
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic optimization of provider-based scheduling for HPC workloads / Marino, Jacopo; Risso, Fulvio; Bighi, Mauro. -
ELETTRONICO. - (2023). (Intervento presentato al  convegno SoftCOM 2023 tenutosi a Spalato (HR) nel September
21-23, 2023) [10.23919/SoftCOM58365.2023.10271608].

Original

Dynamic optimization of provider-based scheduling for HPC workloads

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/SoftCOM58365.2023.10271608

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981729 since: 2023-10-14T10:54:18Z

IEEE



Dynamic Optimization of Provider-Based
Scheduling for HPC Workloads

Jacopo Marino, Fulvio Risso
Dept. of Control and Computer Engineering

Politecnico di Torino
Torino, Italy

{name.surname}@polito.it

Mauro Bighi
Dept. of Information Technology

PUNCH Torino S.p.A.
Torino, Italy

mauro.bighi@punchtorino.com

Abstract—The vast array of cloud providers present in today’s
market proffer a suite of High-Performance Computing (HPC)
services. However, these offerings are characterized by significant
variations in execution times and cost structures. Consequently,
selecting the optimal cloud provider and configuring the features
of the chosen computing instance (e.g. virtual machines) proves
to be a challenging task for users intending to execute HPC
workloads. This paper introduces a novel component designed
for effortless integration with existing HPC scheduling systems.
This module’s primary function is to facilitate the selection of the
most appropriate cloud provider for each distinct job, thereby
empowering dynamic and adaptive cost-minimization strategies.
Through the application of data augmentation techniques and
the employment of Continuous Machine Learning, the system
is endowed with the capability to operate efficiently with cloud
providers that have not been previously utilized. Furthermore,
it is capable of tracking the evolution of jobs over time. Our
results show that this component can achieve consistent economic
savings, based on the quality of the data used in the training
phase.

Index Terms—cloud computing, hpc, machine learning

I. INTRODUCTION

The adoption of cloud computing technologies to run High-
Performance Computing (HPC) workloads has steadily in-
creased over the years. Users prepare models on their personal
computers, upload them to the cloud and analyze the results
when ready by either downloading the produced data or lever-
aging cloud-based remote desktops. Current HPC schedulers,
both commercial products and open-source software, leverage
several FIFO queues to schedule submitted workloads on a
set of given cloud providers’ instances (e.g., VMs). In this
situation, the choice of the cloud provider and of the type and
number of instances is left to the user. In fact, the scheduling
simply follows the order of submissions of jobs, without
considering their details or users’ needs (such as minimizing
cost or running time).

On the other side, different business constraints may exist.
Some urgent tasks should be completed in the shortest time,
paying less attention to the costs, while some deferrable
workloads could be optimized to reduce costs at the expense of
their duration. In this respect, notable differences exist between
different cloud providers, as shown in Table I that reports an
example of cost and running time of a real HPC task launched
on four major cloud providers on Jan 2023.

TABLE I
EXAMPLE OF HPC WORKLOAD COSTS IN PUBLIC CLOUD

Cloud provider #Cores/VM #VMs Execution time Cost
#1 36 4 10h 8m 54s 93.51C
#2 120 1 12h 16m 50s 51.77C
#3 30 4 17h 44m 12s 209.29C
#4 36 4 14h 9m 11s 104.73C

From this perspective, it becomes apparent that an assisting
software solution is required to guide users in selecting the
most efficient instance. This will facilitate the optimization
of overall task costs by scheduling high-priority workloads
on the fastest provider. Conversely, lower priority tasks can
be allocated to the most cost-effective options to enable cost
savings.

This paper proposes a novel component, that can be seam-
lessly integrated with existing HPC schedulers, that determines
the best queue (hence, cloud provider) based on the selected
optimization policy (i.e., duration vs cost), hence enabling
dynamic and adaptive cost-optimization strategies. Given that
costs and running time of an HPC job (e.g., Table I) are
highly dependent on the workload itself, our component will
leverage best-in-class machine-learning technologies, allowing
the model to learn on the job with training on past data and
on newer ones when available, hence improving its outcome
continuously following step by step the evolution of the HPC
tasks set.

The rest of this paper is structured as follows. Section II
summarizes the current state of the art. Section III presents
the architecture of the proposed solution, while the testing
methodology and results are presented in Section IV. Finally,
Section V concludes the paper and highlights possible future
research directions.

II. RELATED WORK

The problem of dispatching HPC jobs has been addressed
by several research papers, but also by several products, which
leverage different heuristics to achieve load balancing across
multiple providers, minimize the queue length and more.

Focusing on the scientific literature, Y.-K. Suh et al. [1]
proposed a simulation runtime estimation scheme, CLUTCH,
that achieved approximately a 14.2% growth in estimation



accuracy, compared to the state-of-the-art schemes at the
time of writing. However, their solution does not address the
possibility of scaling a job with multiple instances running
in parallel, which is of fundamental importance for compute-
intensive HPC tasks that need to span across multiple VMs.
For instance, the same problem affects the next analyzed
papers.

S. Sok et al. [2] proposed an approach called full reschedul-
ing that allows online schedulers to move already running
tasks from the public to the private cloud in order to save
costs. Although this approach aims for a cost-optimal hybrid
operation, the authors focused on handling the workload peaks
using the public cloud, while this paper aims at dispatching
workloads minimizing the cost or the running time, using on-
premise or cloud instances. In addition, the authors do not
consider the possibility of scaling on multiple instances.

B. Li et al. [3] formulated the task placement across multiple
public clouds problem as an Integer Linear Programming
(ILP), to minimize the cost of resources in a heterogeneous
cloud environment, including multiple public clouds, while
ensuring a proper level of QoS. However, the authors do not
consider the possibility of scaling on multiple instances, just
placing a task on a single VM.

Y. Balagoni et al. [4] proposed a hybrid cloud scheduler to
address the problem of the estimation of application execution
time in deadline-constrained applications running in hybrid
cloud infrastructures. However, the proposed solution does not
handle the case of scaling on multiple instances.

T.-P. Pham et al. [5] introduced a novel two-stage machine
learning approach for predicting workflow task execution
times for varying input data in the cloud. Although their ap-
proach relies on parameters reflecting runtime information and
two stages of predictions, it does not consider the possibility
of scaling on multiple instances.

F. Nadeem et al. [6] developed ML-based ensemble systems
that employed three algorithms to balance their correspond-
ing weaknesses and strengths, modeling the execution time
of e-science workflows. Although these methods can also
be applied effectively, without major modification, to other
heterogeneous distributed environments such as the cloud, the
authors focused on grid computing, which does not require
such as low-latency interconnect between VMs.

N. J. Yadwadkar et al. [7] introduced PARIS, a data-driven
system that efficiently selects suitable virtual machines (VMs)
for workloads and user goals, resulting in a 45% cost reduction
while maintaining performance. However, it does not consider
the possibility to scale across multiple instances, limiting its
applicability in High-Performance Computing (HPC) where
parallel collaboration is essential.

M. Bilal et al. [8] introduced Vanir, an optimization frame-
work for analytics clusters. It reduces search costs compared
to other cloud optimizers. The proposed solution does not
consider the close interconnection needed for running an HPC
computation. Merely using multiple instances is not sufficient,
as specific requirements must be met, and not all instances
offered by cloud providers are suitable for this purpose.

Y. Wu et al. [9] introduced Vesta, a transfer learning
approach for optimizing VM selection across multiple frame-
works, achieving up to 51% performance improvement in
experiments with Hadoop, Hive, and Spark. C. Chen-Chun et
al. [10] proposed a deep neural network to predict Hadoop’s
job time based on historical execution data. C. Hsu et al. [11]
proposed augmenting Bayesian Optimization with low-level
performance information, which can reduce search cost and
potentially improve performance. CherryPick, developed by A.
Omid et al. [12], is a system utilizing Bayesian Optimization to
automatically identify the most suitable cloud configuration for
recurring big data analytics tasks. It is important to note that
the authors of those papers focused on software/frameworks
for big data analysis achieving good results, but however, they
disregarded parallel machine computations commonly found
in HPC clusters. The authors’ focus on big data frameworks
overlooks the need for horizontal scaling across multiple
instances with the constraint of low-latency interconnection.
This limitation makes the approaches less applicable to scenar-
ios where multiple instances working in parallel are essential.

Kubecost [13] is a tool that allows users to see the spend-
ing associated with each allocated cloud-native Kubernetes
resource, hence providing teams with transparent, accurate
cost data reconciled with actual cloud bills. It has real-time
alerting functionality and recurring reports that empower teams
to take control of their Kubernetes-enabled infrastructure, stay
within budgeted limits, and address monitoring interruptions
immediately. However, it cannot be used to predict the best
cloud provider for a future simulation.

This paper proposes a novel component for selecting the
most suitable VM or set of them for HPC workloads while
considering at the same time low-latency interconnections,
cost optimization/ending-time constraints, and compatibility
with existing commercial HPC schedulers.

III. PROPOSED ARCHITECTURE

This Section presents the architecture of the prediction
component, detailing its internal structure and its features.

A. Pre-runtime, runtime parameters, and output

Our predictor bases its results on the outcome of previous
HPC jobs, leveraging two sets of parameters, namely pre-
runtime parameters (PRPs) and runtime parameters (RPs), to
predict the running time of future jobs. From the expected
running time, we can easily derive the total job cost, since the
cost associated with used resources (e.g., VMs) in each cloud
provider is known.

PRPs are known a priori before the job is scheduled and
are the following:

• cloud: it defines the cloud provider hosting the job (e.g.,
oracle, azure, on-prem, etc.), and it can assume a value
in a predefined set.

• software: it defines the specific software used by the
job and depends on the type of analysis that has to be
done. For example, a possible value could be the Abaqus



software in the case of FEM (Finite Element Method)
simulations.

• cores, ram, vm number and vm type: It defines the
computing resources assigned to a node running on the
given cloud provider, in terms of numbers of allocated
CPU cores, memory, number and type of VMs used,
which is provider-independent.

With respect to vm number and vm type, although cloud
providers offer several types of VMs, HPC jobs require special
capabilities such as a dedicated interface for high-speed data
transfer (e.g., InfiniBand) to be executed efficiently. Hence,
only a few types of VMs can be used, which are usually
associated with a fixed amount of resources, i.e. CPU cores
and RAM. Consequently, the four parameters cores, ram,
vm number and vm type are closely related to each other and
a value of the last two uniquely defines the values of the others.

Since the size of the available VMs may be different in each
provider, the vm number provides a way to allocate ’standard’
VMs, whose size is similar across all cloud vendors. For
example, vm number = 1 could correspond to a VM with
36 cores and 512GB RAM on Cloud #1, while it results in a
VM with 32 cores and 448GB RAM on Cloud #2.

RPs, listed below, are parameters that depend on the job
execution, hence they can be only known when the job
terminates:

• cput: time spent by the CPU to execute the job.
• ncpus: number of vCPUs used by a job (it could happen

that not all cores are used).
• memory: peak memory used by the job.
• vmem: peak virtual memory used by the job, which

includes also the memory consumed by additional com-
ponents such as memory-mapped files and swap space.

RPs are used for the prediction of the running time, but they
can also be used to understand if the instance selected by the
user would be fully utilized. The idea is to leverage the ncpus
to predict how jobs will use the instance and in case of under-
utilization (defined by a proper threshold), the infrastructure
manager could choose for future jobs another vm number
that is more appropriate, avoiding a waste of resources and
reducing costs.

B. Two-stage prediction component

The prediction component, which is considered a black box
by the scheduler, consists of two sub-predictors, both with
the same structure, operating based on the output of the ML
algorithms that will be shown in Section III-E.

The first sub-predictor leverages PRPs to predict RPs, while
the second uses all known data (PRPs and RPs) to predict the
running time of the job, as shown in Figure 1. In fact, the
output of the system is a tuple composed of the predicted
running time required by the job to complete, and the related
platform that should be used (a cloud provider or on-premise)
to obtain this time, plus the estimated cost of this solution
(Cloud, Tpred, Cpred). The latter is obtained by multiplying
the hourly cost of the chosen vm type by the predicted running

Runtime
parameters

predictor

Run time
predictor

Categorical
features
encoding

Data
preprocessing
for first stage

training

Data
preprocessing

for second
stage training

Instance
mapping

Cloud
Software
Instance

Cloud
Software

Cores
RAM

VM Type

Cput
Ncpus

Memory
Vmem

Best cloud
Predicted time
Predicted cost

Training
dataset

Fig. 1. System workflow

time and the vm number. The system can be used to determine
the cheapest or the fastest cloud provider, changing an internal
parameter.

A predictor can be seen as a block that implements a
function f , getting x = {x1, x2, . . . , xn} as input and y as
output, where x is the input set and y the predicted running
time of a job with the given parameters. The function f serves
as a mapping from a given input, x, to a corresponding output,
y, which is a continuous positive value. The function f is
determined by the data used in the training, and it is a machine
learning algorithm for regression tasks.

When a user would like to run a job on a specific cloud
provider among the N available, the system makes a prediction
for all the providers, using the same user inputs, changing
only the provider-related ones. Predictions are made by using
the ML model marked as the best one. The results are then
compared and returned to the user, highlighting the cheapest
and the fastest options.

In the corporate world, job cost and running time often
conflict with each other, and it is the users who ultimately
determine the approach to be used based on predictions of
the above values. Whether it’s reducing costs or meeting
deadlines sooner, users make the decision and determine how
much money should be allocated based on the urgency of
the task at hand. Therefore, highly advanced decision-making
systems are not necessary since the users themselves assume
the responsibility of selecting the appropriate course of action.

C. Training set

Data used to train the ML algorithms is derived from
the logs collected from previous HPC jobs. The first step
is to pre-process raw data from existing logs to extract the
parameters for the training set, i.e., PRPs and RPs as presented
in Section III-A. The second step maps categorical inputs into
numerical ones using a mapping function. It converts string
values into numbers suitable for the ML algorithms, i.e. the
azure string can become a number such as 3, or it can become
an array of boolean values such as in the One-Hot Encoding.
Both strategies are suitable for the purpose of this paper; the
use of one or the other is an implementation choice.



1 2 3 4

4,000
5,000
6,000
7,000
8,000

Number of VM instances

E
xe

cu
tio

n
tim

e
(s

) Cloud #1
Cloud #2
Cloud #3
Cloud #4

Fig. 2. Instances’ scaling scenario, each line represents a cloud provider.

The training set (from this point forward referred to only as
dataset) contains an entry for each job previously submitted
by users, grouped by projects, which refers to a given type
of simulation and/or product. For example, the simulation of
a diesel engine for marine usage may have very different
characteristics from a simulation of a gasoline engine for
vehicles. Grouping the data set by projects allows a reduction
of noise in predictors, hence enabling more accurate results.

D. Data augmentation

The accuracy of the prediction obtained by ML algorithms
greatly depends on the availability of large training datasets.
However, particularly in case of new projects in which a few
jobs have been completed, the cardinality of the training set is
limited, with a potential huge impact on the accuracy of the
predictor. This problem is further exacerbated by grouping the
data per project, with some projects with hundreds of samples
and others with only a few.

Our solution leverages two data augmentation algorithms
(each one associated to one sub-predictor) to reach about 10K
examples per project, both based on the same two steps.

Step 1. Each entry is replicated n times, depending on
the number of cloud providers active and usable, changing
the cloud value and the related ones, i.e., core, ram, ncpus,
cput and runtime. The vm type and vm number values are left
unchanged because the goal is not to scale vertically between
the same provider using a different configuration, but to move
to different providers. This change is achieved by using the
scalability curves shown in Figure 2, which have been derived
from existing experience (i.e., jobs) to determine to what
extent a job can improve (or worsen, in case of Cloud #2) its
running time when adding new VMs in parallel. This enables
our system to map the execution time of a job completed on
one cloud provider, compared to its potential execution on
another provider. Given one training example and the cloud to
map on, parameters are scaled and the newly crafted example
is added to the augmented training set.

Estimations between different cloud providers are done by
keeping the same vm number: each number is associated with
a score, which is the running time on that specific platform
with that specific resource. It is possible to estimate the
performance of a job on other cloud providers, by simply
taking the ratio of the new and the old scores, and multiplying
by it the execution time: the result is the estimation of the time
on the new cloud provider chosen.

Step 2. Each entry is replicated j times, multiplying the
RPs and the running time for a coefficient c that relies
on a randomly generated value ∆, which follows a linear
distribution characterized by a small range. This distribution
ensures that ∆ remains within a magnitude of less than 5%.
The computation for this coefficient is as follows:

c = 1 + random(−∆,∆), 0 ≤ ∆ ≤ 0.05 (1)

The number of augmented samples j is derived from the total
number of target samples for the ML predictor to work, i.e.,
about 10K per cloud provider within a given project.

E. Machine Learning predictors

The two sub-predictors have the same structure (hence,
similar training, validation, and prediction phases) while dif-
fering only in their (inputs, output) tuple. Machine learning
algorithms can be fine-tuned by setting the hyperparameters to
better fit the training data. Each predictor comprises various
ML algorithms, all of which are trained during the training
phase. The first step is to train the ML algorithms by changing
the hyperparameters by orders of magnitude to find suitable
ranges for grid search. These ranges are specific for each hy-
perparameter of each algorithm, e.g. Multi-Layer Perceptron,
Random Forest, K-Nearest Neighbors, etc. The second step
uses these ranges for the grid search that will be run by the
system to find the best hyperparameters of the ML algorithms.
Once the search finishes, the final training is done and the
model is ready for predictions.

The validation of the ML algorithm that is being selected as
a predictor within each specific project is done using a portion
of the initial dataset, splitting it into training and validation
sets, with a ratio of 80/20. The metric chosen for the selection
of the best ML model is the Mean Absolute Percentage Error
(MAPE): the algorithm with the lowest value is marked as the
best one and used for predictions.

F. Continuous Machine Learning (CML)

In order to improve the accuracy of the predictors, we
leverage Continuous Machine Learning (CML) techniques to
periodically re-train the ML models to include the outcome of
the recent jobs. The idea is to re-train models after n new run
of jobs, to follow the real scenario of data and improve the
quality of our predictions.

An ML model contains all the information needed to obtain
the output from the inputs, that is, all the internal parameters
that define the ML algorithm. After re-training, the chosen
hyperparameters may be the same, but models are different
because the training set has changed as new examples have
been added. The training phase is done in the same way as
Section III-C; hence, after each re-training, the selected ML
algorithm may change, as we choose the one that is more
appropriate for the current set of past executions.

IV. RESULTS

Our algorithms have been validated by leveraging data
available from a company that designs and builds automotive



Cloud #2

Subnet
10.0.B.0/23

Compute
Nodes

Cloud #3

Subnet
10.0.C.0/23

Compute
Nodes

Cloud #1

Subnet
10.0.A.0/23

Compute
Nodes

Scheduler

HPC portal

Internal network

HPC nodes
(on-premise)

Other IT
services

VM

File
storage

Active
Directory

Node 1

Node 2

Node 1

Fig. 3. High-level view of the HPC infrastructure used in the validation.

engines. As part of their daily work, analysts need to run HPC
jobs to define the draft model of the engine (or the sub-engine
part) and then fine-tune all parameters of the product.

A. Experimental Environment

The jobs run by analysts are HPC workloads executed on the
available infrastructure, which is a hybrid cloud made by on-
premise computational nodes alongside on-demand instances
deployed on different cloud providers, as shown in Figure 3.
In this particular case, the cost would always be minimized
by running the jobs on-premise, but the execution time may
be minimized when running the jobs on a public cloud
infrastructure.

HPC jobs are handled by a commercial scheduler, which
implements a simple FIFO policy to dispatch the jobs on either
one of the available cloud providers or on on-premise nodes.
Each queue is associated with a scenario, i.e., a combination
of the cloud provider and the vm number to be used by the
job. The specific scenario to be used is chosen by the user
who starts the HPC workload, then jobs on the same queue
are dispatched with the FIFO policy.

Users decide the configuration they wish to use for jobs, so
the scheduler only takes care of their submission. It only deals
with deployment constraints, such as the maximum number
of instances active at the same time and the creation of
instances on-premises or on providers. It puts jobs on hold
if the maximum number of instances has been reached, then
proceeds to schedule them when the previous ones finish,
collecting logs. It is always active waiting for new jobs when
the queues are empty.

B. Test conditions

In order to validate the contribution of the different features
introduced in Section III, such as data augmentation and

Real NANC ANC NAC AC
0

10

20

30
21.93 21.93 21.93 21.93 19.86

C
um

ul
at

iv
e

co
st

(C
)

Fig. 4. Project A, real vs. estimated cost.

0 10 20 30 40
0

200

400 ∆ = 64.85%

Day

C
um

ul
at

iv
e

co
st

(C
) Real-ANC-AC

NANC-NAC

Fig. 5. Project B, real vs. estimated cost.

CML, we identify our results with the following labels: NANC,
ANC, NAC and AC, where A stands for augmentation, C for
CML, and the N prefix means not.

Data comes from two real projects (Project A and Project
B) which have been used for both training and validation, and
eventually to derive the run-time predictions of the system.
FEM simulation is a numerical technique that approximates
complex mathematical problems by subdividing them into
simpler, smaller parts called finite elements. By solving these
elements individually and combining the results, it can accu-
rately model complex behaviors or systems. The simulations of
Project A involve multiple iterations of the same model, each
with distinct parameters, tailored to refine a distinct facet of a
specific engine. On the other hand, The simulations of Project
B are dedicated to examining the operational characteristics of
a different engine variant, typically exhibiting extended execu-
tion duration. Both leverage the power of parallel computing,
meaning each participating instance plays a crucial role in
generating the overall output of the simulation. The data used
to test the system and collect the results has never been seen
before by the system. The test set must not be used during the
training phase, otherwise, the system could overfit it instead
of being able to generalize on new data.

The test set implements a loop in a way to pass to the
system the data requires to obtain n predictions, where n is
the number of available cloud providers. Predictions are then
used to identify the cheapest provider. If the latter is the same
used by the real job from the test set, then the running time
of the latter is used to compute the cost. Otherwise, if the
providers differ, the curves presented in the Section III-D are
used to estimate the running time of the job on the predicted
provider, i.e., the estimated cost (and time) on the provider
chosen by the prediction system.

In the end, we can compare the real cost of the HPC job
with its estimated cost, having a better way to compare the
four available providers.

C. Results analysis

Data augmentation provides the system with examples that
could not be present because users might have used only some



providers. Both Figure 4 and Figure 5 show cumulative results,
but the first is presented as bars because the time interval of
jobs is two days, while the second shows results over a wider
time window of 26 days.

Data augmentation has been shown to enhance the perfor-
mance of the system, although its impact may vary depending
on the characteristics of the tasks and the number of examples.
Specifically, in Project A, where the HPC tasks demonstrate
high similarities and numerous examples are present, the
influence of data augmentation on system accuracy is minimal.
Conversely, for Project B, characterized by more significant
task variance and a smaller set of examples, data augmentation
proves crucial in aiding the system to generalize through an
expanded pool of training examples. This divergence in the
utility of data augmentation is illustrated by the NANC and
ANC bars of Figure 4, and the NANC-NAC and Real-ANC-AC
lines of Figure 5. One key instance from Project B highlights
the need for data augmentation: on day 20, users changed
the vm number from 4 to 3. The dataset contained some
instances of vm number being 3, albeit for a different cloud
provider. Due to the absence of this information and lack of
data augmentation, the system predicted cost savings with a
different provider, which eventually proved incorrect, leading
to a cost increase of up to 64.85%.

Without data augmentation, the system’s MAPE was lower.
However, considering a broader predictive time frame led to
better cloud provider predictions, even though it increased
the error. This demonstrates that avoiding overfitting and
maintaining an error threshold is crucial for machine learning
algorithms to accurately predict unseen examples.

Continuous Machine Learning (CML) is particularly bene-
ficial in scenarios with a large influx of new simulations post-
training, as observed in Project A, resulting in a cost reduction
of about 9.46%, as represented by the AC bar in Figure 4.
However, in situations like Project B, with far fewer new ex-
amples, CML seems to exert negligible influence on the quality
of the solution, as depicted by the NANC-NAC line in Figure 5.

Based on the collected results, the system performs satisfac-
torily using an initial single training phase. However, perfor-
mance could vary if the initial training set quality is poor. This
can be mitigated by implementing data augmentation and/or
CML, thus bridging any knowledge gaps until newer examples
become available.

V. CONCLUSIONS

This paper presents a novel pre-processing component,
equipped to accurately predict the execution time of HPC jobs.
The module harnesses historical data to continuously refine its
predictive model, thereby enabling either the optimization of
the execution time or the economic cost, based on the selection
of the most suitable infrastructure provider. The precision of
the predictive algorithm is best when leveraging high-quality
data, as demonstrated by Project A. Here, the system, when
configured to choose the most cost-effective cloud provider,
recorded approximately 9.46% in cost savings against the
baseline in the test environment.

However, the study underscores that the algorithm may yield
inaccurate predictions when reliant on low-quality data, as
exemplified by Project B, where errors could have escalated
costs by up to 64.85%. To counter such inaccuracies, the
system necessitates enhancements in data quality via data aug-
mentation and CML, which ensures significant improvement
in precision over time. In real-world environments, predictive
precision is evaluated by comparing predicted execution times
against actual outcomes, alerting users to any deviations
from optimal performance and facilitating system re-training
when required. Despite potential challenges, the overriding
advantages of data augmentation and CML, especially with
a substantial volume of structured data, position ML systems
to outperform human decision-making processes, underscoring
the compelling benefits of the proposed component.

REFERENCES

[1] Y.-K. Suh, S. Kim, and J. Kim, “Clutch: A clustering-driven runtime
estimation scheme for scientific simulations,” IEEE Access, vol. 8, pp.
220 710–220 722, 2020.

[2] S. Sok, C. Plewnia, S. Tanachutiwat, and H. Lichter, “Optimization of
compute costs in hybrid clouds with full rescheduling,” in 2020 IEEE
International Conference on Smart Cloud (SmartCloud), 2020, pp. 35–
40.

[3] B. Li, Z. Zhao, Y. Guan, N. Ai, X. Dong, and B. Wu, “Task place-
ment across multiple public clouds with deadline constraints for smart
factory,” IEEE Access, vol. 6, pp. 1560–1564, 2018.

[4] Y. Balagoni and R. R. Rao, “A cost-effective sla-aware scheduling for
hybrid cloud environment,” in 2016 IEEE International Conference on
Computational Intelligence and Computing Research (ICCIC), 2016, pp.
1–7.

[5] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.
256–268, 2020.

[6] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, and A. Almalaise,
“Using machine learning ensemble methods to predict execution time
of e-science workflows in heterogeneous distributed systems,” IEEE
Access, vol. 7, pp. 25 138–25 149, 2019.

[7] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H.
Katz, “Selecting the best vm across multiple public clouds: A data-
driven performance modeling approach,” in Proceedings of the 2017
Symposium on Cloud Computing, ser. SoCC ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 452–465.

[8] M. Bilal, M. Canini, and R. Rodrigues, “Finding the right cloud
configuration for analytics clusters,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, ser. SoCC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 208–222.

[9] Y. Wu, H. Wu, Y. Xu, Y. Hu, W. Zhang, H. Zhong, and T. Huang, “Best
vm selection for big data applications across multiple frameworks by
transfer learning,” in Proceedings of the 50th International Conference
on Parallel Processing, ser. ICPP ’21. New York, NY, USA: Association
for Computing Machinery, 2021.

[10] C.-C. Chen, K.-S. Wang, Y.-T. Hsiao, and J. Chou, “Albert: An automatic
learning based execution and resource management system for optimiz-
ing hadoop workload in clouds,” Journal of Parallel and Distributed
Computing, vol. 168, pp. 45–56, 2022.

[11] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-level
augmented bayesian optimization for finding the best cloud vm,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 2018, pp. 660–670.

[12] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud configura-
tions for big data analytics,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, Mar. 2017, pp. 469–482.

[13] Stackwatch, Inc. (2023) Kubecost. [Online]. Available: https://www.
kubecost.com


