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Abstract 

        Embedded processors are widely used in critical applications such as space missions, where reliability is 

mandatory for the success of missions. Due to the increasing application complexity, the number of systems using 

Real-Time Operating Systems (RTOSs) is quickly growing to manage the execution of multiple applications and 

meet timing constraints. However, whether operating systems or bare-metal applications provide higher reliability 

is still being determined. We present a comprehensive reliability analysis of software applications running on a 

device with bare-metal and FreeRTOS against the same faults based on fault models derived from a proton test. 

Additionally, the FreeRTOS system has been evaluated with a set of software applications dedicated to evaluating 

specific RTOS functions, providing an additional evaluation for operations crucial for a real-time operating system. 

  
 

1. Introduction 

 

Embedded processors have become increasingly 

popular in mission-critical applications such as space 

missions, where reliability is paramount.  

The impact of soft errors on reliability can be 

significant in these systems, making it essential to 

ensure that the applications used are reliable and 

robust. Moreover, the continuous downscaling of 

transistors and operating voltages has led to more 

performant devices. Such devices are appealing for 

high-performance mission-critical applications, such 

as space missions. However, smaller transistors 

dimensions, operating voltages, and higher frequency 

made them more vulnerable to soft errors, which is a 

primary concern for systems deployed in harsh 

environments, such as space, where the exposure to 

ionizing radiation is a source of malfunctions in the 

device [1]. As the complexity of tasks that embedded 

systems must perform continues to increase, the bare-

metal approach has decreased, leading to migration 

towards adopting Real-Time Operating Systems 

(RTOSs). These systems provide an efficient solution 

for meeting stringent real-time requirements, 

particularly in safety-critical applications that require 

the management of the execution of multiple critical 

applications on the same platform [2]. Despite the 

widespread use of embedded processors, the 

robustness of software applications running on 

systems with RTOS compared to bare-metal has yet 

to be thoroughly investigated. This leads to a broad 

question of whether these two platforms' reliability 

differences exist when they run applications in safety-

critical missions.  

 

1.1 Main Contributions 

 

This paper is dedicated to performing an accurate and 

comprehensive reliability analysis of two developed 

platforms running the same applications in the 

presence of the same fault models, relying on RTOS 

and bare-metal, respectively. The paper presents two 

main contributions. Firstly, a detailed analysis of the 

fault model occurring in the on-chip SRAM memory 

of an ARM Cortex-A9 embedded processor during a 

proton test is presented. The observed events are used 

to propose a set of fault models for realistically 

emulating radiation-induced soft errors. These fault 

models provide a model for radiation-induced errors 

observed in the on-chip memory from the processor 

side. Secondly, we proposed two reliability analyses 

for two platforms running on ARM Cortex-A9 

embedded processor of a Zynq-7020 system-on-chip. 

FreeRTOS and bare-metal platforms are evaluated 

using the same software applications suite. Finally, 

since RTOS systems are characterized by additional 

features that are missing in bare-metal, an additional 

analysis based on a suite of benchmark applications is 

provided for exploring the robustness of specific 

RTOS functions. 



 

 

 2. Related Works 

 

Several works have investigated the impact of soft 

errors on processor systems using different techniques 

[3]. During accelerated radiation testing, an embedded 

device is exposed to a high flux of radiation while the 

application is running, simulating years of functioning 

in a radiation environment such as space [4]. 

Even if accelerated radiation testing provides the 

closest results to the actual case scenario, it has a high 

cost of money, time, and expertise, making it 

unsuitable for the early stages of the design 

development flow. Therefore, other works are 

dedicated to developing alternative techniques, such 

as simulation and emulation environments, for 

assessing the reliability of bare-metal applications 

running on microprocessors.  Fault Injection 

techniques, as one of the most common emulation 

approach, is widely exploited to evaluate the impact 

of SEEs on embedded processors [5][6]. Simulation-

based fault injection methodologies are developed for 

emulating fault by injecting faults in memory 

resources, CPU registers, and communication 

infrastructure [7], while the impact of soft errors on 

the operations of a microprocessor-based architecture 

by injecting random SEU at a random time is 

investigated in [8].   

 However, on the other hand, the increasing 

complexity of tasks required for embedded systems 

has led to the rise in the adoption of Real-Time 

Operating Systems (RTOSs), which provide an 

efficient solution for meeting stringent real-time 

requirements. Therefore, with the emergence of 

RTOS, some works have also investigated software-

level techniques for evaluating the sensitivity of 

software executing on embedded processors with an 

operating system to soft errors [9]. The vulnerability 

of FreeRTOS has been evaluated through a software-

based fault injection method that targets the most 

relevant variables and data structure [10], while the 

authors in [11] developed a workflow for automatic 

fault injection into program and data memory. 

Common approaches are based on modifying the 

operating system kernel or altering the memory 

content [12]. However, software application-level 

methods abstract from underlying hardware 

architecture when considering the impact of faults on 

the operating system’s functionality. Therefore, other 

approaches are based on the simulation of the 

hardware description of the embedded processing 

system, which allows the injection of upsets into 

registers and hidden elements at any time [13][14]. 

Although numerous research studies have focused on 

assessing the dependability of embedded 

microprocessors using both bare-metal and 

FreeRTOS approaches, none have specifically 

compared these approaches regarding their 

susceptibility to single-event effects (SEE) caused by 

architectural faults. Designers, particularly those 

working on space applications, often find themselves 

debating whether to use an operating system or a bare-

metal application to achieve higher reliability. This 

paper aims to fill this gap by conducting a first direct 

comparison of identical applications running on 

embedded systems using bare-metal, and RTOS 

approaches, taking into consideration the fault models 

derived from a conducted proton radiation test 

experiment. 

 

3. Fault Model Resulting from Proton Testing 

 

We performed a proton radiation test at 

Switzerland's Paul Scherrer Institute (PSI) proton 

facility. A Zynq-7020 device has been irradiated with 

proton beams with energies between 29 and 200 MeV. 

The content of the on-chip 256 Kb SRAM memory 

has been continuously monitored through a software 

routine running on an ARM Cortex A9 during the 

experiment. The software test routine is executed on 

the processor system, reading and writing the memory 

content. The testing routine writes new values in the 

memory and checks if the value written during the 

previous test loop has been corrupted. It also verifies 

that the current value has been written correctly and 

can be read correctly. When an erroneous value is 

detected, it is notified to a host computer connected 

through a serial connection. The software routine can 

identify both Single Event Functional Interruption 

(SEFI) errors (e.g., a memory cell cannot be written 

or read correctly anymore) and soft errors, such as 

Single Event Upset (SEU) and Multiple Cell Upset 

(MCU). We identified the following fault models and 

 

 Fig. 1 SEUs and MCUs Cross-Sections 



 

 

their cross-sections, reported in Figure 1,  that have 

been adopted in the fault injection campaigns: 

Single Event Upset (SEU) is the most commonly 

observed event during radiation experiments. An SEU 

produces a change in the value stored in a memory cell 

due to a bitflip, leading to data corruption in memory. 

Figure 1 displays the SEU cross-section for various 

proton energy experiments, while radiation-induced 

transitions from 0 to 1 and 1 to 0 have also been 

examined, revealing comparable ratios and 

distributions. 

Multiple Cell Upset (MCU) is a group of SEUs 

that happen simultaneously, usually due to a single 

event. Indeed, a single particle can be the source of 

multiple upsets by exciting more than one logic cell 

while traversing or corrupting the memory control 

signals, resulting in the corruption of numerous cells. 

In particular, a Multiple Bit Upset (MBU) is an MCU 

affecting two bits of the same logical word. 

Interestingly, no MBU has been observed. However, 

detected MCUs presented recurrent patterns. The 

MCUs always affected the same significant bits of 

equally distanced logic memory words. This 

characteristic is likely related to the specific 

characteristics of the layout and architecture of the 

memory under test that differ from the logical 

organization. The distribution of the parameters, 

aggregating the characteristics of events occurring at 

all the energies, of MCUs events are reported in Table 

1 and Table 2. Additional details on the proton test 

experiments are reported in [15]. 

 
Table 1. Normalized Occurrences of Address Offset in SEMUs 

 
Offset in Memory between bitflips 

 
Normalized Occurrence 

128 0.61 

4 0.12 

124 0.06 

132 0.03 

others Less than 0.01 each 

 
Table 2. Normalized Occurrences of Affected Bits in SEMUs 

 
Number of Multiple Upset 

 
Normalized Occurrence  

2 0.65 

3 0.20 

4 0.08 

5 0.03 

Others [6;15] Less than 0.01 each 

 

3. The Reliability Analysis Environment 

 

An analysis environment has been developed to assess 

and compare the reliability of the two platforms 

against the fault models observed during the proton 

test experiment. The developed framework allows 

emulating the faults affecting the on-chip memory of 

the system-on-chip. Since the difference between the 

two platforms is only in the software stack, emulating 

the fault at a lower level provides a fair comparison 

between the two systems. In particular, the same (i.e., 

same fault model and location) faults are emulated 

and evaluated on both systems. The experiment 

manager runs on a host computer connected to the 

embedded platform through a serial connection. 

Using the JTAG interface of the SoC, the experiment 

manager can run the application on the target device, 

and stop the execution, manipulating the memory of 

the SoC to emulate the fault model, resuming the 

execution, and collecting the results. The reliability 

analysis environment, depicted in Figure 2,  includes 

two stages. In the first stage, the system runs a version 

of the application under test without faults to collect 

data for instrumenting the fault injection process. 

During this stage, the environment infers information 

such as the application's memory footprint, average 

execution time, and executed instructions. This stage 

is fully automated and generates the information to be 

used in the second stage. The fault injection process 

flow is performed as follows: firstly, a fault injection 

location and time are generated. Fault location is 

generated among the SRAM memory of the device. 

Fault injection time is then generated. In this context, 

fault injection time refers to the point in time during 

the execution of the program when a fault is 

intentionally injected into the system. Selecting the 

specific point in the program's execution when the 

fault will be injected is done by choosing an 

instruction from the list of executed instructions 

retrieved during the instrumentation stage. By 

injecting faults at different times, it is possible to 

simulate different scenarios and observe how the 

system responds. Secondly, the application under test 

is executed in the FreeRTOS and bare-metal versions. 

Once the application runs, it is stopped at the specific 

instruction selected as the fault injection time. This is 

done using the debugging mode, which allows for 

precise control over the execution of the program. At 

this point, the fault is emulated at the memory level. 

This means that the fault is emulated into the system 

by altering the contents of memory in a specific way 

that mimics the target fault model. During the fault 

injection process, monitoring the system for any 

issues that may arise due to the injected fault is 

essential. To do this, the experiment manager uses 

timers instrumented during the process's first stage. 

These timers can detect system halt or endless loops, 

indicating that the fault has caused the program to 

behave unexpectedly or crash. 

 



 

 

4. Experimental Analysis  

 

The illustrated framework and methodology have 

been used for two reliability analyses. The former is 

dedicated to comparing the robustness of systems 

based on bare-metal and FreeRTOS software stacks 

against fault models observed in the on-chip memory 

of an embedded processor during proton testing by 

using the same suite of software benchmarks and 

injected faults. The latter analysis evaluates the 

robustness of a different suite of software applications 

dedicated to specific features of the RTOSs, such as 

task communication and scheduling.  

 

4.1 Software Systems 

 

We used two software suites in this section's 

reliability analyses. The first suite of software 

benchmarks, called general-purpose software 

applications,  consists of four software applications. 

The four software are: 

- qsort: a quick sort algorithm used for sorting 

arrays of data 

- matmul: mathematical operations on matrices, 

- basicmath: a set of basic mathematical functions, 

including arithmetic, trigonometric, and 

logarithmic functions. 

- dhrystone: it is a computing benchmark that 

performs string processing operations. 

 

Table 3 provides information on the memory footprint 

and the nominal execution time of these applications.  

 

 

 
Table 3. Characteristics of General Purpose Applications Suite 

 
Application Platform 

Memory 

footprint 

(KByte) 

Nominal 

execution time 

(ms) 

qsort bare-metal 7,932 46.45 

qsort FreeRTOS 68,796 1,049.93 

matmul bare-metal 37,580 45.67 

matmul FreeRTOS 75,348 1,047.72 

basicmath bare-metal 37,068 120.49 

basicmath FreeRTOS 74,956 1,116.15 

dhrystone bare-metal 43,636 194.69 

dhrystone FreeRTOS 78,940 1,183.18 

 

The software applications of this suite have been 

implemented both for bare-metal and FreeRTOS 

platforms.  In particular, the FreeRTOS version of 

each application is coded to instantiate three copies of 

the same task that runs concurrently on the processor. 

Since bare-metal systems do not support the 

concurrency of tasks, the bare-metal version executes 

the task in sequence three times through function calls 

to the same procedure, which consequently share the 

same code section, similar to what happens when 

multiple instances of the same task are instantiated in 

the FreeRTOS system.  

The second suite of software benchmarks, referred to 

as RTOS software applications,  consists of five 

software applications extracted from the Rhealstone 

benchmark applications suite [16]. The Rhealstone 

benchmark suite consists of software applications 

aiming to evaluate operations that are critical in a real-

time operating system. In particular, the software 

applications are: 

  

- task switching: it performs synchronous and non-

preemptive task switching. 

- task preempting: it switches tasks due to an event 

trigger.  

- semaphore operations: it performs semaphore 

operations to support mutual exclusion between 

two tasks.  

- deadlock breaking: it resolves deadlock 

conditions by high-priority tasks preempting a 

low-priority task that acquired a needed resource. 

- task communication: it makes two tasks exchange 

a message. 

 

Since these applications are dedicated to evaluating 

the robustness of specific features offered by RTOS 

systems, they have been evaluated only for the 

FreeRTOS platform.  

Table 4 provides information on the memory footprint 

and the nominal execution time of these applications. 

Fig. 2. Fault Injection Framework 



 

 

 
 

Table 4. Characteristics of ROTS Applications Suite 

 
Application Platform 

Memory 

footprint 

(KByte) 

Nominal 

execution 

time (ms) 

task switching FreeRTOS 67,348 98.68 

task preempting FreeRTOS 67,412 96.05 

semaphore operations FreeRTOS 67,668 193.06 

deadlock breaking FreeRTOS 67,859 209.21 

task communication FreeRTOS 67,548 204.67 

 

All the reported software applications have been 

evaluated singularly in dedicated fault injection 

campaigns. All the software applications have been 

compiled using gcc with the -O2 optimization. 

Additionally, on-board DRAM memory is not used by 

the hardware platform, limiting the memory space for 

the application (e.g., heap, stack, data, instruction, and 

so on) to the on-chip SRAM memory. 

The memory footprint column reported in Table 3 and 

the same column in Table 4 does not include the heap 

and stack. The same stack size was used for all bare-

metal applications and set to 14,336 bytes, while the 

heap size was set to 8,192 bytes. 

The platform based on FreeRTOS was a FreeRTOS 

10 version provided by ARM-Xilinx to be 

implemented using the Xilinx Vitis IDE v2022.1.0 in 

a Zynq-7020. We used the standard configuration 

options provided by the vendor for all the software 

benchmarks based on FreeRTOS. They include full 

support for counting semaphores and mutex, 

checkings for stack overflow detection enabled with 

methodology 2,  a total heap size of 65,536 bytes, and 

a minimum stack size of 200 words, which is used 

both as minimal stack size and as stack size allocated 

to each FreeRTOS task [17].  

 

4.2 Fault Injection Campaigns 

 

We performed a dedicated fault injection campaign 

based on the two proposed fault models for each 

software application. In order to compare the bare-

metal and FreeRTOS in the fairest way possible for 

the general-purpose applications suite, we evaluated 

them with the same fault models and locations. 

However, since the FreeRTOS and bare-metal 

versions of the application execute different 

instructions due to different software stacks, it is 

impossible to inject faults at precisely the same 

moment (i.e., executed instruction). The fault 

injection time is generated when comparing the same 

application on different platforms in order to emulate 

faults that occur at similar execution times during 

execution. Each fault injection campaign consisted of 

10,000 experiments. During each experiment, a single 

fault model at a time was injected into the SRAM on-

chip memory. The presented reliability analysis is 

based on SEU and MCU fault models emulated in the 

on-chip SRAM memory of the actual device, but we 

want to emphasize that faults in the  SRAM on-chip 

memory are only a part of the SoC that is sensitive to 

radiation events. For instance, due to its high 

performance and minimal sizes, cache memory has 

the downside of being extremely sensitive to SEUs, 

and the choice to disable or not is still debated and 

based on the specific applications and their reliability 

and real-time constraints [18][19]. Additionally, 

cache memory are are also a source of unpredictability 

in the system that can increase the complexity of hard 

real-time systems. Other memories can also be used 

with embedded processors, such as external DDR 

memories. However, we chose to focus our analysis 

on on-chip memory since it is integrated with the SoC 

itself; it is the biggest on-chip memory space (e.g., 

compared to register files and caches) and is 

particularly sensitive to SEUs and MBUs.  

 

4.3 Results Classification 

 

The effects of the injected faults are categorized into 

four groups accordingly to observed impacts on the 

system. We identified the following categories: 

- Masked: the fault did not visibly affect program 

execution. The program results are correct. 

- Silent Data Corruption (SDC): the fault produced 

a corruption of the program output.  

- Crash: the fault produced a system failure, 

causing the system to stop functioning. In this 

case, part of the output was generated before the 

systems stopped working. 

- Startup Failure: the fault prevents the application 

from emitting any output due to an early crash or 

failing boot. 

To clarify further the difference between a Crash and 

a Startup Failure, software applications have been 

coded to output a signature when the application 

under test starts to execute. A fault is classified as 

causing a Startup Failure when no output, including 

the starting signature of the program, is generated. 

Both Crash and Startup Failure cause the system to 

halt due to various reasons, such as endless loops or 

unhandled exceptions.     

 

5. Experimental Results 

 

The results of a first reliability analysis dedicated to 

evaluating the general-purpose application suite 

implemented in bare-metal and FreeRTOS platforms 

against the SEUs and MCUs are presented. 

Additionally, we present the result of a second 



 

 

reliability analysis dedicated to features typical of 

RTOS. This dedicated reliability analysis has been 

carried out only for the FreeRTOS platform and 

evaluated against SEUs and MCUs fault models. 

Reliability analyses have been conducted using 

statistical fault injection. We carried out fault 

injection campaigns of 10,000 singularly-evaluated 

fault injections. In accordance with [20], it allows us 

to reach a confidence interval of 95% with less than 

1% of the margin of error of the measured error rate 

values. SEUs and MBUs fault models resulting from 

proton testing have been emulated into the on-chip 

SRAM memory of the embedded system. 

 

5.1 Baremetal and FreeRTOS comparison analysis 

 

Error rates due to SEUs and MCUs affecting the 

software applications of the general-purpose 

application suite running on both platforms are 

presented in Fig. 3 and Fig.4, respectively. 

The two analyses produced similar reliability results 

for the evaluated applications. The resulting error 

rates against these fault models. Robustness 

comparisons among software are the same for both 

fault models, and the error rates vary only marginally 

between bare-metal or FreeRTOS based on the 

specific application. As a result, choosing between 

bare-metal or FreeRTOS can lead to slightly more 

robust software based on the specific application, but 

robustness can be considered comparable without 

significant variations. Since the marginal variation of 

the error rate when using bare metal or FreeRTOS is 

very small, the choice between the two mainly 

depends on other factors, such as more or less strong 

real-time requirements. However, it is interesting to 

notice that the distribution of the type of errors 

presents a pronounced difference for SEUs, which is 

even more marked for the MCU fault model. As 

shown in Fig. 5 and Fig. 6, while the error rate is 

similar, FreeRTOS show a significantly higher 

percentage of execution flow error, such as Startup 

Failures and Crashes. This is likely due to the higher 

complexity of the operating system layer introduced 

by FreeRTOS in the software stack. Differently, bare-

Fig. 3. Error Rate resulting from SEUs fault model 

for general-purpose applications benchmarks. 
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Fig. 4. Error Rate resulting from MCUs fault model 

for general-purpose applications benchmarks. 
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Fig. 5. Normalized Error Categorization for SEUs 

fault model for general-purpose applications 

benchmarks 
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Fig. 6. Normalized Error Categorization for MCUs 

fault model for general-purpose applications. 
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metal is more prone to SDC errors. As a result, bare 

metal could be considered more suitable for systems 

where high availability is essential and erroneous 

results can be tolerated. On the other hand, SDCs are 

less common in FreeRTOS, which is a valuable 

feature since there is no advisory on the system's 

misbehavior in this type of error. However, since 

availability is an essential metric for a real-time 

system, this analysis raises the question of whether 

FreeRTOS can provide a reasonable level of 

availability while keeping low SDC when operating 

in radiation environments. 

 

5.2 FreeRTOS Functionality Analysis 

 

The error rates resulting from reliability analysis 

against SEUs and MCUs of the RTOS benchmark 

suite are reported in Fig. 7 and Fig. 8, respectively. 

Variations of error rates appear to be less marked 

among various applications, and also, the error 

categorization reported in Fig. 9 and Fig. 10 are very 

similar among the software evaluated. Due to the 

characteristics of the benchmark under test, SDC 

occurred much less compared to general-purpose 

applications, while errors due to control flow, such as 

Crash and Startup Failure, are more common. This 

analysis supports the idea that RTOS functionality is 

more prone to control flow errors, especially 

compared to bare-metal applications where the 

operating-system layer introduces much less 

complexity. All RTOS functionalities evaluated in 

this analysis seem to be characterized by a similar 

error rate and error categorization distribution.  

 

6. Conclusions 

 

We proposed a reliability comparison of software 

running in FreeRTOS and bare metal using realistic 

fault models of radiation-induced soft errors affecting 

the on-chip SRAM memory of an ARM Cortex-A9 

embedded processor, such as SEUs and MCUs. Even 

if characterized by a similar error rate, the 

experimental results highlighted the different 

sensitivity of the two approaches to SDCs and control 

flow errors, which should be considered carefully 

when defining the software platform for real-time 

safety-critical applications. A second analysis 

dedicated to RTOS functionalities confirmed that 

features offered by RTOS are particularly prone to 

control flow errors compared to SDC. 
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Fig. 9. Normalized Error Categorization for SEUs 

fault model for RTOS software applications. 
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