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A B S T R A C T   

Embedded processors are widely used in critical applications such as space missions, where reliability is 
mandatory for the success of missions. Due to the increasing application complexity, the number of systems using 
Real-Time Operating Systems (RTOSs) is quickly growing to manage the execution of multiple applications and 
meet timing constraints. However, whether operating systems or bare-metal applications provide higher reli-
ability is still being determined. We present a comprehensive reliability analysis of software applications running 
on a device with bare-metal and FreeRTOS against the same faults based on fault models derived from a proton 
test. Additionally, the FreeRTOS system has been evaluated with a set of software applications dedicated to 
evaluating specific RTOS functions, providing an additional evaluation for operations crucial for a real-time 
operating system.   

1. Introduction 

Embedded processors have become increasingly popular in mission- 
critical applications such as space missions, where reliability is 
paramount. 

The impact of soft errors on reliability can be significant in these 
systems, making it essential to ensure that the applications used are 
reliable and robust. Moreover, the continuous downscaling of transistors 
and operating voltages has led to more performant devices. Such devices 
are appealing for high-performance mission-critical applications, such 
as space missions. However, smaller transistors dimensions, operating 
voltages, and higher frequency made them more vulnerable to soft er-
rors, which is a primary concern for systems deployed in harsh envi-
ronments, such as space, where the exposure to ionizing radiation is a 
source of malfunctions in the device [1]. As the complexity of tasks that 
embedded systems must perform continues to increase, the bare-metal 
approach has decreased, leading to migration towards adopting Real- 
Time Operating Systems (RTOSs). These systems provide an efficient 
solution for meeting stringent real-time requirements, particularly in 
safety-critical applications that require the management of the execu-
tion of multiple critical applications on the same platform [2]. Despite 
the widespread use of embedded processors, the robustness of software 
applications running on systems with RTOS compared to bare-metal has 

yet to be thoroughly investigated. This leads to a broad question of 
whether these two platforms' reliability differences exist when they run 
applications in safety-critical missions. 

1.1. Main contributions 

This paper is dedicated to performing an accurate and comprehen-
sive reliability analysis of two developed platforms running the same 
applications in the presence of the same fault models, relying on RTOS 
and bare-metal, respectively. The paper presents two main contribu-
tions. Firstly, a detailed analysis of the fault model occurring in the on- 
chip SRAM memory of an ARM Cortex-A9 embedded processor during a 
proton test is presented. The observed events are used to propose a set of 
fault models for realistically emulating radiation-induced soft errors. 
These fault models provide a model for radiation-induced errors 
observed in the on-chip memory from the processor side. Secondly, we 
proposed two reliability analyses for two platforms running on ARM 
Cortex-A9 embedded processor of a Zynq-7020 system-on-chip. Free-
RTOS and bare-metal platforms are evaluated using the same software 
applications suite. Finally, since RTOS systems are characterized by 
additional features that are missing in bare-metal, an additional analysis 
based on a suite of benchmark applications is provided for exploring the 
robustness of specific RTOS functions. 
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2. Related works 

Several works have investigated the impact of soft errors on pro-
cessor systems using different techniques [3]. During accelerated radi-
ation testing, an embedded device is exposed to a high flux of radiation 
while the application is running, simulating years of functioning in a 
radiation environment such as space [4]. 

Even if accelerated radiation testing provides the closest results to 
the actual case scenario, it has a high cost of money, time, and expertise, 
making it unsuitable for the early stages of the design development flow. 
Therefore, other works are dedicated to developing alternative tech-
niques, such as simulation and emulation environments, for assessing 
the reliability of bare-metal applications running on microprocessors. 
Fault Injection techniques, as one of the most common emulation 
approach, is widely exploited to evaluate the impact of Single Event 
Effects (SEEs) on embedded processors [5,6]. Simulation-based fault 
injection methodologies are developed for emulating fault by injecting 
faults in memory resources, CPU registers, and communication infra-
structure [7], while the impact of soft errors on the operations of a 
microprocessor-based architecture by injecting random Single Event 
Upset (SEU) at a random time is investigated in [8]. 

However, on the other hand, the increasing complexity of tasks 
required for embedded systems has led to the rise in the adoption of 
Real-Time Operating Systems (RTOSs), which provide an efficient so-
lution for meeting stringent real-time requirements. Therefore, with the 
emergence of RTOS, some works have also investigated software-level 
techniques for evaluating the sensitivity of software executing on 
embedded processors with an operating system to soft errors [9]. The 
vulnerability of FreeRTOS has been evaluated through a software-based 
fault injection method that targets the most relevant variables and data 
structure [10], while the authors in [11] developed a workflow for 
automatic fault injection into program and data memory. Common ap-
proaches are based on modifying the operating system kernel or altering 
the memory content [10]. However, software application-level methods 
abstract from underlying hardware architecture when considering the 
impact of faults on the operating system's functionality. Therefore, other 
approaches are based on the simulation of the hardware description of 
the embedded processing system, which allows the injection of upsets 
into registers and hidden elements at any time [12,13]. 

Although numerous research studies have focused on assessing the 
dependability of embedded microprocessors using both bare-metal and 
FreeRTOS approaches, none have specifically compared these ap-
proaches regarding their susceptibility to SEE caused by architectural 
faults. Designers, particularly those working on space applications, often 
find themselves debating whether to use an operating system or a bare- 
metal application to achieve higher reliability. This paper aims to fill 
this gap by conducting a first direct comparison of identical applications 
running on embedded systems using bare-metal, and RTOS approaches, 
taking into consideration the fault models derived from a conducted 
proton radiation test experiment. 

3. Fault model resulting from proton testing 

We performed a proton radiation test at Switzerland's Paul Scherrer 
Institute (PSI) proton facility. A Zynq-7020 device has been irradiated 
with proton beams with energies between 29 and 200 MeV. The content 
of the on-chip 256 Kb SRAM memory has been continuously monitored 
through a software routine running on an ARM Cortex A9 during the 
experiment. The on-chip SRAM memory of Zynq-7020 implements an 
error detection mechanism exploiting parity bits, while no correction 
mechanism is implemented. The software test routine is executed on the 
processor system, reading and writing the memory content. The testing 
routine writes new values in the memory and checks if the value written 
during the previous test loop has been corrupted. It also verifies that the 
current value has been written correctly and can be read correctly. When 
an erroneous value is detected, it is notified to a host computer 

connected through a serial connection. The software routine can identify 
both Single Event Functional Interruption (SEFI) errors (e.g., a memory 
cell cannot be written or read correctly anymore) and soft errors, such as 
Single Event Upset and Multiple Cell Upset (MCU). We identified the 
following fault models and their cross-sections, reported in Fig. 1, that 
have been adopted in the fault injection campaigns: 

Single Event Upset is the most commonly observed event during ra-
diation experiments. An SEU produces a change in the value stored in a 
memory cell due to a bitflip, leading to data corruption in memory. 
Fig. 1 displays the SEU cross-section for various proton energy experi-
ments, while radiation-induced transitions from 0 to 1 and 1 to 0 have 
also been examined, revealing comparable ratios and distributions. 

Multiple Cell Upset is a group of SEUs that happen simultaneously, 
usually due to a single event. Indeed, a single particle can be the source 
of multiple upsets by exciting more than one logic cell while traversing 
or corrupting the memory control signals, resulting in the corruption of 
numerous cells. In particular, a Multiple Bit Upset (MBU) is an MCU 
affecting two bits of the same logical word. Interestingly, no MBU has 
been observed. However, detected MCUs presented recurrent patterns. 
The MCUs always affected the same significant bits of equally distanced 
logic memory words. This characteristic is likely related to the specific 
characteristics of the layout and architecture of the memory under test 
that differ from the logical organization. The distribution of the pa-
rameters, aggregating the characteristics of events occurring at all the 

Fig. 1. SEUs and MCUs cross-sections.  

Table 1 
Normalized occurrences of address offset in MCUs.  

Offset in memory between bitflips Normalized occurrence 

128 0.61 
4 0.12 
124 0.06 
132 0.03 
Others Less than 0.01 each  

Table 2 
Normalized occurrences of affected bits in MCUs.  

Number of multiple upset Normalized occurrence 

2 0.65 
3 0.20 
4 0.08 
5 0.03 
Others [6;15] Less than 0.01 each  
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energies, of MCUs events are reported in Tables 1 and 2. Additional 
details on the proton test experiments are reported in [14]. 

4. The reliability analysis environment 

An analysis environment has been developed to assess and compare 
the reliability of the two platforms against the fault models observed 
during the proton test experiment. The developed framework allows 
emulating the faults affecting the on-chip memory of the system-on- 
chip. Since the difference between the two platforms is only in the 
software stack, emulating the fault at a lower level provides a fair 
comparison between the two systems. In particular, the same (i.e., same 
fault model and location) faults are emulated and evaluated on both 
systems. The experiment manager runs on a host computer connected to 
the embedded platform through a serial connection. Using the JTAG 
interface of the SoC, the experiment manager can run the application on 
the target device, and stop the execution, manipulating the memory of 
the SoC to emulate the fault model, resuming the execution, and col-
lecting the results. The reliability analysis environment, depicted in 
Fig. 2, includes two stages. In the first stage, the system runs a version of 
the application under test without faults to collect data for instru-
menting the fault injection process. During this stage, the environment 
infers information such as the application's memory footprint, average 
execution time, and executed instructions. This stage is fully automated 
and generates the information to be used in the second stage. The fault 
injection process flow is performed as follows: firstly, a fault injection 
location and time are generated. Fault location is generated among the 
SRAM memory of the device. Fault injection time is then generated. In 
this context, fault injection time refers to the point in time during the 
execution of the program when a fault is intentionally injected into the 
system. Selecting the specific point in the program's execution when the 
fault will be injected is done by choosing an instruction from the list of 
executed instructions retrieved during the instrumentation stage. By 
injecting faults at different times, it is possible to simulate different 
scenarios and observe how the system responds. Secondly, the applica-
tion under test is executed in the FreeRTOS and bare-metal versions. 

Once the application runs, it is stopped at the specific instruction 
selected as the fault injection time. This is done using the debugging 
mode, which allows for precise control over the execution of the pro-
gram. At this point, the fault is emulated at the memory level. This 
means that the fault is emulated into the system by altering the contents 
of memory in a specific way that mimics the target fault model. During 
the fault injection process, monitoring the system for any issues that may 
arise due to the injected fault is essential. To do this, the experiment 
manager uses timers instrumented during the process's first stage. These 
timers can detect system halt or endless loops, indicating that the fault 
has caused the program to behave unexpectedly or crash. 

5. Experimental analysis 

The illustrated framework and methodology have been used for two 
reliability analyses. The former is dedicated to comparing the robustness 
of systems based on bare-metal and FreeRTOS software stacks against 
fault models observed in the on-chip memory of an embedded processor 
during proton testing by using the same suite of software benchmarks 
and injected faults. The latter analysis evaluates the robustness of a 
different suite of software applications dedicated to specific features of 
the RTOSs, such as task communication and scheduling. 

5.1. Software systems 

We used two software suites in this section's reliability analyses. The 
first suite of software benchmarks, called general-purpose software ap-
plications, consists of four software applications. The four software are:  

- qsort: a quick sort algorithm used for sorting arrays of data  
- matmul: mathematical operations on matrices, 
- basicmath: a set of basic mathematical functions, including arith-

metic, trigonometric, and logarithmic functions. 
- dhrystone: it is a computing benchmark that performs string pro-

cessing operations. 

Table 3 provides information on the memory footprint and the 
nominal execution time of these applications. 

The software applications of this suite have been implemented both 
for bare-metal and FreeRTOS platforms. In particular, the FreeRTOS 
version of each application is coded to instantiate three copies of the 
same task that runs concurrently on the processor. Since bare-metal 
systems do not support the concurrency of tasks, the bare-metal 
version executes the task in sequence three times through function 
calls to the same procedure, which consequently share the same code 
section, similar to what happens when multiple instances of the same 
task are instantiated in the FreeRTOS system. 

The second suite of software benchmarks, referred to as RTOS soft-
ware applications, consists of five software applications extracted from 
the Rhealstone benchmark applications suite [15]. The Rhealstone 

Fig. 2. Fault injection framework.  

Table 3 
Characteristics of general purpose applications Suite.  

Application Platform Memory footprint 
(KByte) 

Nominal execution time 
(ms) 

qsort bare- 
metal 

7932 46.45 

qsort FreeRTOS 68,796 1049.93 
matmul bare- 

metal 
37,580 45.67 

matmul FreeRTOS 75,348 1047.72 
basicmath bare- 

metal 
37,068 120.49 

basicmath FreeRTOS 74,956 1116.15 
dhrystone bare- 

metal 
43,636 194.69 

dhrystone FreeRTOS 78,940 1183.18  
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benchmark suite consists of software applications aiming to evaluate 
operations that are critical in a real-time operating system. In particular, 
the software applications are:  

- task switching: it performs synchronous and non-preemptive task 
switching.  

- task preempting: it switches tasks due to an event trigger.  
- semaphore operations: it performs semaphore operations to support 

mutual exclusion between two tasks.  
- deadlock breaking: it resolves deadlock conditions by high-priority 

tasks preempting a low-priority task that acquired a needed resource.  
- task communication: it makes two tasks exchange a message. 

Since these applications are dedicated to evaluating the robustness of 
specific features offered by RTOS systems, they have been evaluated 
only for the FreeRTOS platform. 

Table 4 provides information on the memory footprint and the 
nominal execution time of these applications. 

All the reported software applications have been evaluated singu-
larly in dedicated fault injection campaigns. All the software applica-
tions have been compiled using gcc with the –O2 optimization. 

Additionally, on-board DRAM memory is not used by the hardware 
platform, limiting the memory space for the application (e.g., heap, 
stack, data, instruction, and so on) to the on-chip SRAM memory. 

The memory footprint column reported in Table 3 and the same 
column in Table 4 does not include the heap and stack. The same stack 
size was used for all bare-metal applications and set to 14,336 bytes, 
while the heap size was set to 8192 bytes. 

The platform based on FreeRTOS was a FreeRTOS 10 version pro-
vided by ARM-Xilinx to be implemented using the Xilinx Vitis IDE 
v2022.1.0 in a Zynq-7020. We used the standard configuration options 
provided by the vendor for all the software benchmarks based on 
FreeRTOS. They include full support for counting semaphores and 
mutex. The detection of stack overflow using FreeRTOS's methodology 2 
is supported as well. The default configuration uses a total heap size of 
65,536 bytes, while the minimum stack size is set to 200 words. The 
stack size we allocated to each FreeRTOS task is 200 words as well [16]. 

5.2. Fault injection campaigns 

We performed a dedicated fault injection campaign based on the two 
proposed fault models for each software application. In order to 
compare the bare-metal and FreeRTOS in the fairest way possible for the 
general-purpose applications suite, we evaluated them with the same fault 
models and locations. However, since the FreeRTOS and bare-metal 
versions of the application execute different instructions due to 
different software stacks, it is impossible to inject faults at precisely the 
same moment (i.e., executed instruction). The fault injection time is 
generated when comparing the same application on different platforms 
in order to emulate faults that occur at similar execution times during 
execution. Each fault injection campaign consisted of 10,000 experi-
ments. During each experiment, a single fault model at a time was 
injected into the SRAM on-chip memory. The characteristics of the 
injected fault models (e.g., characteristics reported in Tables 1 and 2) are 

inferred from the radiation test results. Since during the fault injection 
experiment, differently from the radiation testing, we emulate the 
happened fault effect using a fault model, a cross-section of the events is 
not considered during fault injection campaigns. However, since from 
the fault injection campaign we obtain the response of the system to an 
occurring fault, the results of such analysis can be combined with ex-
pected event rates in memory for obtaining the expected application 
cross-section under different radiation conditions. 

The presented reliability analysis is based on SEU and MCU fault 
models emulated in the on-chip SRAM memory of the actual device, but 
we want to emphasize that faults in the SRAM on-chip memory are only 
a part of the SoC that is sensitive to radiation events. For instance, due to 
its high performance and minimal sizes, cache memory has the down-
side of being extremely sensitive to SEUs, and the choice to disable or 
not is still debated and based on the specific applications and their 
reliability and real-time constraints [17,18]. Additionally, cache mem-
ory are also a source of unpredictability in the system that can increase 
the complexity of hard real-time systems. Other memories can also be 
used with embedded processors, such as external DDR memories. 
However, we chose to focus our analysis on on-chip memory since it is 
integrated with the SoC itself; it is the biggest on-chip memory space (e. 
g., compared to register files and caches) and is particularly sensitive to 
SEUs and MBUs. 

5.3. Results classification 

The effects of the injected faults are categorized into four groups 
accordingly to observed impacts on the system. We identified the 
following categories: 

- Masked: the fault did not visibly affect program execution. The pro-
gram results are correct.  

- Silent Data Corruption (SDC): the fault produced a corruption of the 
program output.  

- Crash: the fault produced a system failure, causing the system to stop 
functioning. In this case, part of the output was generated before the 
systems stopped working.  

- Startup Failure: the fault prevents the application from emitting any 
output due to an early crash or failing boot. 

To clarify further the difference between a Crash and a Startup Fail-
ure, software applications have been coded to output a signature when 
the application under test starts to execute. A fault is classified as 
causing a Startup Failure when no output, including the starting signa-
ture of the program, is generated. Both Crash and Startup Failure cause 
the system to halt due to various reasons, such as endless loops or 
unhandled exceptions. 

6. Experimental results 

The results of a first reliability analysis dedicated to evaluating the 
general-purpose application suite implemented in bare-metal and Free-
RTOS platforms against the SEUs and MCUs are presented. Additionally, 
we present the result of a second reliability analysis dedicated to fea-
tures typical of RTOS. This dedicated reliability analysis has been car-
ried out only for the FreeRTOS platform and evaluated against SEUs and 
MCUs fault models. 

Reliability analyses have been conducted using statistical fault in-
jection. We carried out fault injection campaigns of 10,000 singularly- 
evaluated fault injections. In accordance with [19], it allows us to 
reach a confidence interval of 95 % with less than 1 % of the margin of 
error of the measured error rate values. SEUs and MBUs fault models 
resulting from proton testing have been emulated into the on-chip SRAM 
memory of the embedded system. The results are reported using the 
error rate value. Since the reliability analysis is carried out through fault 
injection campaigns, this ratio represents the number of faults injected 

Table 4 
Characteristics of ROTS applications suite.  

Application Platform Memory footprint 
(KByte) 

Nominal execution 
time (ms) 

Task switching FreeRTOS 67,348  98.68 
Task preempting FreeRTOS 67,412  96.05 
Semaphore 

operations 
FreeRTOS 67,668  193.06 

Deadlock breaking FreeRTOS 67,859  209.21 
Task 

communication 
FreeRTOS 67,548  204.67  
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that led to an error (i.e., the number of not masked faults) over the total 
number of events emulated in the system (i.e., the number of experi-
ments). This means that we are evaluating the probability of having an 
anomalous behavior of the system, given that an SEU or MCU occurs 
during execution. Using such information, it is possible to compute the 
expected application cross-section value for different scenarios based on 
the expected radiation profile and expected SEU or MCU rate in time. 
For the same reason, the error rates of the applications resulting from 
this analysis are also independent of execution times since they only 
consider a single fault happening during execution. However, the 
execution time reported in Tables 3 and 4 can be combined with the 
expected SEU and MCU rates to map the applications' error cross-section 
to different radiation profiles and scenarios. 

6.1. Baremetal and FreeRTOS comparison analysis 

Error rates due to SEUs and MCUs affecting the software applications 
of the general-purpose application suite running on both platforms are 
presented in Figs. 3 and 4, respectively. 

The two analyses produced similar reliability results for the evalu-
ated applications. The resulting error rates against these fault models. 

Robustness comparisons among software are the same for both fault 
models, and the error rates vary only marginally between bare-metal or 
FreeRTOS based on the specific application. As a result, choosing be-
tween bare-metal or FreeRTOS can lead to slightly more robust software 
based on the specific application, but robustness can be considered 
comparable without significant variations. Since the marginal variation 
of the error rate when using bare metal or FreeRTOS is very small, the 
choice between the two mainly depends on other factors, such as more 
or less strong real-time requirements. However, it is interesting to notice 
that the distribution of the type of errors presents a pronounced differ-
ence for SEUs, which is even more marked for the MCU fault model. As 
shown in Figs. 5 and 6, while the error rate is similar, FreeRTOS show a 
significantly higher percentage of execution flow error, such as Startup 
Failures and Crashes. This is likely due to the higher complexity of the 
operating system layer introduced by FreeRTOS in the software stack. 
Differently, bare-metal is more prone to SDC errors. As a result, bare 
metal could be considered more suitable for systems where high avail-
ability is essential and erroneous results can be tolerated. On the other 
hand, SDCs are less common in FreeRTOS, which is a valuable feature 
since there is no advisory on the system's misbehavior in this type of 
error. However, since availability is an essential metric for a real-time 
system, this analysis raises the question of whether FreeRTOS can pro-
vide a reasonable level of availability while keeping low SDC when 
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operating in radiation environments. 

6.2. FreeRTOS functionality analysis 

The error rates resulting from reliability analysis against SEUs and 
MCUs of the RTOS benchmark suite are reported in Figs. 7 and 8, 

respectively. Variations of error rates appear to be less marked among 
various applications, and also, the error categorization reported in 
Figs. 9 and 10 are very similar among the software evaluated. Due to the 
characteristics of the benchmark under test, SDC occurred much less 
compared to general-purpose applications, while errors due to control 
flow, such as Crash and Startup Failure, are more common. This analysis 
supports the idea that RTOS functionality is more prone to control flow 
errors, especially compared to bare-metal applications where the 
operating-system layer introduces much less complexity. All RTOS 
functionalities evaluated in this analysis seem to be characterized by a 
similar error rate and error categorization distribution. 

7. Conclusions 

We proposed a reliability comparison of software running in Free-
RTOS and bare metal using realistic fault models of radiation-induced 
soft errors affecting the on-chip SRAM memory of an ARM Cortex-A9 
embedded processor. Even if characterized by a similar error rate, the 
experimental results highlighted the different sensitivity of the two ap-
proaches to SDCs and control flow errors, which should be considered 
carefully when defining the software platform for real-time safety-crit-
ical applications. A second analysis confirmed that features offered by 
RTOS are particularly prone to control flow errors compared to SDC. 
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Fig. 7. Error rate resulting from SEUs fault model for RTOS software applica-
tions benchmarks. 
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