
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating Reliability against SEE of Embedded Systems: A Comparison of RTOS and Bare-metal Approaches / DE
SIO, Corrado; Azimi, Sarah; Sterpone, Luca. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. -
150:(2023). [10.1016/j.microrel.2023.115124]

Original

Evaluating Reliability against SEE of Embedded Systems: A Comparison of RTOS and Bare-metal
Approaches

Publisher:

Published
DOI:10.1016/j.microrel.2023.115124

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981728 since: 2023-09-06T12:28:58Z

Elsevier

__

* Corresponding author. corrado.desio@polito.it

Tel: +39 (011) 0907012

Evaluating Reliability against SEE of Embedded Systems:

A Comparison of RTOS and Bare-metal Approaches

 C. De Sioa*, S. Azimia, L. Sterponea

 a Department of Computer and Control Engineering, Politecnico di Torino, Turin, Italy

Abstract

 Embedded processors are widely used in critical applications such as space missions, where reliability is

mandatory for the success of missions. Due to the increasing application complexity, the number of systems using

Real-Time Operating Systems (RTOSs) is quickly growing to manage the execution of multiple applications and

meet timing constraints. However, whether operating systems or bare-metal applications provide higher reliability

is still being determined. We present a comprehensive reliability analysis of software applications running on a

device with bare-metal and FreeRTOS against the same faults based on fault models derived from a proton test.

Additionally, the FreeRTOS system has been evaluated with a set of software applications dedicated to evaluating

specific RTOS functions, providing an additional evaluation for operations crucial for a real-time operating system.

1. Introduction

Embedded processors have become increasingly

popular in mission-critical applications such as space

missions, where reliability is paramount.

The impact of soft errors on reliability can be

significant in these systems, making it essential to

ensure that the applications used are reliable and

robust. Moreover, the continuous downscaling of

transistors and operating voltages has led to more

performant devices. Such devices are appealing for

high-performance mission-critical applications, such

as space missions. However, smaller transistors

dimensions, operating voltages, and higher frequency

made them more vulnerable to soft errors, which is a

primary concern for systems deployed in harsh

environments, such as space, where the exposure to

ionizing radiation is a source of malfunctions in the

device [1]. As the complexity of tasks that embedded

systems must perform continues to increase, the bare-

metal approach has decreased, leading to migration

towards adopting Real-Time Operating Systems

(RTOSs). These systems provide an efficient solution

for meeting stringent real-time requirements,

particularly in safety-critical applications that require

the management of the execution of multiple critical

applications on the same platform [2]. Despite the

widespread use of embedded processors, the

robustness of software applications running on

systems with RTOS compared to bare-metal has yet

to be thoroughly investigated. This leads to a broad

question of whether these two platforms' reliability

differences exist when they run applications in safety-

critical missions.

1.1 Main Contributions

This paper is dedicated to performing an accurate and

comprehensive reliability analysis of two developed

platforms running the same applications in the

presence of the same fault models, relying on RTOS

and bare-metal, respectively. The paper presents two

main contributions. Firstly, a detailed analysis of the

fault model occurring in the on-chip SRAM memory

of an ARM Cortex-A9 embedded processor during a

proton test is presented. The observed events are used

to propose a set of fault models for realistically

emulating radiation-induced soft errors. These fault

models provide a model for radiation-induced errors

observed in the on-chip memory from the processor

side. Secondly, we proposed two reliability analyses

for two platforms running on ARM Cortex-A9

embedded processor of a Zynq-7020 system-on-chip.

FreeRTOS and bare-metal platforms are evaluated

using the same software applications suite. Finally,

since RTOS systems are characterized by additional

features that are missing in bare-metal, an additional

analysis based on a suite of benchmark applications is

provided for exploring the robustness of specific

RTOS functions.

 2. Related Works

Several works have investigated the impact of soft

errors on processor systems using different techniques

[3]. During accelerated radiation testing, an embedded

device is exposed to a high flux of radiation while the

application is running, simulating years of functioning

in a radiation environment such as space [4].

Even if accelerated radiation testing provides the

closest results to the actual case scenario, it has a high

cost of money, time, and expertise, making it

unsuitable for the early stages of the design

development flow. Therefore, other works are

dedicated to developing alternative techniques, such

as simulation and emulation environments, for

assessing the reliability of bare-metal applications

running on microprocessors. Fault Injection

techniques, as one of the most common emulation

approach, is widely exploited to evaluate the impact

of SEEs on embedded processors [5][6]. Simulation-

based fault injection methodologies are developed for

emulating fault by injecting faults in memory

resources, CPU registers, and communication

infrastructure [7], while the impact of soft errors on

the operations of a microprocessor-based architecture

by injecting random SEU at a random time is

investigated in [8].

 However, on the other hand, the increasing

complexity of tasks required for embedded systems

has led to the rise in the adoption of Real-Time

Operating Systems (RTOSs), which provide an

efficient solution for meeting stringent real-time

requirements. Therefore, with the emergence of

RTOS, some works have also investigated software-

level techniques for evaluating the sensitivity of

software executing on embedded processors with an

operating system to soft errors [9]. The vulnerability

of FreeRTOS has been evaluated through a software-

based fault injection method that targets the most

relevant variables and data structure [10], while the

authors in [11] developed a workflow for automatic

fault injection into program and data memory.

Common approaches are based on modifying the

operating system kernel or altering the memory

content [12]. However, software application-level

methods abstract from underlying hardware

architecture when considering the impact of faults on

the operating system’s functionality. Therefore, other

approaches are based on the simulation of the

hardware description of the embedded processing

system, which allows the injection of upsets into

registers and hidden elements at any time [13][14].

Although numerous research studies have focused on

assessing the dependability of embedded

microprocessors using both bare-metal and

FreeRTOS approaches, none have specifically

compared these approaches regarding their

susceptibility to single-event effects (SEE) caused by

architectural faults. Designers, particularly those

working on space applications, often find themselves

debating whether to use an operating system or a bare-

metal application to achieve higher reliability. This

paper aims to fill this gap by conducting a first direct

comparison of identical applications running on

embedded systems using bare-metal, and RTOS

approaches, taking into consideration the fault models

derived from a conducted proton radiation test

experiment.

3. Fault Model Resulting from Proton Testing

We performed a proton radiation test at

Switzerland's Paul Scherrer Institute (PSI) proton

facility. A Zynq-7020 device has been irradiated with

proton beams with energies between 29 and 200 MeV.

The content of the on-chip 256 Kb SRAM memory

has been continuously monitored through a software

routine running on an ARM Cortex A9 during the

experiment. The software test routine is executed on

the processor system, reading and writing the memory

content. The testing routine writes new values in the

memory and checks if the value written during the

previous test loop has been corrupted. It also verifies

that the current value has been written correctly and

can be read correctly. When an erroneous value is

detected, it is notified to a host computer connected

through a serial connection. The software routine can

identify both Single Event Functional Interruption

(SEFI) errors (e.g., a memory cell cannot be written

or read correctly anymore) and soft errors, such as

Single Event Upset (SEU) and Multiple Cell Upset

(MCU). We identified the following fault models and

 Fig. 1 SEUs and MCUs Cross-Sections

their cross-sections, reported in Figure 1, that have

been adopted in the fault injection campaigns:

Single Event Upset (SEU) is the most commonly

observed event during radiation experiments. An SEU

produces a change in the value stored in a memory cell

due to a bitflip, leading to data corruption in memory.

Figure 1 displays the SEU cross-section for various

proton energy experiments, while radiation-induced

transitions from 0 to 1 and 1 to 0 have also been

examined, revealing comparable ratios and

distributions.

Multiple Cell Upset (MCU) is a group of SEUs

that happen simultaneously, usually due to a single

event. Indeed, a single particle can be the source of

multiple upsets by exciting more than one logic cell

while traversing or corrupting the memory control

signals, resulting in the corruption of numerous cells.

In particular, a Multiple Bit Upset (MBU) is an MCU

affecting two bits of the same logical word.

Interestingly, no MBU has been observed. However,

detected MCUs presented recurrent patterns. The

MCUs always affected the same significant bits of

equally distanced logic memory words. This

characteristic is likely related to the specific

characteristics of the layout and architecture of the

memory under test that differ from the logical

organization. The distribution of the parameters,

aggregating the characteristics of events occurring at

all the energies, of MCUs events are reported in Table

1 and Table 2. Additional details on the proton test

experiments are reported in [15].

Table 1. Normalized Occurrences of Address Offset in SEMUs

Offset in Memory between bitflips

Normalized Occurrence

128 0.61

4 0.12

124 0.06

132 0.03

others Less than 0.01 each

Table 2. Normalized Occurrences of Affected Bits in SEMUs

Number of Multiple Upset

Normalized Occurrence

2 0.65

3 0.20

4 0.08

5 0.03

Others [6;15] Less than 0.01 each

3. The Reliability Analysis Environment

An analysis environment has been developed to assess

and compare the reliability of the two platforms

against the fault models observed during the proton

test experiment. The developed framework allows

emulating the faults affecting the on-chip memory of

the system-on-chip. Since the difference between the

two platforms is only in the software stack, emulating

the fault at a lower level provides a fair comparison

between the two systems. In particular, the same (i.e.,

same fault model and location) faults are emulated

and evaluated on both systems. The experiment

manager runs on a host computer connected to the

embedded platform through a serial connection.

Using the JTAG interface of the SoC, the experiment

manager can run the application on the target device,

and stop the execution, manipulating the memory of

the SoC to emulate the fault model, resuming the

execution, and collecting the results. The reliability

analysis environment, depicted in Figure 2, includes

two stages. In the first stage, the system runs a version

of the application under test without faults to collect

data for instrumenting the fault injection process.

During this stage, the environment infers information

such as the application's memory footprint, average

execution time, and executed instructions. This stage

is fully automated and generates the information to be

used in the second stage. The fault injection process

flow is performed as follows: firstly, a fault injection

location and time are generated. Fault location is

generated among the SRAM memory of the device.

Fault injection time is then generated. In this context,

fault injection time refers to the point in time during

the execution of the program when a fault is

intentionally injected into the system. Selecting the

specific point in the program's execution when the

fault will be injected is done by choosing an

instruction from the list of executed instructions

retrieved during the instrumentation stage. By

injecting faults at different times, it is possible to

simulate different scenarios and observe how the

system responds. Secondly, the application under test

is executed in the FreeRTOS and bare-metal versions.

Once the application runs, it is stopped at the specific

instruction selected as the fault injection time. This is

done using the debugging mode, which allows for

precise control over the execution of the program. At

this point, the fault is emulated at the memory level.

This means that the fault is emulated into the system

by altering the contents of memory in a specific way

that mimics the target fault model. During the fault

injection process, monitoring the system for any

issues that may arise due to the injected fault is

essential. To do this, the experiment manager uses

timers instrumented during the process's first stage.

These timers can detect system halt or endless loops,

indicating that the fault has caused the program to

behave unexpectedly or crash.

4. Experimental Analysis

The illustrated framework and methodology have

been used for two reliability analyses. The former is

dedicated to comparing the robustness of systems

based on bare-metal and FreeRTOS software stacks

against fault models observed in the on-chip memory

of an embedded processor during proton testing by

using the same suite of software benchmarks and

injected faults. The latter analysis evaluates the

robustness of a different suite of software applications

dedicated to specific features of the RTOSs, such as

task communication and scheduling.

4.1 Software Systems

We used two software suites in this section's

reliability analyses. The first suite of software

benchmarks, called general-purpose software

applications, consists of four software applications.

The four software are:

- qsort: a quick sort algorithm used for sorting

arrays of data

- matmul: mathematical operations on matrices,

- basicmath: a set of basic mathematical functions,

including arithmetic, trigonometric, and

logarithmic functions.

- dhrystone: it is a computing benchmark that

performs string processing operations.

Table 3 provides information on the memory footprint

and the nominal execution time of these applications.

Table 3. Characteristics of General Purpose Applications Suite

Application Platform

Memory

footprint

(KByte)

Nominal

execution time

(ms)

qsort bare-metal 7,932 46.45

qsort FreeRTOS 68,796 1,049.93

matmul bare-metal 37,580 45.67

matmul FreeRTOS 75,348 1,047.72

basicmath bare-metal 37,068 120.49

basicmath FreeRTOS 74,956 1,116.15

dhrystone bare-metal 43,636 194.69

dhrystone FreeRTOS 78,940 1,183.18

The software applications of this suite have been

implemented both for bare-metal and FreeRTOS

platforms. In particular, the FreeRTOS version of

each application is coded to instantiate three copies of

the same task that runs concurrently on the processor.

Since bare-metal systems do not support the

concurrency of tasks, the bare-metal version executes

the task in sequence three times through function calls

to the same procedure, which consequently share the

same code section, similar to what happens when

multiple instances of the same task are instantiated in

the FreeRTOS system.

The second suite of software benchmarks, referred to

as RTOS software applications, consists of five

software applications extracted from the Rhealstone

benchmark applications suite [16]. The Rhealstone

benchmark suite consists of software applications

aiming to evaluate operations that are critical in a real-

time operating system. In particular, the software

applications are:

- task switching: it performs synchronous and non-

preemptive task switching.

- task preempting: it switches tasks due to an event

trigger.

- semaphore operations: it performs semaphore

operations to support mutual exclusion between

two tasks.

- deadlock breaking: it resolves deadlock

conditions by high-priority tasks preempting a

low-priority task that acquired a needed resource.

- task communication: it makes two tasks exchange

a message.

Since these applications are dedicated to evaluating

the robustness of specific features offered by RTOS

systems, they have been evaluated only for the

FreeRTOS platform.

Table 4 provides information on the memory footprint

and the nominal execution time of these applications.

Fig. 2. Fault Injection Framework

Table 4. Characteristics of ROTS Applications Suite

Application Platform

Memory

footprint

(KByte)

Nominal

execution

time (ms)

task switching FreeRTOS 67,348 98.68

task preempting FreeRTOS 67,412 96.05

semaphore operations FreeRTOS 67,668 193.06

deadlock breaking FreeRTOS 67,859 209.21

task communication FreeRTOS 67,548 204.67

All the reported software applications have been

evaluated singularly in dedicated fault injection

campaigns. All the software applications have been

compiled using gcc with the -O2 optimization.

Additionally, on-board DRAM memory is not used by

the hardware platform, limiting the memory space for

the application (e.g., heap, stack, data, instruction, and

so on) to the on-chip SRAM memory.

The memory footprint column reported in Table 3 and

the same column in Table 4 does not include the heap

and stack. The same stack size was used for all bare-

metal applications and set to 14,336 bytes, while the

heap size was set to 8,192 bytes.

The platform based on FreeRTOS was a FreeRTOS

10 version provided by ARM-Xilinx to be

implemented using the Xilinx Vitis IDE v2022.1.0 in

a Zynq-7020. We used the standard configuration

options provided by the vendor for all the software

benchmarks based on FreeRTOS. They include full

support for counting semaphores and mutex,

checkings for stack overflow detection enabled with

methodology 2, a total heap size of 65,536 bytes, and

a minimum stack size of 200 words, which is used

both as minimal stack size and as stack size allocated

to each FreeRTOS task [17].

4.2 Fault Injection Campaigns

We performed a dedicated fault injection campaign

based on the two proposed fault models for each

software application. In order to compare the bare-

metal and FreeRTOS in the fairest way possible for

the general-purpose applications suite, we evaluated

them with the same fault models and locations.

However, since the FreeRTOS and bare-metal

versions of the application execute different

instructions due to different software stacks, it is

impossible to inject faults at precisely the same

moment (i.e., executed instruction). The fault

injection time is generated when comparing the same

application on different platforms in order to emulate

faults that occur at similar execution times during

execution. Each fault injection campaign consisted of

10,000 experiments. During each experiment, a single

fault model at a time was injected into the SRAM on-

chip memory. The presented reliability analysis is

based on SEU and MCU fault models emulated in the

on-chip SRAM memory of the actual device, but we

want to emphasize that faults in the SRAM on-chip

memory are only a part of the SoC that is sensitive to

radiation events. For instance, due to its high

performance and minimal sizes, cache memory has

the downside of being extremely sensitive to SEUs,

and the choice to disable or not is still debated and

based on the specific applications and their reliability

and real-time constraints [18][19]. Additionally,

cache memory are are also a source of unpredictability

in the system that can increase the complexity of hard

real-time systems. Other memories can also be used

with embedded processors, such as external DDR

memories. However, we chose to focus our analysis

on on-chip memory since it is integrated with the SoC

itself; it is the biggest on-chip memory space (e.g.,

compared to register files and caches) and is

particularly sensitive to SEUs and MBUs.

4.3 Results Classification

The effects of the injected faults are categorized into

four groups accordingly to observed impacts on the

system. We identified the following categories:

- Masked: the fault did not visibly affect program

execution. The program results are correct.

- Silent Data Corruption (SDC): the fault produced

a corruption of the program output.

- Crash: the fault produced a system failure,

causing the system to stop functioning. In this

case, part of the output was generated before the

systems stopped working.

- Startup Failure: the fault prevents the application

from emitting any output due to an early crash or

failing boot.

To clarify further the difference between a Crash and

a Startup Failure, software applications have been

coded to output a signature when the application

under test starts to execute. A fault is classified as

causing a Startup Failure when no output, including

the starting signature of the program, is generated.

Both Crash and Startup Failure cause the system to

halt due to various reasons, such as endless loops or

unhandled exceptions.

5. Experimental Results

The results of a first reliability analysis dedicated to

evaluating the general-purpose application suite

implemented in bare-metal and FreeRTOS platforms

against the SEUs and MCUs are presented.

Additionally, we present the result of a second

reliability analysis dedicated to features typical of

RTOS. This dedicated reliability analysis has been

carried out only for the FreeRTOS platform and

evaluated against SEUs and MCUs fault models.

Reliability analyses have been conducted using

statistical fault injection. We carried out fault

injection campaigns of 10,000 singularly-evaluated

fault injections. In accordance with [20], it allows us

to reach a confidence interval of 95% with less than

1% of the margin of error of the measured error rate

values. SEUs and MBUs fault models resulting from

proton testing have been emulated into the on-chip

SRAM memory of the embedded system.

5.1 Baremetal and FreeRTOS comparison analysis

Error rates due to SEUs and MCUs affecting the

software applications of the general-purpose

application suite running on both platforms are

presented in Fig. 3 and Fig.4, respectively.

The two analyses produced similar reliability results

for the evaluated applications. The resulting error

rates against these fault models. Robustness

comparisons among software are the same for both

fault models, and the error rates vary only marginally

between bare-metal or FreeRTOS based on the

specific application. As a result, choosing between

bare-metal or FreeRTOS can lead to slightly more

robust software based on the specific application, but

robustness can be considered comparable without

significant variations. Since the marginal variation of

the error rate when using bare metal or FreeRTOS is

very small, the choice between the two mainly

depends on other factors, such as more or less strong

real-time requirements. However, it is interesting to

notice that the distribution of the type of errors

presents a pronounced difference for SEUs, which is

even more marked for the MCU fault model. As

shown in Fig. 5 and Fig. 6, while the error rate is

similar, FreeRTOS show a significantly higher

percentage of execution flow error, such as Startup

Failures and Crashes. This is likely due to the higher

complexity of the operating system layer introduced

by FreeRTOS in the software stack. Differently, bare-

Fig. 3. Error Rate resulting from SEUs fault model

for general-purpose applications benchmarks.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

matmul qsort basicmath dhrystone

Er
ro

r
R

a
te

 d
u

e
 t

o
 S

EU
s

Bare metal FreeRTOS

Fig. 4. Error Rate resulting from MCUs fault model

for general-purpose applications benchmarks.

0.00%

3.00%

6.00%

9.00%

12.00%

15.00%

18.00%

21.00%

24.00%

matmul qsort basicmath dhrystone

Er
ro

r
R

at
e

 d
u

e
 t

o
 M

C
U

s

Bare metal FreeRTOS

Fig. 5. Normalized Error Categorization for SEUs

fault model for general-purpose applications

benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
al

iz
e

d
 E

rr
o

rs
 C

at
e

go
ri

za
ti

o
n

Startup Failure Crash SDC

Baremetal FreeRTOS

Fig. 6. Normalized Error Categorization for MCUs

fault model for general-purpose applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
o

rm
al

iz
e

d
 E

rr
o

rs
 C

at
e

go
ri

za
ti

o
n

Startup Failure Crash SDC

Baremetal FreeRTOS

metal is more prone to SDC errors. As a result, bare

metal could be considered more suitable for systems

where high availability is essential and erroneous

results can be tolerated. On the other hand, SDCs are

less common in FreeRTOS, which is a valuable

feature since there is no advisory on the system's

misbehavior in this type of error. However, since

availability is an essential metric for a real-time

system, this analysis raises the question of whether

FreeRTOS can provide a reasonable level of

availability while keeping low SDC when operating

in radiation environments.

5.2 FreeRTOS Functionality Analysis

The error rates resulting from reliability analysis

against SEUs and MCUs of the RTOS benchmark

suite are reported in Fig. 7 and Fig. 8, respectively.

Variations of error rates appear to be less marked

among various applications, and also, the error

categorization reported in Fig. 9 and Fig. 10 are very

similar among the software evaluated. Due to the

characteristics of the benchmark under test, SDC

occurred much less compared to general-purpose

applications, while errors due to control flow, such as

Crash and Startup Failure, are more common. This

analysis supports the idea that RTOS functionality is

more prone to control flow errors, especially

compared to bare-metal applications where the

operating-system layer introduces much less

complexity. All RTOS functionalities evaluated in

this analysis seem to be characterized by a similar

error rate and error categorization distribution.

6. Conclusions

We proposed a reliability comparison of software

running in FreeRTOS and bare metal using realistic

fault models of radiation-induced soft errors affecting

the on-chip SRAM memory of an ARM Cortex-A9

embedded processor, such as SEUs and MCUs. Even

if characterized by a similar error rate, the

experimental results highlighted the different

sensitivity of the two approaches to SDCs and control

flow errors, which should be considered carefully

when defining the software platform for real-time

safety-critical applications. A second analysis

dedicated to RTOS functionalities confirmed that

features offered by RTOS are particularly prone to

control flow errors compared to SDC.

References

[1] S. Azimi, et al., “Analysis of Single Event Effects on

Embedded Processor” in MPDI Electronics, Vol 10,

2021, DOI; 10.3390/electronics10243160.

[2] A. Portaluri, et al., “Exploring the Impact of Soft

Errors on the Reliability of Real-Time Embedded

Operating Systems”, in MPDI Electronics, Vol 12,

2023, DOI: 10.3390/electronics12010169.

[3] C. De Sio, et al., “SEU Evaluation of Hardened-by-

Replication Software in RISC-V Soft Processor”, in

IEEE International Symposium on Defect and Fault

Fig. 7. Error Rate resulting from SEUs fault model for

RTOS software applications benchmarks.

0.00%

3.00%

6.00%

9.00%

12.00%

15.00%

18.00%

task
sw

itch

se
m

ap
h

o
re

p
re

e
m

p
tio

n

in
te

rtask
co

m
m

u
n

icatio
n

d
e

ad
lo

ck
d

e
te

ctio
n

Er
ro

r
R

at
e

 d
u

e
 t

o
 S

EU
s

FreeRTOS

Fig. 8. Error Rate resulting from MCUs fault model

for RTOS software applications benchmarks.

0.00%

3.00%

6.00%

9.00%

12.00%

15.00%

18.00%

task
sw

itch

sem
ap

h
o

re

p
re

e
m

p
tio

n

in
te

rtask
co

m
m

u
n

icatio
n

d
e

ad
lo

ck
d

etectio
nEr

ro
r

R
at

e
d

u
e

to
 M

C
U

s

FreeRTOS

Fig. 10. Normalized Error Categorization for MCUs

fault model for RTOS software applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

task
switch

semaphore preemption intertask
communication

deadlock
detection

N
o

rm
al

iz
e

d
 E

rr
o

rs
 C

at
e

go
ri

za
ti

o
n

Startup Failure Crash SDC

Fig. 9. Normalized Error Categorization for SEUs

fault model for RTOS software applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

task
switch

semaphore preemption intertask
communication

deadlock
detection

N
o

rm
al

iz
e

d
 E

rr
o

rs
 C

at
e

go
ri

za
ti

o
n

Startup Failure Crash SDC

Tolerance in VLSI and Nanotechnology Systems

(DFT), 2021.

[4] S. M. Guertin, et al., "Radiation Specification and

Testing of Heterogenous Microprocessor SOCs," 2019

19th European Conference on Radiation and Its Effects

on Components and Systems (RADECS), Montpellier,

France, 2019, pp. 1-7, doi:

10.1109/RADECS47380.2019.9745708.

[5] H. Cho, S. Mirkhani, C. -Y. Cher, J. A. Abraham and

S. Mitra, "Quantitative evaluation of soft error

injection techniques for robust system design," 2013

50th ACM/EDAC/IEEE Design Automation

Conference (DAC), Austin, TX, USA, 2013, pp. 1-10.

[6] C. De Sio, S. Azimi, A. Portaluri and L. Sterpone,

"SEU Evaluation of Hardened-by-Replication

Software in RISC- V Soft Processor," 2021 IEEE

International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems

(DFT), Athens, Greece, 2021, pp. 1-6, doi:

10.1109/DFT52944.2021.9568342.

[7] F. Rosa, F. Kastensmidt, R. Reis and L. Ost, "A fast

and scalable fault injection framework to evaluate

multi/many-core soft error reliability," 2015 IEEE

International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems

(DFTS), Amherst, MA, USA, 2015, pp. 211-214, doi:

10.1109/DFT.2015.7315164.

[8] Q. Lu, M. Farahani, J. Wei, A. Thomas and K.

Pattabiraman, "LLFI: An Intermediate Code-Level

Fault Injection Tool for Hardware Faults," 2015 IEEE

International Conference on Software Quality,

Reliability and Security, Vancouver, BC, Canada,

2015, pp. 11-16, doi: 10.1109/QRS.2015.13.

[9] T. Santini, et al., “Reliability Analysis of Operating

Systems for Embedded SoC”. In European Conference

on Radiation and Its Effects on Components and

Systems (RADECS), 2015.

[10] D. Mamone, A. Bosio, A. Savino, S. Hamdioui and M.

Rebaudengo, "On the Analysis of Real-time Operating

System Reliability in Embedded Systems," 2020 IEEE

International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems

(DFT), Frascati, Italy, 2020, pp. 1-6, doi:

10.1109/DFT50435.2020.9250861.

[11] I. O. Loskutov et al., "Investigation of Operating

System Influence on Single Event Functional

Interrupts Using Fault Injection and Hardware Error

Detection in ARM Microcontroller," 2021

International Siberian Conference on Control and

Communications (SIBCON), Kazan, Russia, 2021, pp.

1-4, doi: 10.1109/SIBCON50419.2021.9438916.

[12] D. Mamone, et al., "On the Analysis of Real-time

Operating System Reliability in Embedded Systems,"

IEEE International Symposium on Defect and Fault

Tolerance in VLSI and Nanotechnology Systems

(DFT), 2020.

[13] W. Mansour and R. Velazco, "SEU fault-injection in

VHDL-based processors: A case study," 2012 13th

Latin American Test Workshop (LATW), Quito,

Ecuador, 2012, pp. 1-5, doi:

10.1109/LATW.2012.6261258.

[14] S. Azimi, et al, “Exploring the Impact of Soft Errors on

the Reliability of Real-Time Embedded Operating

Systems”, Electronics, 2023, DOI:

10.3390/electronics12010169.

[15] C. De Sio et al. "Analysis of Proton-induced Single

Event Effect in the On-Chip Memory of Embedded

Process," 2022 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and

Nanotechnology Systems (DFT), 2022.

[16] T. J. Boger, "Rhealstone Benchmarking of FreeRTOS

and the Xilinx Zynq Extensible Processing Platform,"

MS thesis, Dept. Elect. and Com. Eng., Temple Univ.,

Philadelphia, PA, USA, 2013.

[17] FreeRTOS Customisation.

https://www.freertos.org/a00110.html. Accessed

2023-1-6.

[18] T. Santini, P. Rech, G. Nazar, L. Carro and F. R.

Wagner, "Reducing embedded software radiation-

induced failures through cache memories," 2014 19th

IEEE European Test Symposium (ETS), Paderborn,

Germany, 2014, pp. 1-6, doi:

10.1109/ETS.2014.6847793.

[19] M. Rebaudengo, M. S. Reorda and M. Violante, "An

accurate analysis of the effects of soft errors in the

instruction and data caches of a pipelined

microprocessor," 2003 Design, Automation and Test in

Europe Conference and Exhibition, Munich, Germany,

2003, pp. 602-607, doi:

10.1109/DATE.2003.1253674.

[20] R. Leveugle, A. Calvez, P. Maistri and P.

Vanhauwaert, "Statistical fault injection: Quantified

error and confidence," 2009 Design, Automation &

Test in Europe Conference & Exhibition, Nice, France,

2009, pp. 502-506, doi:

10.1109/DATE.2009.5090716.

https://www.freertos.org/a00110.html

