
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating Reliability against SEE of Embedded Systems: A Comparison of RTOS and Bare-metal Approaches / DE
SIO, Corrado; Azimi, Sarah; Sterpone, Luca. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. -
150:(2023). [10.1016/j.microrel.2023.115124]

Original

Evaluating Reliability against SEE of Embedded Systems: A Comparison of RTOS and Bare-metal
Approaches

Publisher:

Published
DOI:10.1016/j.microrel.2023.115124

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981728 since: 2023-09-06T12:28:58Z

Elsevier

Microelectronics Reliability 150 (2023) 115124

Available online 1 October 2023
0026-2714/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Evaluating reliability against SEE of embedded systems: A comparison of
RTOS and bare-metal approaches

C. De Sio *, S. Azimi, L. Sterpone
Department of Computer and Control Engineering, Politecnico di Torino, Turin, Italy

A R T I C L E I N F O

Keywords:
Baremetal
Embedded processors
Fault injection
FreeRTOS
Multiple cell upset
Operating system
Radiation effects
Reliability
RTOS
Single event upset

A B S T R A C T

Embedded processors are widely used in critical applications such as space missions, where reliability is
mandatory for the success of missions. Due to the increasing application complexity, the number of systems using
Real-Time Operating Systems (RTOSs) is quickly growing to manage the execution of multiple applications and
meet timing constraints. However, whether operating systems or bare-metal applications provide higher reli-
ability is still being determined. We present a comprehensive reliability analysis of software applications running
on a device with bare-metal and FreeRTOS against the same faults based on fault models derived from a proton
test. Additionally, the FreeRTOS system has been evaluated with a set of software applications dedicated to
evaluating specific RTOS functions, providing an additional evaluation for operations crucial for a real-time
operating system.

1. Introduction

Embedded processors have become increasingly popular in mission-
critical applications such as space missions, where reliability is
paramount.

The impact of soft errors on reliability can be significant in these
systems, making it essential to ensure that the applications used are
reliable and robust. Moreover, the continuous downscaling of transistors
and operating voltages has led to more performant devices. Such devices
are appealing for high-performance mission-critical applications, such
as space missions. However, smaller transistors dimensions, operating
voltages, and higher frequency made them more vulnerable to soft er-
rors, which is a primary concern for systems deployed in harsh envi-
ronments, such as space, where the exposure to ionizing radiation is a
source of malfunctions in the device [1]. As the complexity of tasks that
embedded systems must perform continues to increase, the bare-metal
approach has decreased, leading to migration towards adopting Real-
Time Operating Systems (RTOSs). These systems provide an efficient
solution for meeting stringent real-time requirements, particularly in
safety-critical applications that require the management of the execu-
tion of multiple critical applications on the same platform [2]. Despite
the widespread use of embedded processors, the robustness of software
applications running on systems with RTOS compared to bare-metal has

yet to be thoroughly investigated. This leads to a broad question of
whether these two platforms' reliability differences exist when they run
applications in safety-critical missions.

1.1. Main contributions

This paper is dedicated to performing an accurate and comprehen-
sive reliability analysis of two developed platforms running the same
applications in the presence of the same fault models, relying on RTOS
and bare-metal, respectively. The paper presents two main contribu-
tions. Firstly, a detailed analysis of the fault model occurring in the on-
chip SRAM memory of an ARM Cortex-A9 embedded processor during a
proton test is presented. The observed events are used to propose a set of
fault models for realistically emulating radiation-induced soft errors.
These fault models provide a model for radiation-induced errors
observed in the on-chip memory from the processor side. Secondly, we
proposed two reliability analyses for two platforms running on ARM
Cortex-A9 embedded processor of a Zynq-7020 system-on-chip. Free-
RTOS and bare-metal platforms are evaluated using the same software
applications suite. Finally, since RTOS systems are characterized by
additional features that are missing in bare-metal, an additional analysis
based on a suite of benchmark applications is provided for exploring the
robustness of specific RTOS functions.

* Corresponding author.
E-mail address: corrado.desio@polito.it (C. De Sio).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2023.115124
Received 1 June 2023; Received in revised form 10 July 2023; Accepted 11 July 2023

mailto:corrado.desio@polito.it
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2023.115124
https://doi.org/10.1016/j.microrel.2023.115124
https://doi.org/10.1016/j.microrel.2023.115124
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2023.115124&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microelectronics Reliability 150 (2023) 115124

2

2. Related works

Several works have investigated the impact of soft errors on pro-
cessor systems using different techniques [3]. During accelerated radi-
ation testing, an embedded device is exposed to a high flux of radiation
while the application is running, simulating years of functioning in a
radiation environment such as space [4].

Even if accelerated radiation testing provides the closest results to
the actual case scenario, it has a high cost of money, time, and expertise,
making it unsuitable for the early stages of the design development flow.
Therefore, other works are dedicated to developing alternative tech-
niques, such as simulation and emulation environments, for assessing
the reliability of bare-metal applications running on microprocessors.
Fault Injection techniques, as one of the most common emulation
approach, is widely exploited to evaluate the impact of Single Event
Effects (SEEs) on embedded processors [5,6]. Simulation-based fault
injection methodologies are developed for emulating fault by injecting
faults in memory resources, CPU registers, and communication infra-
structure [7], while the impact of soft errors on the operations of a
microprocessor-based architecture by injecting random Single Event
Upset (SEU) at a random time is investigated in [8].

However, on the other hand, the increasing complexity of tasks
required for embedded systems has led to the rise in the adoption of
Real-Time Operating Systems (RTOSs), which provide an efficient so-
lution for meeting stringent real-time requirements. Therefore, with the
emergence of RTOS, some works have also investigated software-level
techniques for evaluating the sensitivity of software executing on
embedded processors with an operating system to soft errors [9]. The
vulnerability of FreeRTOS has been evaluated through a software-based
fault injection method that targets the most relevant variables and data
structure [10], while the authors in [11] developed a workflow for
automatic fault injection into program and data memory. Common ap-
proaches are based on modifying the operating system kernel or altering
the memory content [10]. However, software application-level methods
abstract from underlying hardware architecture when considering the
impact of faults on the operating system's functionality. Therefore, other
approaches are based on the simulation of the hardware description of
the embedded processing system, which allows the injection of upsets
into registers and hidden elements at any time [12,13].

Although numerous research studies have focused on assessing the
dependability of embedded microprocessors using both bare-metal and
FreeRTOS approaches, none have specifically compared these ap-
proaches regarding their susceptibility to SEE caused by architectural
faults. Designers, particularly those working on space applications, often
find themselves debating whether to use an operating system or a bare-
metal application to achieve higher reliability. This paper aims to fill
this gap by conducting a first direct comparison of identical applications
running on embedded systems using bare-metal, and RTOS approaches,
taking into consideration the fault models derived from a conducted
proton radiation test experiment.

3. Fault model resulting from proton testing

We performed a proton radiation test at Switzerland's Paul Scherrer
Institute (PSI) proton facility. A Zynq-7020 device has been irradiated
with proton beams with energies between 29 and 200 MeV. The content
of the on-chip 256 Kb SRAM memory has been continuously monitored
through a software routine running on an ARM Cortex A9 during the
experiment. The on-chip SRAM memory of Zynq-7020 implements an
error detection mechanism exploiting parity bits, while no correction
mechanism is implemented. The software test routine is executed on the
processor system, reading and writing the memory content. The testing
routine writes new values in the memory and checks if the value written
during the previous test loop has been corrupted. It also verifies that the
current value has been written correctly and can be read correctly. When
an erroneous value is detected, it is notified to a host computer

connected through a serial connection. The software routine can identify
both Single Event Functional Interruption (SEFI) errors (e.g., a memory
cell cannot be written or read correctly anymore) and soft errors, such as
Single Event Upset and Multiple Cell Upset (MCU). We identified the
following fault models and their cross-sections, reported in Fig. 1, that
have been adopted in the fault injection campaigns:

Single Event Upset is the most commonly observed event during ra-
diation experiments. An SEU produces a change in the value stored in a
memory cell due to a bitflip, leading to data corruption in memory.
Fig. 1 displays the SEU cross-section for various proton energy experi-
ments, while radiation-induced transitions from 0 to 1 and 1 to 0 have
also been examined, revealing comparable ratios and distributions.

Multiple Cell Upset is a group of SEUs that happen simultaneously,
usually due to a single event. Indeed, a single particle can be the source
of multiple upsets by exciting more than one logic cell while traversing
or corrupting the memory control signals, resulting in the corruption of
numerous cells. In particular, a Multiple Bit Upset (MBU) is an MCU
affecting two bits of the same logical word. Interestingly, no MBU has
been observed. However, detected MCUs presented recurrent patterns.
The MCUs always affected the same significant bits of equally distanced
logic memory words. This characteristic is likely related to the specific
characteristics of the layout and architecture of the memory under test
that differ from the logical organization. The distribution of the pa-
rameters, aggregating the characteristics of events occurring at all the

Fig. 1. SEUs and MCUs cross-sections.

Table 1
Normalized occurrences of address offset in MCUs.

Offset in memory between bitflips Normalized occurrence

128 0.61
4 0.12
124 0.06
132 0.03
Others Less than 0.01 each

Table 2
Normalized occurrences of affected bits in MCUs.

Number of multiple upset Normalized occurrence

2 0.65
3 0.20
4 0.08
5 0.03
Others [6;15] Less than 0.01 each

C. De Sio et al.

Microelectronics Reliability 150 (2023) 115124

3

energies, of MCUs events are reported in Tables 1 and 2. Additional
details on the proton test experiments are reported in [14].

4. The reliability analysis environment

An analysis environment has been developed to assess and compare
the reliability of the two platforms against the fault models observed
during the proton test experiment. The developed framework allows
emulating the faults affecting the on-chip memory of the system-on-
chip. Since the difference between the two platforms is only in the
software stack, emulating the fault at a lower level provides a fair
comparison between the two systems. In particular, the same (i.e., same
fault model and location) faults are emulated and evaluated on both
systems. The experiment manager runs on a host computer connected to
the embedded platform through a serial connection. Using the JTAG
interface of the SoC, the experiment manager can run the application on
the target device, and stop the execution, manipulating the memory of
the SoC to emulate the fault model, resuming the execution, and col-
lecting the results. The reliability analysis environment, depicted in
Fig. 2, includes two stages. In the first stage, the system runs a version of
the application under test without faults to collect data for instru-
menting the fault injection process. During this stage, the environment
infers information such as the application's memory footprint, average
execution time, and executed instructions. This stage is fully automated
and generates the information to be used in the second stage. The fault
injection process flow is performed as follows: firstly, a fault injection
location and time are generated. Fault location is generated among the
SRAM memory of the device. Fault injection time is then generated. In
this context, fault injection time refers to the point in time during the
execution of the program when a fault is intentionally injected into the
system. Selecting the specific point in the program's execution when the
fault will be injected is done by choosing an instruction from the list of
executed instructions retrieved during the instrumentation stage. By
injecting faults at different times, it is possible to simulate different
scenarios and observe how the system responds. Secondly, the applica-
tion under test is executed in the FreeRTOS and bare-metal versions.

Once the application runs, it is stopped at the specific instruction
selected as the fault injection time. This is done using the debugging
mode, which allows for precise control over the execution of the pro-
gram. At this point, the fault is emulated at the memory level. This
means that the fault is emulated into the system by altering the contents
of memory in a specific way that mimics the target fault model. During
the fault injection process, monitoring the system for any issues that may
arise due to the injected fault is essential. To do this, the experiment
manager uses timers instrumented during the process's first stage. These
timers can detect system halt or endless loops, indicating that the fault
has caused the program to behave unexpectedly or crash.

5. Experimental analysis

The illustrated framework and methodology have been used for two
reliability analyses. The former is dedicated to comparing the robustness
of systems based on bare-metal and FreeRTOS software stacks against
fault models observed in the on-chip memory of an embedded processor
during proton testing by using the same suite of software benchmarks
and injected faults. The latter analysis evaluates the robustness of a
different suite of software applications dedicated to specific features of
the RTOSs, such as task communication and scheduling.

5.1. Software systems

We used two software suites in this section's reliability analyses. The
first suite of software benchmarks, called general-purpose software ap-
plications, consists of four software applications. The four software are:

- qsort: a quick sort algorithm used for sorting arrays of data
- matmul: mathematical operations on matrices,
- basicmath: a set of basic mathematical functions, including arith-

metic, trigonometric, and logarithmic functions.
- dhrystone: it is a computing benchmark that performs string pro-

cessing operations.

Table 3 provides information on the memory footprint and the
nominal execution time of these applications.

The software applications of this suite have been implemented both
for bare-metal and FreeRTOS platforms. In particular, the FreeRTOS
version of each application is coded to instantiate three copies of the
same task that runs concurrently on the processor. Since bare-metal
systems do not support the concurrency of tasks, the bare-metal
version executes the task in sequence three times through function
calls to the same procedure, which consequently share the same code
section, similar to what happens when multiple instances of the same
task are instantiated in the FreeRTOS system.

The second suite of software benchmarks, referred to as RTOS soft-
ware applications, consists of five software applications extracted from
the Rhealstone benchmark applications suite [15]. The Rhealstone

Fig. 2. Fault injection framework.

Table 3
Characteristics of general purpose applications Suite.

Application Platform Memory footprint
(KByte)

Nominal execution time
(ms)

qsort bare-
metal

7932 46.45

qsort FreeRTOS 68,796 1049.93
matmul bare-

metal
37,580 45.67

matmul FreeRTOS 75,348 1047.72
basicmath bare-

metal
37,068 120.49

basicmath FreeRTOS 74,956 1116.15
dhrystone bare-

metal
43,636 194.69

dhrystone FreeRTOS 78,940 1183.18

C. De Sio et al.

Microelectronics Reliability 150 (2023) 115124

4

benchmark suite consists of software applications aiming to evaluate
operations that are critical in a real-time operating system. In particular,
the software applications are:

- task switching: it performs synchronous and non-preemptive task
switching.

- task preempting: it switches tasks due to an event trigger.
- semaphore operations: it performs semaphore operations to support

mutual exclusion between two tasks.
- deadlock breaking: it resolves deadlock conditions by high-priority

tasks preempting a low-priority task that acquired a needed resource.
- task communication: it makes two tasks exchange a message.

Since these applications are dedicated to evaluating the robustness of
specific features offered by RTOS systems, they have been evaluated
only for the FreeRTOS platform.

Table 4 provides information on the memory footprint and the
nominal execution time of these applications.

All the reported software applications have been evaluated singu-
larly in dedicated fault injection campaigns. All the software applica-
tions have been compiled using gcc with the –O2 optimization.

Additionally, on-board DRAM memory is not used by the hardware
platform, limiting the memory space for the application (e.g., heap,
stack, data, instruction, and so on) to the on-chip SRAM memory.

The memory footprint column reported in Table 3 and the same
column in Table 4 does not include the heap and stack. The same stack
size was used for all bare-metal applications and set to 14,336 bytes,
while the heap size was set to 8192 bytes.

The platform based on FreeRTOS was a FreeRTOS 10 version pro-
vided by ARM-Xilinx to be implemented using the Xilinx Vitis IDE
v2022.1.0 in a Zynq-7020. We used the standard configuration options
provided by the vendor for all the software benchmarks based on
FreeRTOS. They include full support for counting semaphores and
mutex. The detection of stack overflow using FreeRTOS's methodology 2
is supported as well. The default configuration uses a total heap size of
65,536 bytes, while the minimum stack size is set to 200 words. The
stack size we allocated to each FreeRTOS task is 200 words as well [16].

5.2. Fault injection campaigns

We performed a dedicated fault injection campaign based on the two
proposed fault models for each software application. In order to
compare the bare-metal and FreeRTOS in the fairest way possible for the
general-purpose applications suite, we evaluated them with the same fault
models and locations. However, since the FreeRTOS and bare-metal
versions of the application execute different instructions due to
different software stacks, it is impossible to inject faults at precisely the
same moment (i.e., executed instruction). The fault injection time is
generated when comparing the same application on different platforms
in order to emulate faults that occur at similar execution times during
execution. Each fault injection campaign consisted of 10,000 experi-
ments. During each experiment, a single fault model at a time was
injected into the SRAM on-chip memory. The characteristics of the
injected fault models (e.g., characteristics reported in Tables 1 and 2) are

inferred from the radiation test results. Since during the fault injection
experiment, differently from the radiation testing, we emulate the
happened fault effect using a fault model, a cross-section of the events is
not considered during fault injection campaigns. However, since from
the fault injection campaign we obtain the response of the system to an
occurring fault, the results of such analysis can be combined with ex-
pected event rates in memory for obtaining the expected application
cross-section under different radiation conditions.

The presented reliability analysis is based on SEU and MCU fault
models emulated in the on-chip SRAM memory of the actual device, but
we want to emphasize that faults in the SRAM on-chip memory are only
a part of the SoC that is sensitive to radiation events. For instance, due to
its high performance and minimal sizes, cache memory has the down-
side of being extremely sensitive to SEUs, and the choice to disable or
not is still debated and based on the specific applications and their
reliability and real-time constraints [17,18]. Additionally, cache mem-
ory are also a source of unpredictability in the system that can increase
the complexity of hard real-time systems. Other memories can also be
used with embedded processors, such as external DDR memories.
However, we chose to focus our analysis on on-chip memory since it is
integrated with the SoC itself; it is the biggest on-chip memory space (e.
g., compared to register files and caches) and is particularly sensitive to
SEUs and MBUs.

5.3. Results classification

The effects of the injected faults are categorized into four groups
accordingly to observed impacts on the system. We identified the
following categories:

- Masked: the fault did not visibly affect program execution. The pro-
gram results are correct.

- Silent Data Corruption (SDC): the fault produced a corruption of the
program output.

- Crash: the fault produced a system failure, causing the system to stop
functioning. In this case, part of the output was generated before the
systems stopped working.

- Startup Failure: the fault prevents the application from emitting any
output due to an early crash or failing boot.

To clarify further the difference between a Crash and a Startup Fail-
ure, software applications have been coded to output a signature when
the application under test starts to execute. A fault is classified as
causing a Startup Failure when no output, including the starting signa-
ture of the program, is generated. Both Crash and Startup Failure cause
the system to halt due to various reasons, such as endless loops or
unhandled exceptions.

6. Experimental results

The results of a first reliability analysis dedicated to evaluating the
general-purpose application suite implemented in bare-metal and Free-
RTOS platforms against the SEUs and MCUs are presented. Additionally,
we present the result of a second reliability analysis dedicated to fea-
tures typical of RTOS. This dedicated reliability analysis has been car-
ried out only for the FreeRTOS platform and evaluated against SEUs and
MCUs fault models.

Reliability analyses have been conducted using statistical fault in-
jection. We carried out fault injection campaigns of 10,000 singularly-
evaluated fault injections. In accordance with [19], it allows us to
reach a confidence interval of 95 % with less than 1 % of the margin of
error of the measured error rate values. SEUs and MBUs fault models
resulting from proton testing have been emulated into the on-chip SRAM
memory of the embedded system. The results are reported using the
error rate value. Since the reliability analysis is carried out through fault
injection campaigns, this ratio represents the number of faults injected

Table 4
Characteristics of ROTS applications suite.

Application Platform Memory footprint
(KByte)

Nominal execution
time (ms)

Task switching FreeRTOS 67,348 98.68
Task preempting FreeRTOS 67,412 96.05
Semaphore

operations
FreeRTOS 67,668 193.06

Deadlock breaking FreeRTOS 67,859 209.21
Task

communication
FreeRTOS 67,548 204.67

C. De Sio et al.

Microelectronics Reliability 150 (2023) 115124

5

that led to an error (i.e., the number of not masked faults) over the total
number of events emulated in the system (i.e., the number of experi-
ments). This means that we are evaluating the probability of having an
anomalous behavior of the system, given that an SEU or MCU occurs
during execution. Using such information, it is possible to compute the
expected application cross-section value for different scenarios based on
the expected radiation profile and expected SEU or MCU rate in time.
For the same reason, the error rates of the applications resulting from
this analysis are also independent of execution times since they only
consider a single fault happening during execution. However, the
execution time reported in Tables 3 and 4 can be combined with the
expected SEU and MCU rates to map the applications' error cross-section
to different radiation profiles and scenarios.

6.1. Baremetal and FreeRTOS comparison analysis

Error rates due to SEUs and MCUs affecting the software applications
of the general-purpose application suite running on both platforms are
presented in Figs. 3 and 4, respectively.

The two analyses produced similar reliability results for the evalu-
ated applications. The resulting error rates against these fault models.

Robustness comparisons among software are the same for both fault
models, and the error rates vary only marginally between bare-metal or
FreeRTOS based on the specific application. As a result, choosing be-
tween bare-metal or FreeRTOS can lead to slightly more robust software
based on the specific application, but robustness can be considered
comparable without significant variations. Since the marginal variation
of the error rate when using bare metal or FreeRTOS is very small, the
choice between the two mainly depends on other factors, such as more
or less strong real-time requirements. However, it is interesting to notice
that the distribution of the type of errors presents a pronounced differ-
ence for SEUs, which is even more marked for the MCU fault model. As
shown in Figs. 5 and 6, while the error rate is similar, FreeRTOS show a
significantly higher percentage of execution flow error, such as Startup
Failures and Crashes. This is likely due to the higher complexity of the
operating system layer introduced by FreeRTOS in the software stack.
Differently, bare-metal is more prone to SDC errors. As a result, bare
metal could be considered more suitable for systems where high avail-
ability is essential and erroneous results can be tolerated. On the other
hand, SDCs are less common in FreeRTOS, which is a valuable feature
since there is no advisory on the system's misbehavior in this type of
error. However, since availability is an essential metric for a real-time
system, this analysis raises the question of whether FreeRTOS can pro-
vide a reasonable level of availability while keeping low SDC when

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

matmul qsort basicmath dhrystone

s
UES

ot
eud

etaRrorr E
Bare metal FreeRTOS

Fig. 3. Error rate resulting from SEUs fault model for general-purpose applica-
tions benchmarks.

0.00%

3.00%

6.00%

9.00%

12.00%

15.00%

18.00%

21.00%

24.00%

matmul qsort basicmath dhrystone

s
UC

M
ot

eud
et aR rorrE

Bare metal FreeRTOS

Fig. 4. Error rate resulting from MCUs fault model for general-purpose appli-
cations benchmarks.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%noitazirogetaCsrorr E
dezila

mro
N

Startup Failure Crash SDC

Baremetal FreeRTOS

Fig. 5. Normalized error categorization for SEUs fault model for general-purpose
applications.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%noitazirogetaC
sro rrE

dezil a
mro

N

Startup Failure Crash SDC

Baremetal FreeRTOS

Fig. 6. Normalized error categorization for MCUs fault model for general-pur-
pose applications.

C. De Sio et al.

Microelectronics Reliability 150 (2023) 115124

6

operating in radiation environments.

6.2. FreeRTOS functionality analysis

The error rates resulting from reliability analysis against SEUs and
MCUs of the RTOS benchmark suite are reported in Figs. 7 and 8,

respectively. Variations of error rates appear to be less marked among
various applications, and also, the error categorization reported in
Figs. 9 and 10 are very similar among the software evaluated. Due to the
characteristics of the benchmark under test, SDC occurred much less
compared to general-purpose applications, while errors due to control
flow, such as Crash and Startup Failure, are more common. This analysis
supports the idea that RTOS functionality is more prone to control flow
errors, especially compared to bare-metal applications where the
operating-system layer introduces much less complexity. All RTOS
functionalities evaluated in this analysis seem to be characterized by a
similar error rate and error categorization distribution.

7. Conclusions

We proposed a reliability comparison of software running in Free-
RTOS and bare metal using realistic fault models of radiation-induced
soft errors affecting the on-chip SRAM memory of an ARM Cortex-A9
embedded processor. Even if characterized by a similar error rate, the
experimental results highlighted the different sensitivity of the two ap-
proaches to SDCs and control flow errors, which should be considered
carefully when defining the software platform for real-time safety-crit-
ical applications. A second analysis confirmed that features offered by
RTOS are particularly prone to control flow errors compared to SDC.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] S. Azimi, et al., Analysis of single event effects on embedded processor, in: MPDI
Electronics Vol 10, 2021, https://doi.org/10.3390/electronics10243160.

[2] P.M. Aviles, et al., Radiation testing of a multiprocessor macrosynchronized
lockstep architecture with FreeRTOS, IEEE Trans. Nucl. Sci. 69 (3) (2022)
462–469. March, https://doi.org/10.1109/TNS.2021.3129164. March.

[3] C. De Sio, et al., SEU evaluation of hardened-by-replication software in RISC-V soft
processor, in: IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2021.

[4] S.M. Guertin, et al., Radiation specification and testing of heterogenous
microprocessor SOCs, in: 2019 19th European Conference on Radiation and Its
Effects on Components and Systems (RADECS), Montpellier, France, 2019, pp. 1–7,
https://doi.org/10.1109/RADECS47380.2019.9745708.

[5] H. Cho, et al., Quantitative evaluation of soft error injection techniques for robust
system design, in: 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 2013, pp. 1–10.

[6] A. Portaluri, et al. "On the reliability of real-time operating system on embedded
soft processor for space applications"; in Architecture of Computing Systems: 35th
International Conference, ARCS 2022, Heilbronn, Germany, September 13–15,
2022, Proceedings. Springer-Verlag, Berlin, Heidelberg, 181–193. doi:https://doi.
org/10.1007/978-3-031-21867-5.

[7] F. Rosa, F. Kastensmidt, R. Reis, L. Ost, A fast and scalable fault injection
framework to evaluate multi/many-core soft error reliability, in: 2015 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFTS), Amherst, MA, USA, 2015, pp. 211–214, https://
doi.org/10.1109/DFT.2015.7315164.

[8] Q. Lu, et al., LLFI: an intermediate code-level fault injection tool for hardware
faults, in: 2015 IEEE International Conference on Software Quality, Reliability and
Security, Vancouver, BC, Canada, 2015, pp. 11–16, https://doi.org/10.1109/
QRS.2015.13.

[9] T. Santini, et al., Reliability analysis of operating systems for embedded SoC, in:
European Conference on Radiation and Its Effects on Components and Systems
(RADECS), 2015.

[10] D. Mamone, et al., On the analysis of real-time operating system reliability in
embedded systems, in: 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 2020,
pp. 1–6, https://doi.org/10.1109/DFT50435.2020.9250861.

[11] I.O. Loskutov, et al., Investigation of operating system influence on single event
functional interrupts using fault injection and hardware error detection in ARM
Microcontroller, in: 2021 International Siberian Conference on Control and

0.00%
3.00%
6.00%
9.00%

12.00%
15.00%
18.00%

task
sw

itch

sem
aphore

preem
p�on

intertask
com

m
unica�on

deadlock
detec�on

s
UES

ot
e ud

etaRror rE
FreeRTOS

Fig. 7. Error rate resulting from SEUs fault model for RTOS software applica-
tions benchmarks.

0.00%
3.00%
6.00%
9.00%

12.00%
15.00%
18.00%

task
sw

itch

sem
aphore

preem
p�on

intertask
com

m
unica�on

deadlock
detec�on

s
UC

M
ot

eud
etaRrorr E

FreeRTOS

Fig. 8. Error rate resulting from MCUs fault model for RTOS software applica-
tions benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

task
switch

semaphore preemp�on intertask
communica�on

deadlock
detec�on

noitazirogetaCsrorrE
dezil a

mroN

Startup Failure Crash SDC

Fig. 9. Normalized error categorization for SEUs fault model for RTOS software
applications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

task
switch

semaphore preemp�on intertask
communica�on

deadlock
detec�on

noitazirog eta Csr orrE
dezila

m roN

Startup Failure Crash SDC

Fig. 10. Normalized error categorization for MCUs fault model for RTOS soft-
ware applications.

C. De Sio et al.

https://doi.org/10.3390/electronics10243160
https://doi.org/10.1109/TNS.2021.3129164
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0015
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0015
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0015
https://doi.org/10.1109/RADECS47380.2019.9745708
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0025
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0025
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0025
https://doi.org/10.1007/978-3-031-21867-5
https://doi.org/10.1007/978-3-031-21867-5
https://doi.org/10.1109/DFT.2015.7315164
https://doi.org/10.1109/DFT.2015.7315164
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1109/QRS.2015.13
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0040
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0040
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0040
https://doi.org/10.1109/DFT50435.2020.9250861

Microelectronics Reliability 150 (2023) 115124

7

Communications (SIBCON), Kazan, Russia, 2021, pp. 1–4, https://doi.org/
10.1109/SIBCON50419.2021.9438916.

[12] W. Mansour, R. Velazco, SEU fault-injection in VHDL-based processors: A case
study, in: 2012 13th Latin American Test Workshop (LATW), Quito, Ecuador,
2012, pp. 1–5, https://doi.org/10.1109/LATW.2012.6261258.

[13] S. Azimi, et al., Exploring the impact of soft errors on the reliability of real-time
embedded operating systems, Electronics (2023), https://doi.org/10.3390/
electronics12010169.

[14] C. De Sio, et al., Analysis of proton-induced single event effect in the on-chip
memory of embedded process, in: 2022 IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2022.

[15] T.J. Boger, Rhealstone benchmarking of FreeRTOS and the xilinx zynq extensible
processing platform, in: MS thesis, Dept. Elect. and Com. Eng., Temple Univ.,
Philadelphia, PA, USA, 2013.

[16] FreeRTOS Customisation. https://www.freertos.org/a00110.html. Accessed 2023-
1-6.

[17] T. Santini, P. Rech, G. Nazar, L. Carro, F.R. Wagner, Reducing embedded software
radiation-induced failures through cache memories, in: 2014 19th IEEE European
test symposium (ETS), Paderborn, Germany, 2014, pp. 1–6, https://doi.org/
10.1109/ETS.2014.6847793.

[18] M. Rebaudengo, M.S. Reorda, M. Violante, An accurate analysis of the effects of
soft errors in the instruction and data caches of a pipelined microprocessor, in:
2003 Design, Automation and Test in Europe Conference and Exhibition, Munich,
Germany, 2003, pp. 602–607, https://doi.org/10.1109/DATE.2003.1253674.

[19] R. Leveugle, A. Calvez, P. Maistri, P. Vanhauwaert, Statistical fault injection:
quantified error and confidence, in: 2009 Design, Automation & Test in Europe
Conference & Exhibition, Nice, France, 2009, pp. 502–506, https://doi.org/
10.1109/DATE.2009.5090716.

C. De Sio et al.

https://doi.org/10.1109/SIBCON50419.2021.9438916
https://doi.org/10.1109/SIBCON50419.2021.9438916
https://doi.org/10.1109/LATW.2012.6261258
https://doi.org/10.3390/electronics12010169
https://doi.org/10.3390/electronics12010169
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0065
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0065
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0065
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0070
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0070
http://refhub.elsevier.com/S0026-2714(23)00224-X/rf0070
https://www.freertos.org/a00110.html
https://doi.org/10.1109/ETS.2014.6847793
https://doi.org/10.1109/ETS.2014.6847793
https://doi.org/10.1109/DATE.2003.1253674
https://doi.org/10.1109/DATE.2009.5090716
https://doi.org/10.1109/DATE.2009.5090716

	Evaluating reliability against SEE of embedded systems: A comparison of RTOS and bare-metal approaches
	1 Introduction
	1.1 Main contributions

	2 Related works
	3 Fault model resulting from proton testing
	4 The reliability analysis environment
	5 Experimental analysis
	5.1 Software systems
	5.2 Fault injection campaigns
	5.3 Results classification

	6 Experimental results
	6.1 Baremetal and FreeRTOS comparison analysis
	6.2 FreeRTOS functionality analysis

	7 Conclusions
	Declaration of competing interest
	Data availability
	References

