
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Fault Injection Framework for AI Hardware Accelerators / Pappalardo, S; Ruospo, A; O'Connor, I; Deveautour, B;
Sanchez, E; Bosio, A. - ELETTRONICO. - (2023), pp. 1-6. (Intervento presentato al convegno 2023 IEEE 24th Latin
American Test Symposium (LATS) tenutosi a Veracruz, Mexico nel 21-24 March 2023)
[10.1109/LATS58125.2023.10154505].

Original

A Fault Injection Framework for AI Hardware Accelerators

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LATS58125.2023.10154505

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981738 since: 2023-09-06T15:38:05Z

IEEE

A Fault Injection Framework for AI Hardware
Accelerators

Salvatore Pappalardo1, Annachiara Ruospo2, Ian O’Connor1, Bastien Deveautour3, Ernesto Sanchez2, Alberto Bosio1
1,3Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69130 Ecully, France

2Politecnico di Torino, Dip. di Automatica e Informatica, Torino, Italy
Email: 1{name.surname}@ec-lyon.fr, 2{name.surname}@polito.it, 3{name.surname}@cpe.fr

Abstract—Deep Neural Networks (DNNs) have proven to give
very good results for many complex tasks and applications,
such as object recognition in images/videos and natural language
processing. Some relevant applications of DNNs are defined
by real-time safety-critical systems, which typically require the
adoption of DNN accelerators that are usually implemented as
systolic arrays. Assessing their reliability is not trivial and may
depend on several factors such as the size of the array and the
data precision.

In this paper, we present a cross-layer framework for systolic
array DNN accelerators described at RTL level allowing to
inject faults at channel granularity for convolutional layers. The
basic idea is to simulate the execution of the Channel Under
Test (ChUT) at RTL level. Faulty outputs collected from the
RTL simulation are then used at software level to complete the
execution of the DNN and thus determine the impact of the
injected faults at application level. Interestingly, the software
execution is more than 100 times faster than the corresponding
hardware simulation.

Index Terms—DNN Hardware accelerators, Fault Injection,
Reliability

I. INTRODUCTION

Nowadays, DNNs are ubiquitous and used in a lot of dif-
ferent applications spanning from object detection/recognition,
image segmentation to natural language processing in the
context of real-time safety-critical systems.

Dedicated DNN HW accelerators—usually implemented
as systolic arrays—are widely used to satisfy performance
and power budget constraints of real-time safety-critical sys-
tems [1].

However, DNN hardware accelerators may be subject to
hardware faults due to several causes: variations in fabrication
process parameters, fabrication process defects, latent defects,
i.e., defects undetectable at time-zero post-fabrication testing
that manifest themselves later in the field of application,
silicon aging, e.g., time-dependent dielectric breakdown, or
even environmental stress, such as heat, humidity, vibration,
and Single Event Upsets (SEUs) stemming from ionization.
All these faults may cause operational errors impacting the
system reliability, and potentially leading to very negative con-
sequences, especially for safety-critical systems. It is therefore
mandatory to evaluate the reliability of hardware accelerators
to design dedicated fault tolerance mechanisms.

Unfortunately, assessing the reliability of a DNN deployed
on hardware accelerators is not a trivial task, since it depends
on several factors, such as the size of the systolic array and
the data precision.

In the literature, several works target the reliability assess-
ment of DNNs through fault injection, and they are usually
classified depending on their abstraction level.

Some works propose to perform Fault Injections (FIs) at
software-level [2]–[4] so far. They mainly differ from the soft-
ware platform (e.g., PyTorch or TensorFlow), the type of faults
(e.g., permanent, transient) and their locations (e.g., weights,
biases, and operators). The main drawback of software-level
FIs is the lack of information of the underlying hardware
platform, and therefore they are relatively less accurate. For
example, it is not trivial to take into account the size of the
systolic array, or the number of processing elements (PEs) in
the hardware GPU during the simulation at software-level. On
the other hand, the main advantage is the reduced FI time.

For these reasons, several works propose to perform FI
at hardware-level by simulating an RTL model of the DNN
accelerator [5]–[7]. The reliability assessment is performed by
taking into account both the application-level specifications
(the DNN weights, inputs, and intermediate values) and the
architectural-level ones (the specific data representation and
the amount of computational resources, i.e., the PEs). How-
ever, the higher accuracy of hardware-level fault injection, the
higher the computational time cost.

This paper proposes a cross-layer fault injection framework
capable of significantly reducing the FI execution time without
any impact on the DNN accuracy. In other words, it aims
at joining together the accuracy of the hardware-level fault
injection with the efficiency of the software-level one. More
in details, the proposed framework targets systolic array DNN
accelerators described at RTL, allowing to inject faults at
channel granularity for convolutional layers. The basic idea is
to simulate the execution of the Channel Under Test (ChUT)
at RT-level. Faulty outputs collected from the RTL simulation
are then used at software level to complete the execution of
the DNN, and thus determine the impact of the injected faults
at application level.

The rest of the paper is organized as follows. Section II
overviews briefly the basic information about neural networks
and fault injection techniques. Section III presents the frame-979-8-3503-2597-3/23/$31.00 ©2023 IEEE

work and section IV shows an implementation example and
V concludes the paper.

II. BACKGROUND

This section provides a background of Fault Injection
techniques and the peculiarities of DNNs that have to be
considered during fault injections.

A. Fault Models

Faults affecting electronic devices can be classified accord-
ing to their temporal characteristics as permanent or transient.
The former is stable with time and represents irreversible
physical damage. The latter, instead, is active only for a short
period of time and arises as a result of external disturbance
or abnormal conditions or events (e.g., high-energy particle
strikes). Starting from this broad fault types classification, the
following fault models have been proposed over the years as
abstractions of physical defects in electronics devices: stuck-
at faults and bit-flips. The stuck-at fault is a very common
fault model [8]. Indeed, it has been shown that many transistor
and interconnection defects can be modeled with fair accuracy
as permanent defects at the logic level. On the other hand,
a random bit-flip model can represent the occurrence of
transient faults, usually affecting registers or memory regions.
Transient faults (i.e., soft errors) may be caused by different
sources of interference phenomena such as electrical noise,
electromagnetic interference, and impinging ionizing particles.

B. Fault Injection Techniques

To evaluate the system reliability, fault injection is a well-
known and powerful technique to observe the impact of
generated errors on the system behavior. It is based on the
realization of controlled experiments to evaluate the system
behavior in the presence of artificial faults. Many research
works discuss fault injection in detail [8], [9]. In the following,
the main types of FI are summarized.

The hardware-based fault injection techniques apply ex-
ternal perturbations to the circuit under test to evaluate the
reliability. Particle radiations, laser beams or pin forcing are
used to create realistic faults. Despite the accuracy of the
obtained results, hardware-based FI are extremely costly in
terms of equipments. Moreover, it can only be applied at the
end of the design process, when the real device is available it
cannot thus be used to perform design space exploration. It is
complex, and sometimes not even possible, to fully control the
injection process and select the injection point. Similar issues
exist regarding the observability of the injection.

The simulation-based fault injection techniques do not
operate on the physical device, but they employ a model of
the device described using a simulation language, such as
VHDL. They can inject faults in the VHDL model either
at run-time or at compile-time. Compared to the physical
fault injection techniques, the simulation-based techniques are
cheaper in terms of set-up and can better control where the
fault is injected. In addition, they present no risk to damage
the hardware system under evaluation. However, they create a

computational overhead depending on the complexity of the
device under evaluation.

Finally, the software-based fault injection technique do not
consider the hardware level at all. Faults are injected on pro-
gram variables or on instructions. The main advantage is low
implementation costs, high controllability and observability.
On the other hand, it suffers from the lack of knowledge of
the hardware layer, leading to non-realistic results.

C. Fault Injection for Deep Neural Networks

Even though DNNs can be seen as a software executed on
a given hardware, there are some peculiarities that need to be
considered to set up an effective fault injection campaign.

Firstly, the fault impact has to be measured differently
compared to classical fault injection. Three main categories
are defined as follows:

• Masked faults: the output of the faulty DNN is exactly
the same as the fault free output.

• Benign faults: the faulty output differs from the fault free
output, but it is still acceptable by the end user.

• Malignant faults: the faulty output is not acceptable by
the end user.

Unfortunately, the definition of “acceptable” depends on the
DNN, the chosen metric and the error threshold. For example,
Figure 1 shows the output of an object detection algorithm
used in autonomous driving. Figure 1a) is the fault free output,
and Figure 1b) corresponds to the output when the fault leads
to a “small” deviation (dark green rectangles) with respect to
the expected behavior (light green rectangles). In this case,
the fault is considered as benign, since the objects (i.e., the
pedestrians) are still properly detected. On the contrary, Figure
1c) depicts the output when the fault significantly affects the
application behavior. This fault is classified as malignant since
the objects cannot be correctly identified, leading to a critical
failure, e.g., the car may not stop itself hitting a pedestrian.

The second aspect is the need to consider the hardware used
to run a given DNN. This means that the same network can
behave differently depending on the hardware used to deploy
it. Figure 2 depicts two abstraction levels, namely the HW-AI
level and the DNN model (i.e., the neural network topology).
The HW corresponds to a systolic-array-based architecture,
where the single neural computation is executed by a single
Processing Element (PE). Due to hardware limitations, each
PE elaborates more than one neural computation. In this
example, the HW fault is a permanent stuck-at logic ’0’ fault

Fig. 1: Different fault Impacts

for the net b, due to an undesired short to ground. This means
that faults affecting one PE may correspond to multiple faulty
neurons. Therefore, a comprehensive resilience assessment of
the systems can be obtained by only considering the hardware
platform running the NN.

In the literature, many fault models have been proposed so
far. For example:

• DNN-level fault models: these faults are hardware-
agnostic. They consist in altering the value of a synapse
weight, neuron bias, convolutional operations, activation
function [3], [4]. They can be permanent or transient;

• Hardware level fault models: these faults are DNN model-
agnostic. They can be permanent (i.e., stuck-at-fault) or
transient (i.e., bit-flips affecting memory elements) [5],
[7], [10];

The last aspect that is relevant to mention is the complexity
of the input workload. For DNNs, reliability is usually eval-
uated when all the validation test set is used as input. For
example, let us consider the MNIST dataset [11] composed of
10k images and a relatively small set of faults to be injected
(only 1,000 faults). In this case, the proposed experiment needs
to perform 106 fault injections; assuming an execution time
of 1s per fault injection (supposing RTL simulations), the
overall time results in about 115 days. To reduce the workload,
some works propose to generate a reduced set of functional
stimuli [7].

III. PROPOSED FRAMEWORK

As described in the introduction, the proposed fault injection
framework works at both software and hardware layer. Fig. 3
illustrates the main concept.

The starting point is the DNN under analysis implemented
as a software application. The DNN is a pretrained model, and
both the trained parameters and the dataset (or any other set of
inputs) are assumed to be available. The intent of the work is
to perform a fault injection campaign at the hardware level in
a specific channel of a given layer of the DNN and execute the
rest of the inference process at the software level to speed up
the simulation process. Note that the framework can be used
with basically any combination of hardware model and DNN
implementation. The only requirements for the framework are

Fig. 2: Hardware fault impact

two: (i) having some API to inject faults in the hardware model
and (ii) modifying the DNN implementation to accept data as
input for a layer different than the first. If these are satisfied,
the framework can be used to simulate specific types of faults,
as explained later in this section.

In our example, we target an image classifier based on a
convolutional neural network. The user can select the layer and
the channel of the DNN that has to be the targeted for the fault
injection campaign; this channel is called Channel Under Test
(ChUT). In the example, the first channel of the first layer is
the ChUT. The ChUT is mapped and executed on the hardware
description at RTL of the systolic array. During the simulation,
a fault is injected. The outputs of the faulty convolution are
then fed back into the software implementation and used in
the next layers as input values. The rest of the execution can
purely run in software in order to obtain the faulty outputs of
the DNN and determine the fault impact. The next sections
detail each component of the fault injector.

A. Systolic Array

We developed our own systolic array from the classical
architecture as shown in Figure 4a. Each PE performs a
Multiply and Accumulate (MAC) operation and forwards the
inputs to the neighboring PEs. Figure 4b shows a single PE.
The NORTH and WEST inputs are multiplied together and
accumulated in a register that also function as the RESULT
output.

The proposed systolic array corresponds to the Output
stationary implementation, since the results are accumulated
directly in each PE. This means that at every clock cycle (CC)
both values: the weights and the activation values reach the
PE for performing the MAC operation [12].

B. Mapping the ChUT

The ChUT mapping depends on the type of layer. In this
work, we describe the mapping for convolutional layer only,
but fully connected layers can be mapped as well. A DNN
convolutional layer can be defined by the following triplet:

Convolutional layer

Channel mapped to systolic array

Software

Hardware

Convolutional output fed back to SW

Injected fault

Fig. 3: Fault Injector framework

(a) Systolic array general ar-
chitecture (b) Logic representation of the PE

Fig. 4: Systolic array architecture

Conv = #C@N ×N (1)

Where #C is the number of channels composing the layer
and N is the size of the convolution. In other words, it executes
#C times the NxN convolution. The proposed systolic array
is able to compute a single convolution at a time with a
O(N) complexity (i.e., linear w.r.t. to one dimension of the
convolution). Please note that the goal of our systolic array is
not to accelerate the execution of the DNN, but to simulate
the execution of a single channel (i.e., a single convolution) at
the RTL level. In other words, we intend to have the smallest
RTL description able to run the ChUT and perform a fault
injection.

The targeted faults are permanent stuck-at faults affecting
the two inputs of a given PE, i.e., NORTH and WEST. We
injected faults only on the first channel. This kind of injection
can be interpreted in two different ways:

• either the systolic array is used to process every layer, in
which case, the injected fault is in reality a transient fault
that only affects the computation of the first layer;

• or, the systolic array is used only for processing the
first layer (due to specific requirements), while additional
hardware takes care of the rest of the network.

The fault injection process is implemented by leveraging
on the application programming interface (API) of the RTL
simulator. More formally, a fault is defined by the following
tuple:

Fault = {PE, Input,Bit, Polarity} (2)

Where:
• PE: is one of the PE in the systolic array;
• Input: is one of the two inputs of the PE, i.e., NORTH

or WEST
• Bit: is the bit that is modified by the fault. It depends

on the PE data precision (i.e., bit-width),
• Polarity: is ‘0’ or ‘1’.
By fixing the dimension of the array as K and a data

precision of M bits, we can compute the fault universe of
the systolic array as:

FaultUniverse = 2︸︷︷︸
Input

× 2︸︷︷︸
Polarity

×K ×M (3)

C. Software implementation

The software implementation of the DNN is done by
leveraging on the open-source framework N2D2 [13]. Such
framework comes with several DNN model descriptions. We
first used [13] to perform the training and then, the trained
DNN has been exported as C code using two different data
representations:

• Int 16 weights are quantized as 16-bit integers;
• Int 8 weights are quantized as 8-bit integers;
For the last two data types, the quantization is done after

training through the following steps.
1) all weights are rescaled in the range [−1.0, 1.0] and acti-

vations at each layer are rescaled in the range [−1.0, 1.0]
for signed outputs and [0.0, 1.0] for unsigned outputs;

2) inputs, weights, biases and activations are quantized to
the desired nbits by converting [−1.0, 1.0] and [0.0, 1.0]
to [−2nbits−1 − 1,2nbits−1 − 1] and [0, 2nbits−1 − 1]

Details are given in the N2D2 documentation [13].

D. Orchestrator

The last component of our fault injector is the Orchestrator.
As the name suggests, it has the role to manage the whole fault
injection campaign and synchronize the hardware simulation
and DNN software execution. The orchestrator was written in
C, and it is sequentially responsible for:

1) creating the hardware simulation and DNN software
thread;

2) generating the fault list;
3) managing the interaction between the hardware simula-

tion and the DNN software thread.
Due to the system implementation, it is possible to perform

the fault injection experiments in parallel, improving the fault
injector performances. At the appropriate time, the orchestrator
has the important role of synchronizing the different threads
for a successful injection. As explained later, parallelization is
extremely important for reducing the running time of the FI
campaign.

IV. VALIDATION

In this section, we will describe the setup used for our
experiments. Firstly, the used DNN corresponds to the LeNet-
5 [11] architecture composed of 7 layers: the first four are con-
volutional, while the last three are fully connected. The con-
volutional layers’ sizes are 6@28x28, 6@14x14, 16@10x10
and the last is 16@5x5. We trained it on the MNIST hand-
written digit dataset by using 32 x 32-pixel cropped pictures.
The training set contained 48,000 images, with an additional
12,000 for the validation set and 10,000 for the testing set. The
learning rate started at 0.05, with the decay of 5×10−4 every
375(∗128) iterations, and momentum was set to 0.9. We define
as “accuracy” of the CNN the capability to correctly classify

the input picture. The accuracy is computed by using the top-
1 score [11]. The achieved accuracy over the 10,000 testing
images is 99%.

We carried out three set of experiments, varying the pre-
cision of the network and the injection point. Each set of
experiments was performed on a systolic array of variable size.
A total of 9 experiments were performed.

For simplicity, we characterize each experiment using three
parameters:

1) Precision - this value can be either 8 or 16 and describes
whether the implemented network uses 8-bit or 16-bit
integer values,

2) Injection point - can be either ‘w’ or ‘i’ and describes
whether the injections were made in the weights inputs
of the PEs, or in the activation inputs of the PEs.

3) Array size - can be either 28, 14 or 7 and describe the
length of each side of the systolic array in terms of PEs.

Given these three parameters, for example, we could refer
to experiment 8w7 representing to the experiments in an 8-bit
data precision network implemented on a 7x7 systolic array,
and injecting in the weights.

The complete list of the performed experiments is then
8w28, 8w14, 8w7, 16w28, 16w14, 16w7, 8i28, 8i14, and 8i7.

The dimension of the fault universe changes on the base
of the configuration of the array. In details, the experiment
with the largest fault universe is 16w28, with a total of
50,176 possible injections, while the experiment with the
smallest fault universe are 8w7 and 8i7, with only 1,568
possible injections (both values do not consider the 6 different
channels).

As HDL simulator we used QuestaSim [14] which is able
to run VHDL and Verilog simulations at RTL level.

For gathering statistically significant results, we injected a
different number of random faults depending on the experi-
ment.

We now briefly illustrate some of the obtained results.

A. Malignant faults with respect to the faulty PE

A simple expected result we obtained with this framework is
the frequency of malignant faults with respect to the faulty PE.
More specifically, we counted the number of malignant faults
with respect to the row and column of the PE where the fault
was injected. Since the weights are forwarded from NORTH
to SOUTH, we expected that injecting a PE in a higher row
would result in more “broken” values, thus leading to more
severe faults. Indeed, that is what we found out.

Figure 5 shows how the number of malignant faults is
correlated with the injected row. In particular, the figure shows
two experiments: 8w28 and 8w14. In the figures, it is possible
to notice a descendant trend, showing that the nearer the fault
is to the “top” of the array, the more critical it is.

A similar trend was observed when injecting the activation
inputs. In that case, though, the same trend was visible in the
columns of the array, rather than in the rows. This is because
the activation inputs are forwarded from WEST to EAST.

(a) Experiment 8w28

(b) Experiment 8w14

Fig. 5: Number of malignant faults per injected PE

Both of these results show the effectiveness of the frame-
work, especially when considering the amount of time needed
for the completion. Indeed, using a traditional workflow and
injecting (as in the case of the experiments involving a 28x28
systolic array) 15,000 random faults for 100 stimuli, with an
average of 2s per simulations, would take around 35 days.
With the help of this framework, also able to run parallel
simulations, the actual running time was about 3 days.

B. Malignant faults with respect to polarity

We counted the total number of malignant faults with
respect to the polarity of the injection. We found out that
the majority of the malignant injections are derived after
injecting a stuck-at-1 injection, rather than stuck-at-0. Figure
6 shows part of the gathered data. It is possible to see that in
almost every experiment, stuck-at-1 faults are the most critical.
Indeed, consistently, they are more than 50% of the total
malignant faults. This trend is visible in all the experiments.
However, it is also interesting to highlight that when injecting
in the DNN weights, the MSB (i.e., the sign bit) is most
critical to stuck-at-0 faults. These results probably depend
on the specific training of the network and come from the
distribution of the weights values.

Notably, the reuse of the same hardware paired with higher
precision also changed this trend. Indeed, experiments 16w28
and 16w7 show that about 50% of the malignant faults comes
from stuck-at-1 injections.

C. Malignant faults per injected channel

We randomly injected one channel among the six of the first
layer. Figure 7 shows the number of malignant faults per each
channel injected for experiments 8w28, 16w28, and 16w7.
As the reader may notice, channel 4 is consistently the most
critical one. The number of malignant faults is the highest in
that channel with respect to the others. Furthermore, we have

(a) Experiment 8w28 (b) Experiment 8i14

(c) Experiment 16w28

Fig. 6: Number of malignant faults, fault polarity and injected
bit. The blue bars indicate the stuck-at-1 faults, while the
yellow ones include both faults per bit, the text on the bars
show the fraction of stuck-at-1 malignant faults. Bit 1 is the
MSB. In “w” experiments, it also corresponds to the sign bit.

(a) Experiment 8w28 (b) Experiment 16w28

(c) Experiment 16w7

Fig. 7: Number of malignant faults per injected channel

seen that this result is consistent in every experiment when
injecting faults in the inputs related to the weights. Although
interesting, it should be investigated with a different set of
weights (i.e., resorting to a new training of the neural network)
in order to establish whether this result is purely related to the
specific training process or not.

On the other hand, injecting in the activation inputs resulted
in a different critical channel. Indeed, in that case, the fifth
channel was the one with the highest number of malignant
faults. Furthermore, the peak is not as “dramatic” as the
previous case, underlying more input-resilience.

V. CONCLUSIONS

We showed a cross-layer injection framework with parallel
capabilities, able to sensibly reduce the fault injection time.
The proposed framework can reduce the total required time for
running the experiments by a factor 10. The same framework
can also be used at different levels than the ones illustrated in
this paper, for example, including different abstraction levels in
the simulation. In addition, the framework flexibility due to its
parallelization possibilities have experimentally demonstrated
to be really effective in reducing the total execution time.

Furthermore, the paper shows some insights on a stationary
output systolic array. We noticed that the training of the
network affects its reliability, and that might be a direction
for future works.

ACKNOWLEDGMENT

This work has been founded by the RE-TRUSTING project,
ANR-21-CE24-0015.

REFERENCES

[1] E. Dupuis, S. Filip, O. Sentieys, D. Novo, I. O’Connor, and A. Bosio,
“Approximations in deep learning,” in Approximate Computing Tech-
niques, pp. 467–512, Springer International Publishing, 2022.

[2] A. Ruospo, E. Sanchez, M. Traiola, I. O’Connor, and A. Bosio, “Investi-
gating data representation for efficient and reliable convolutional neural
networks,” Microprocessors and Microsystems, vol. 86, p. 104318, 2021.

[3] Z. Chen et al., “Tensorfi: A flexible fault injection framework for
tensorflow applications,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), (Coimbra, Portugal), pp. 426–
435, IEEE, Oct. 2020.

[4] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pp. 25–31,
2020.

[5] B. Salami, O. S. Unsal, and A. C. Kestelman, “On the resilience of
RTL NN accelerators: Fault characterization and mitigation,” in 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), (Lyon, France), pp. 322–329,
IEEE, 2018.

[6] A. Ruospo, A. Balaara, A. Bosio, and E. Sanchez, “A pipelined multi-
level fault injector for deep neural networks,” in 2020 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp. 1–6, 2020.

[7] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, “Toward
functional safety of systolic array-based deep learning hardware ac-
celerators,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 3, pp. 485–498, 2021.

[8] G. D. Natale, D. Gizopoulos, S. D. Carlo, A. Bosio, and R. Canal,
eds., Cross-Layer Reliability of Computing Systems. Institution of
Engineering and Technology, Oct. 2020.

[9] M. Eslami, B. Ghavami, M. Raji, and A. Mahani, “A survey on fault
injection methods of digital integrated circuits,” Integration, vol. 71,
pp. 154–163, 2020.

[10] B. Reagen et al., “Ares: A framework for quantifying the resilience
of deep neural networks,” in Proceedings of the 55th Annual Design
Automation Conference.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

[12] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient Processing of
Deep Neural Networks: A Tutorial and Survey,” 2017. Publisher: arXiv
Version Number: 2.

[13] CEA-LIST, “N2D2.” [Online]. Available: https://github.com/CEA-LIST/
N2D2.

[14] Intel, “Questasim.” [Online]. Available: https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/questa-edition.html.

