs. ¥, 120-A repre-
sents the target distribution for the matching pairs, and ¥,
120-B represents depicts the target distribution for the
nonmatching pairs. A subset 200 of Z,,, and 7, which are not

W
i

mappedto ¥ and ¥ respectively may be selected in the
mini-batches for training.

[0050] The datasets that may be employed for training
machine learning network 110 are Casia (Dong Y1, Zhen Lei,
Shengcai Liao, and Stan Z Li. Learning face representation
from scratch. arXiv preprintarXiv: 1411.7923, 2014), VGG-
Face2 (Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi,
and Andrew Zisserman. Vggface2: A dataset for recognizing
faces across pose and age. In 2018 13th IEEE International
Conference on Automatic Face & Gesture Recognition (FG
2018), pages 67-74. 1EEE, 2018) and MSIMV2 (http:/
http:/trillionpairs.deepglint.com/overview.). For evaluation,
the performance of machine learning network 110 may be
reported on most widely used datasets like LFW (Gary B
Huang, Marwan Mattar, Tamara Berg, and Eric Learned-
Miller. Labeled faces in the wild: A database for studying
face recognition in unconstrained environments. 2008), YTF
(Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in
unconstrained videos with matched background similarity.
IEEE, 2011) and CFP-FP (Soumyadip Sengupta, Jun-Cheng
Chen, Carlos Castillo, Vishal M Patel, Rama Chellappa, and
David W Jacobs. Frontal to profile face verification in the
wild. In 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1-9. IEEE, 2016). The
performance of network 110 may be reported on more
challenging datasets including large-age dataset CALFW
(Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age
Ifw: A database for studying cross-age face recognition in
unconstrained environments. arXiv preprint arXiv: 1708.
08197, 2017) and large-pose datasets CPLFW (Tianyue
Zheng and Weihong Deng. Cross-pose 1fw: A database for
studying crosspose face recognition in unconstrained envi-
ronments. Beijing University of Posts and Telecommunica-
tions, Tech. Rep, pages 18-01, 2018).

[0051] For prepossessing the first input image data 102-A
and the second input image data 102-B, strategies adopted
by most of the recent works in the field may be applied. Both
for the training and test datasets, MTCNN (Kaipeng Zhang,
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Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint face
detection and alignment using multitask cascaded convolu-
tional networks. IEEE Signal Processing Letters, 23(10):
1499-1503, 2016) may be employed to generate normalized
facial crops of size 160x160 with face alignment based on
five facial points, for example. As a final step, the images
102-A, 102-B may be mean normalized and constrained in
the range [-1, 1], for example. That is to say, the apparatus
100 may further comprise a preprocessor configured to
preprocess the first and second input image data 102-A,
102-B for alignment of corresponding first and second
images based on a plurality of predefined image points.

[0052] As explained before, network 110 may comprise
two neural sub-networks, FeatureNet 112 and ModelNet
116. Pairs of face images 102-A, 102-B may be given as an
input to FeatureNet 112, see FIG. 1, which may be based on
a Siamese neural network. The architectural choice of Fea-
tureNet 116 is crucial. In general, one may employ any state
of-the-art neural network architecture able to learn good
discriminative features. A goal of the FeatureNet 112 is to
map the image space X onto a feature vector space fER . A
pair of feature vectors f; and f, may be concatenated result-
ing in f=[f,f,]JER>". Different dimensionalities of the fea-
ture vectors f, have been explored. Thus, FeatureNet 112
may comprise a Siamese neural network configured to
process the first and second image data 102-A, 102-B in
tandem to compute the first and second discriminative image
features f; and f,. The resulting feature vector f obtained
from FeatureNet 112 may be given as an input to subsequent
ModelNet 116. In an example implementation, ModelNet
116 may comprise 7 Fully connected (FC) layers with the
ReL.U (rectified linear unit) activation function employed at
the output of each layer. At the last layer, no activation
function may be employed. The input size of ModelNet 116
is 2d, with the size gradually decreasing to the output size of
latent space dimensionality m. A goal of this sub-network
116 is to map the feature vector f onto well-behaved distri-
butions z in the latent space. Thus, ModelNet 116 may
comprise a convolutional neural network comprising an
input layer for the first and second discriminative image
feature vectors f; and f,, a plurality of fully connected layers
to apply a previously trained metric on the first and second
discriminative image feature vectors f; and f,, and an output
layer for an m-dimensional output. Also in this case, differ-
ent dimensionalities m of the latent space have been
explored.

[0053] Forexample, the network 110 may be trained using
Adam optimizer (Diederik P Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv preprint arXiv:
1412.6980, 2014) using stochastic gradient descent. Each
mini batch may be defined to be made of 720 people with
each person having a minimum of 5 images to ensure
enough matching and non-matching pairs. The initial learn-
ing rate may be set to be 0.1 with an exponential decay factor
of 0.98 after every 5 epochs. In total, the network 110 may
be trained for 500000 iterations. Weight decay may be set to
be 2 exp —4. Further, a dropout with a keep probability value
equal to 0.8 may be employed. All experiments may be
implemented in TensorFlow (Martin Abadi, Paul Barham,
Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} Symposium on Opet-
ating Systems Design and Implementation ({OSDI}16),
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pages 265-283, 2016). Since a large number of positive and
negative couples can be generated by a handful of data, a
simple data augmentation strategy may be used by employ-
ing horizontal image flip.

[0054] A method 400 for training the apparatus 100
according to embodiments of the present disclosure is sum-
marized in FIG. 4.

[0055] Method 400 includes feeding 410 image data 102-
A, 102-B of pairs of matching or non-matching images into
the machine learning network 110. Method 400 further
includes adjusting 420 computational weights of the
machine learning network 110 to minimize a difference
between the predefined target probability distributions 120-
A, 120-B and statistics of outputs 111 generated by the
machine learning network 110.

[0056] Adjusting 420 the computational weights may
comprise minimizing a difference between the first pre-
defined target probability distribution 1120-A and a distri-
bution of outputs 111 of the machine learning network 110
in response to pairs of matching images, and minimizing a
difference between the second predefined target probability
distribution 120-B and a distribution of outputs 111 of the
machine learning network 110 in response to pairs of
non-matching images. In some embodiments, adjusting 420
the computational weights may comprise minimizing the
Kullback-Leibler divergence between the target probability
distributions 120-A, 120-B and the statistics of outputs 111.
[0057] 1Inthe testing phase, a pair of images 102-A, 102-B
may be passed through the network 110, and the latent space
vectors of original images and flipped images may be
calculated and a threshold may be applied for the authenti-
cation. In Table 1 below, the results of the single pair of
images are reported as BioMetricNet-1. Further, we may
take the mean of all four latent space vectors of the original
and horizontally flips, these results are reported by BioMet-
ricNet-M in Table 1 below. Once the latent space vector is
obtained, a linear threshold may be applied for the authen-
tication. The process is depicted in the FIG. 3.

[0058] As previously discussed, in the authorized and
unauthorized target probability distributions 120-A, 120-B
may be set to be Gaussian. This choice comes from the fact
that the output of a (large enough) fully connected layer, by
the central limit theorem, will naturally tend to a Gaussian
distributed output. The distributions 120-A, 120-B may be

settobe ¥ =A(0,1)and ¥ =N (40, 1), for example. We
may choose L1 =0 and |, =40 to be different enough to keep
the distributions far aparf from each other.

[0059] Different dimensionalities of the feature vector
were explored and a value of d=512 was selected since in
example experiments this choice led to the highest accuracy.
It was empirically found that a further increase in feature
vector dimensionality leads to a statistically insignificant
increase in performance taking more time for the training.
However, the skilled person having benefit from the present
disclosure will appreciate that other values of d may be
appropriate for other applications.

[0060] Similar to the feature vector, for selecting optimal
latent space dimensionality different dimensionalities of the
latent vector were explored while fixing feature vector of
size d=512. m=1 was selected as this choice leads to the
highest accuracy and faster convergence. However, the
skilled person having benefit from the present disclosure
will appreciate that other values of m may be appropriate for
other applications.
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[0061] LFW and YTF are the most commonly used bench-
marks for images and videos unconstrained face recognition.
LFW consists of 13,233 face images collected from 5749
people. YTF dataset consists of 3,425 videos of 1595 people.
For both the datasets, the results for 6000 pairs of testing
images and videos are reported. For reporting the perfor-
mance, the standard protocol was followed of unrestricted
with labeled outside data.

TABLE 1

Verification performance % of different
methods on LEW, YTF, CALFW, CPLEW and CFP

Method # Image LIW YTF CALTFW CPLIW CrP
SphereFace 0.5M 99.42 950 90.30 81.40 9438
SphereFace+ 05M 9947 — — — —
FaceNet 200M  99.63 9510 — — —
VGGFace 2.6M 9895 9730 9057 8400 —
DeepID 0.2M 9947 9320 — — —
ArcFace 5.8M 99.82 98.02 9545 92.08 98.37
CenterLoss 0.7M 99.28 949 8548 7748 —
DeepFace 44M 9735 914 — — —
Baidu 1.3M 99.13 — — — —
RangeLoss SM 99.52 937 — — —
MarginalLoss 3.8M 99.48 9598 — — —
CosFace SM 99.73 976 — — 9544
BioMetricNet-1 5.8M 99.75 9783  96.88 9530 99.33
BioMetricNet-M 5.8M 99.80 98.06  97.07  95.60 99.35
[0062] In Table 1 the verification performance in % is

compared for different methods. As can be observed from
the table, embodiments of the present disclosure (referred to
as BioMetricNet) outperform the baseline methods (Cos-
Face, ArcFace, and SphereFace) with a significant margin on
YTF, CALFW, CPLFW, and CFP-FP. This shows the learn-
ing of regularized mappings onto latent space can enhance
the discrimination ability of the network leading to higher
accuracy.
[0063] The present disclosure presents a novel and inno-
vative approach for unconstrained face recognition and
authentication in which discriminative facial features are
directly mapped to the regularized latent space which leads
to improved robustness and accuracy. An intuition behind
this behavior is that the nonlinear boundaries learned by
standard deep learning classifiers indeed become very com-
plex as they try to closely fit the training data, leaving room
for misclassification. Conversely, embodiments of the pres-
ent disclosure enable much simpler boundaries to be used as
they does not learn how to partition the space but rather how
to map the input space into the latent space. With extensive
experiments, on multiple datasets with several state-of-the-
art benchmark methods, it was shown that embodiments of
the present disclosure can outperform other existing tech-
niques.
[0064] Note that the present technology can also be con-
figured as described below.

[0065] (1) An apparatus for image recognition, the

apparatus comprising:

[0066] a machine learning network configured to
map first and second input image data to either a first
or a second predefined target probability distribution,
depending on whether the first and second input
image data correspond to matching or non-matching
images,

[0067] wherein an output of the machine learning
network matching the first target probability distri-
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bution is indicative of matching images and an
output of the machine learning network matching the
second target probability distribution is indicative of
non-matching images.

[0068] (2) The apparatus of (1), wherein the first and the
second target probability distribution correspond to a
first and a second multivariate Gaussian distribution
with distinct centers of mass.

[0069] (3) The apparatus of (1) or (2), wherein the
machine leaming network comprises
[0070] a first machine learning subnetwork config-

ured to extract respective discriminative image fea-
tures from the first and second image data; and

[0071] a second machine learning subnetwork con-
figured to map the extracted first and second dis-
criminative image features to one of the first and
second predefined target probability distributions.

[0072] (4) The apparatus of (3), wherein the first
machine learning subnetwork comprises a Siamese
neural network configured to process the first and
second image data in tandem to compute the first and
second discriminative image features.

[0073] (5) The apparatus of (3) or (4), wherein the
second machine learning subnetwork comprises a con-
volutional neural network comprising an input layer for
the first and second discriminative image features, a
plurality of fully connected layers to apply a previously
trained metric on the first and second discriminative
image features, and an output for an m-dimensional
output.

[0074] (6) The apparatus of any one of (1) to (5), further
comprising a preprocessor configured to preprocess the
first and second input image data for alignment of
corresponding first and second images based on a
plurality of predefined image points.

[0075] (7) A method for training the apparatus of any
one of (1) to (6), the method comprising;

[0076] feeding image data of pairs of matching or
non-matching images into the machine learning net-
work;

[0077] adjusting computational weights of the
machine learning network to minimize a difference
between the predefined target probability distribu-
tions and statistics of outputs generated by the
machine learning network.

[0078] (8) The method of (7), wherein adjusting the
computational weights comprises minimizing a differ-
ence between the first predefined target probability
distribution and a distribution of outputs of the machine
learning network in response to pairs of matching
images, and minimizing a difference between the sec-
ond predefined target probability distribution and a
distribution of outputs of the machine learning network
in response to pairs of non-matching images

[0079] (9) The method of (7) or (8), wherein adjusting
the computational weights comprises minimizing the
Kullback-Leibler divergence between the target prob-
ability distributions and the statistics of outputs.

[0080] (10) Amethod for image recognition, the method
comprising;

[0081] mapping, using a machine learning network,
first and second input image data to either a first or
a second predefined target probability distribution,
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depending on whether the first and second input
image data correspond to matching or non-matching
images;

[0082] deciding for matching images if an output of
the machine learning network matches the first target
probability distribution or deciding for non-matching
images if the output of the machine learning network
matches the second target probability distribution.

[0083] The aspects and features mentioned and described
together with one or more of the previously detailed
examples and figures, may as well be combined with one or
more of the other examples in order to replace a like feature
of the other example or in order to additionally introduce the
feature to the other example.

[0084] Embodiments may be based on using a machine-
learning model or machine-learning algorithm. Machine
learning may refer to algorithms and statistical models that
computer systems may use to perform a specific task without
using explicit instructions, instead relying on models and
inference. For example, in machine-learning, instead of a
rule-based transformation of data, a transformation of data
may be used, that is inferred from an analysis of historical
and/or training data. For example, the content of images may
be analyzed using a machine-learning model or using a
machine-learning algorithm. In order for the machine-learn-
ing model to analyze the content of an image, the machine-
learning model may be trained using training images as
input and training content information as output. By training
the machine-learning model with a large number of training
images and/or training sequences (e.g. words or sentences)
and associated training content information (e.g. labels or
annotations), the machine-learning model “learns” to rec-
ognize the content of the images, so the content of images
that are not included in the training data can be recognized
using the machine-learning model. The same principle may
be used for other kinds of sensor data as well: By training a
machine-learning model using training sensor data and a
desired output, the machine-learning model “learns™ a trans-
formation between the sensor data and the output, which can
be used to provide an output based on non-training sensor
data provided to the machine-learning model. The provided
data (e.g. sensor data, meta data and/or image data) may be
preprocessed to obtain a feature vector, which is used as
input to the machine-learning model.

[0085] Machine-learning models may be trained using
training input data. The examples specified above use a
training method called “supervised learning”. In supervised
learning, the machine-learning model is trained using a
plurality of training samples, wherein each sample may
comprise a plurality of input data values, and a plurality of
desired output values, i.e. each training sample is associated
with a desired output value. By specifying both training
samples and desired output values, the machine-learning
model “learns” which output value to provide based on an
input sample that is similar to the samples provided during
the training. Apart from supervised learning, semi-super-
vised learning may be used. In semi-supervised learning,
some of the training samples lack a corresponding desired
output value. Supervised learning may be based on a supet-
vised learning algorithm (e.g. a classification algorithm, a
regression algorithm or a similarity learning algorithm.
Classification algorithms may be used when the outputs are
restricted to a limited set of values (categorical variables),
i.e. the input is classified to one of the limited set of values.
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Regression algorithms may be used when the outputs may
have any numerical value (within a range). Similarity learn-
ing algorithms may be similar to both classification and
regression algorithms but are based on learning from
examples using a similarity function that measures how
similar or related two objects are. Apart from supervised or
semi-supervised learning, unsupervised learning may be
used to train the machine-learning model. In unsupervised
learning, (only) input data might be supplied and an unsu-
pervised learning algorithm may be used to find structure in
the input data (e.g. by grouping or clustering the input data,
finding commonalities in the data). Clustering is the assign-
ment of input data comprising a plurality of input values into
subsets (clusters) so that input values within the same cluster
are similar according to one or more (pre-defined) similarity
criteria, while being dissimilar to input values that are
included in other clusters.

[0086] Reinforcement learning is a third group of
machine-learning algorithms. In other words, reinforcement
learning may be used to train the machine-learning model.
In reinforcement learning, one or more software actors
(called “software agents™) are trained to take actions in an
environment. Based on the taken actions, a reward is cal-
culated. Reinforcement learning is based on training the one
or more software agents to choose the actions such, that the
cumulative reward is increased, leading to software agents
that become better at the task they are given (as evidenced
by increasing rewards).

[0087] Furthermore, some techniques may be applied to
some of the machine-learning algorithms. For example,
feature learning may be used. In other words, the machine-
learning model may at least partially be trained using feature
learning, and/or the machine-learning algorithm may com-
prise a feature learning component. Feature learning algo-
rithms, which may be called representation learning algo-
rithms, may preserve the information in their input but also
transform it in a way that makes it useful, often as a
pre-processing step before performing classification or pre-
dictions. Feature learning may be based on principal com-
ponents analysis or cluster analysis, for example.

[0088] In some examples, anomaly detection (i.e. outlier
detection) may be used, which is aimed at providing an
identification of input values that raise suspicions by differ-
ing significantly from the majority of input or training data.
In other words, the machine-learning model may at least
partially be trained using anomaly detection, and/or the
machine-learning algorithm may comprise an anomaly
detection component.

[0089] In some examples, the machine-learning algorithm
may use a decision tree as a predictive model. In other
words, the machine-learning model may be based on a
decision tree. In a decision tree, observations about an item
(e.g. a set of input values) may be represented by the
branches of the decision tree, and an output value corre-
sponding to the item may be represented by the leaves of the
decision tree. Decision trees may support both discrete
values and continuous values as output values. If discrete
values are used, the decision tree may be denoted a classi-
fication tree, if continuous values are used, the decision tree
may be denoted a regression tree.

[0090] Association rules are a further technique that may
be used in machine-learning algorithms. In other words, the
machine-learning model may be based on one or more
association rules. Association rules are created by identify-
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ing relationships between variables in large amounts of data.
The machine-learning algorithm may identify and/or utilize
one or more relational rules that represent the knowledge
that is derived from the data. The rules may e.g. be used to
store, manipulate or apply the knowledge.

[0091] Machine-learning algorithms are usually based on
a machine-learning model. In other words, the term
“machine-learning algorithm” may denote a set of instruc-
tions that may be used to create, train or use a machine-
learning model. The term “machine-learning model” may
denote a data structure and/or set of rules that represents the
learned knowledge (e.g. based on the training performed by
the machine-learning algorithm). In embodiments, the usage
of a machine-learning algorithm may imply the usage of an
underlying machine-learning model (or of a plurality of
underlying machine-learning models). The usage of a
machine-learning model may imply that the machine-learn-
ing model and/or the data structure/set of rules that is the
machine-learning model is trained by a machine-learning
algorithm.

[0092] For example, the machine-learning model may be
an artificial neural network (ANN). ANNs are systems that
are inspired by biological neural networks, such as can be
found in a retina or a brain. ANNs comprise a plurality of
interconnected nodes and a plurality of connections, so-
called edges, between the nodes. There are usually three
types of nodes, input nodes that receiving input values,
hidden nodes that are (only) connected to other nodes, and
output nodes that provide output values. Fach node may
represent an artificial neuron. FEach edge may transmit
information, from one node to another. The output of a node
may be defined as a (non-linear) function of its inputs (e.g.
of the sum of its inputs). The inputs of a node may be used
in the function based on a “weight” of the edge or of the
node that provides the input. The weight of nodes and/or of
edges may be adjusted in the learning process. In other
words, the training of an artificial neural network may
comprise adjusting the weights of the nodes and/or edges of
the artificial neural network, i.e. to achieve a desired output
for a given input.

[0093] Alternatively, the machine-learning model may be
a support vector machine, a random forest model or a
gradient boosting model. Support vector machines (i.e.
support vector networks) are supervised learning models
with associated learning algorithms that may be used to
analyze data (e.g. in classification or regression analysis).
Support vector machines may be trained by providing an
input with a plurality of training input values that belong to
one of two categories. The support vector machine may be
trained to assign a new input value to one of the two
categories. Alternatively, the machine-learning model may
be a Bayesian network, which is a probabilistic directed
acyclic graphical model. A Bayesian network may represent
a set of random variables and their conditional dependencies
using a directed acyclic graph. Alternatively, the machine-
learning model may be based on a genetic algorithm, which
is a search algorithm and heuristic technique that mimics the
process of natural selection.

[0094] Examples may further be or relate to a computer
program having a program code for performing one or more
of the above methods, when the computer program is
executed on a computer or processor. Steps, operations or
processes of various above-described methods may be per-
formed by programmed computers or processors. As used
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herein, processor may mean any type of computational
circuit, such as but not limited to a microprocessor, a
microcontroller, a complex instruction set computing
(CISC) microprocessor, a reduced instruction set computing
(RISC) microprocessor, a very long instruction word
(VLIW) microprocessor, a graphics processor, a digital
signal processor (DSP), multiple core processor, a field
programmable gate array (FPGA), for example, of a micro-
scope or a microscope component (e.g. camera) or any other
type of processor or processing circuit. Other types of
circuits that may be included in a computer system may be
a custom circuit, an applicationspecific integrated circuit
(ASIC), or the like, such as, for example, one or more
circuits (such as a communication circuit) for use in wireless
devices like mobile telephones, tablet computers, laptop
computers, two-way radios, and similar electronic systems.
The computer system may include one or more storage
devices, which may include one or more memory elements
suitable to the particular application, such as a main memory
in the form of random access memory (RAM), one or more
hard drives, and/or one or more drives that handle removable
media such as compact disks (CD), flash memory cards,
digital video disk (DVD), and the like. The computer system
may also include a display device, one or more speakers, and
a keyboard and/or controller, which can include a mouse,
trackball, touch screen, voice-recognition device, or any
other device that permits a system user to input information
into and receive information from the computer system.

[0095] Some or all of the method steps may be executed
by (or using) a hardware apparatus, like for example, a
processor, a microprocessor, a programmable computer or
an electronic circuit. In some embodiments, some one or
more of the most important method steps may be executed
by such an apparatus.

[0096] Depending on certain implementation require-
ments, embodiments of the invention can be implemented in
hardware or in software. The implementation can be per-
formed using a nontransitory storage medium such as a
digital storage medium, for example a floppy disc, a DVD,
a Blu-Ray, a CD, a ROM, a PROM, and EPROM, an
EEPROM or a FLASH memory, having electronically read-
able control signals stored thereon, which cooperate (or are
capable of cooperating) with a programmable computer
system such that the respective method is performed. There-
fore, the digital storage medium may be computer readable.

[0097] Some embodiments according to the invention
comprise a data carrier having electronically readable con-
trol signals, which are capable of cooperating with a pro-
grammable computer system, such that one of the methods
described herein is performed.

[0098] Generally, embodiments of the present invention
can be implemented as a computer program product with a
program code, the program code being operative for per-
forming one of the methods when the computer program
product runs on a computer. The program code may, for
example, be stored on a machine-readable carrier.

[0099] Other embodiments comprise the computer pro-
gram for performing one of the methods described herein,
stored on a machine-readable carrier.

[0100] In other words, an embodiment of the present
invention is, therefore, a computer program having a pro-
gram code for performing one of the methods described
herein, when the computer program runs on a computer.
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[0101] A further embodiment of the present invention is,
therefore, a storage medium (or a data carrier, or a computer-
readable medium) comprising, stored thereon, the computer
program for performing one of the methods described herein
when it is performed by a processor. The data carrier, the
digital storage medium or the recorded medium are typically
tangible and/or non-transitionary. A further embodiment of
the present invention is an apparatus as described herein
comprising a processor and the storage medium.

[0102] A further embodiment of the invention is, there-
fore, a data stream or a sequence of signals representing the
computer program for performing one of the methods
described herein. The data stream or the sequence of signals
may, for example, be configured to be transferred via a data
communication connection, for example, via the internet.
[0103] A further embodiment comprises a processing
means, for example, a computer or a programmable logic
device, configured to, or adapted to, perform one of the
methods described herein.

[0104] A further embodiment comprises a computer hav-
ing installed thereon the computer program for performing
one of the methods described herein.

[0105] A further embodiment according to the invention
comprises an apparatus or a system configured to transfer
(for example, electronically or optically) a computer pro-
gram for performing one of the methods described herein to
a receiver. The receiver may, for example, be a computer, a
mobile device, a memory device or the like. The apparatus
or system may, for example, comprise a file server for
transferring the computer program to the receiver.

[0106] In some embodiments, a programmable logic
device (for example, a field programmable gate array) may
be used to perform some or all of the functionalities of the
methods described herein. In some embodiments, a field
programmable gate array may cooperate with a micropro-
cessor in order to perform one of the methods described
herein. Generally, the methods are preferably performed by
any hardware apparatus.

[0107] The description and drawings merely illustrate the
principles of the disclosure. Furthermore, all examples
recited herein are principally intended expressly to be only
for illustrative purposes to aid the reader in understanding
the principles of the disclosure and the concepts contributed
by the inventor(s) to furthering the art. All statements herein
reciting principles, aspects, and examples of the disclosure,
as well as specific examples thereof, are intended to encom-
pass equivalents thereof.

[0108] Itis to be understood that the disclosure of multiple
acts, processes, operations, steps or functions disclosed in
the specification or claims may not be construed as to be
within the specific order, unless explicitly or implicitly
stated otherwise, for instance for technical reasons. There-
fore, the disclosure of multiple acts or functions will not
limit these to a particular order unless such acts or functions
are not interchangeable for technical reasons. Furthermore,
in some examples a single act, function, process, operation
or step may include or may be broken into multiple sub-acts,
-functions, -processes, -operations or -steps, respectively.
Such sub acts may be included and part of the disclosure of
this single act unless explicitly excluded.

[0109] Furthermore, the following claims are hereby
incorporated into the detailed description, where each claim
may stand on its own as a separate example. While each
claim may stand on its own as a separate example, it is to be
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noted that—although a dependent claim may refer in the
claims to a specific combination with one or more other
claims—other examples may also include a combination of
the dependent claim with the subject matter of each other
dependent or independent claim. Such combinations are
explicitly proposed herein unless it is stated that a specific
combination is not intended. Furthermore, it is intended to
include also features of a claim to any other independent
claim even if this claim is not directly made dependent to the
independent claim.

1. An apparatus for image recognition, the apparatus
comprising:

a machine learning network configured to map first and
second input image data to either a first or a second
predefined target probability distribution, depending on
whether the first and second input image data corre-
spond to matching or non-matching images,

wherein an output of the machine learning network
matching the first target probability distribution is
indicative of matching images and an output of the
machine learning network matching the second target
probability distribution is indicative of non-matching
images.

2. The apparatus of claim 1, wherein the first and the
second target probability distribution correspond to a first
and a second multivariate Gaussian distribution with distinct
centers of mass.

3. The apparatus of claim 1, wherein the machine learning
network comprises

a first machine learning subnetwork configured to extract
respective discriminative image features from the first
and second image data; and

a second machine learning subnetwork configured to map
the extracted first and second discriminative image
features to one of the first and second predefined target
probability distributions.

4. The apparatus of claim 3, wherein the first machine
learning subnetwork comprises a Siamese neural network
configured to process the first and second image data in
tandem to compute the first and second discriminative image
features.

5. The apparatus of claim 3, wherein the second machine
learning subnetwork comprises a convolutional neural net-
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work comprising an input layer for the first and second
discriminative image features, a plurality of fully connected
layers to apply a previously trained metric on the first and
second discriminative image features, and an output for an
m-dimensional output.

6. The apparatus of claim 1, further comprising a prepro-
cessor configured to preprocess the first and second input
image data for alignment of corresponding first and second
images based on a plurality of predefined image points.

7. A method for training the apparatus of claim 1, the
method comprising:

feeding image data of pairs of matching or non-matching

images into the machine learning network;

adjusting computational weights of the machine learning

network to minimize a difference between the pre-
defined target probability distributions and statistics of
outputs generated by the machine learning network.

8. The method of claim 7, wherein adjusting the compu-
tational weights comprises minimizing a difference between
the first predefined target probability distribution and a
distribution of outputs of the machine learning network in
response to pairs of matching images, and minimizing a
difference between the second predefined target probability
distribution and a distribution of outputs of the machine
learning network in response to pairs of non-matching
images

9. The method of claim 7, wherein adjusting the compu-
tational weights comprises minimizing the Kullback-Leibler
divergence between the target probability distributions and
the statistics of outputs.

10. A method for image recognition, the method compris-
ing:

mapping, using a machine learning network, first and

second input image data to either a first or a second
predefined target probability distribution, depending on
whether the first and second input image data corre-
spond to matching or non-matching images;

deciding for matching images if an output of the machine

learning network matches the first target probability
distribution or deciding for non-matching images if the
output of the machine learning network matches the
second target probability distribution.
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