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ABSTRACT Anatomical human models have been widely used in the assessment of induced field strength
for low-frequency (LF) electromagnetic field exposure. One bottleneck is the assignment of a single electrical
conductivity to all the voxels of the corresponding tissue. This simplification is known to cause computational
artifact; therefore, a large reduction factor was considered in international guidelines and standards. Recently,
head models with nonuniform conductivities generated using deep learning networks were proposed, and
the effect on the reduction of staircasing artifacts was demonstrated. If the effectiveness of the models
is confirmed for different models and codes, it would be useful to derive the relationship between the
internal and external field strengths needed for setting the exposure limit. The Subcommittee 6 of the IEEE
International Committee on Electromagnetic Safety Technical Committee 95 launched a working group to
conduct the first intercomparison study of the induced electric field in learning-based head models exposed
to LF magnetic fields. Seven international research groups have cooperated in this joint study. The highest
relative difference (RD) in averaged electric fields was 23%, which is attributable to the difference caused the
by scalar potential finite difference (SPFD)method and finite element method. Except for one group, the RDs
in the 100th and 99th percentile values of the averaged electric field using the SPFD method with different
solvers and codes were below 1%, indicating that the uncertainty due to different codes is sufficiently small
under the same exposure scenarios. The findings would be informative for future revision of exposure limits
and reduction factors in the exposure standard, which is closely related to computational uncertainty.

INDEX TERMS Low frequency, electromagnetic safety, human protection, standardization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammed Bait-Suwailam .

I. INTRODUCTION
Human safety from electromagnetic field exposure has been
a long-standing concern for the public. To protect humans
from the dangers of electromagnetic field exposure, the
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IEEE International Commission of Electromagnetic Safety
(ICES) and the International Commission on Non-ionizing
Radiation Protection (ICNIRP) published standards [1] and
guidelines [2], [3] for setting up exposure limits. These stan-
dards and guidelines are periodically revised to reflect the
latest scientific knowledge in the understanding of the health
effects, dosimetry, etc.

The established effects and the lowest threshold identi-
fied in the IEEE standards and ICNIRP guidelines in the
low-frequency (LF) range were central nervous system stim-
ulation at <300–400 Hz and peripheral nervous system stim-
ulation at <100 kHz, respectively [1], [3]. Two metric types
have been developed. The first is the basic restriction in the
ICNIRP guidelines (called the dosimetric reference limit in
the IEEE standards), defined in terms of the spatially aver-
aged induced internal electric field strength, derived from
the threshold of adverse effects considering the reduction
(safety) factor [3]. The second is the reference level in
the ICNIRP guidelines (called exposure reference level in
the IEEE standards). The latter is defined as external elec-
tric or magnetic field strength for facilitating compliance
assessment.

External electric or magnetic field is derived from the limit
of induced electric field strength in a conservative manner.
The IEEE used homogeneous ellipses with different dimen-
sions for each body part with analytical solutions [1], whereas
the ICNIRP used an anatomical human body model using
numerical computations [4].

In the ICNIRP guidelines 2010 [3], due to computa-
tional uncertainty, an additional reduction factor of 3 was
considered in the limit derivation, whereas the rationale
was not explicitly mentioned. Note that such a reduc-
tion factor associated with the computation is not applied
to radiofrequency guidelines. If the uncertainty associated
with the dosimetry is quantified, it would facilitate the
setting of an appropriate reduction factor and limits in a
more robust manner [5]. Therefore, continuous improve-
ment in computational models and methods is critical
to the establishment of the scientific basis for exposure
standards [6], [7].

Traditional voxel models were developed by perform-
ing segmentation of medical images into various tissues
and then assigning the corresponding tissue with dielec-
tric properties (electrical conductivity in LF) acquired
from literatures [8], [9]. Although many dosimetry stud-
ies have used voxel-based human models [4], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], an important issue with the use of such
models in the exposure criteria is the numerical artifacts,
specifically the staircasing error inherent to voxel models
[26], [27]. This is a result of tissue digitization as a set of
voxels that enables hard transition of electrical conductiv-
ity across curved tissue interfaces. To resolve the issue of
computational uncertainties [7], intercomparisons have been
previously conducted for computations using voxel mod-
els [28], [29], [30] due to the lack of exact solution.

Recently, head models with nonuniform conductivity have
been developed and utilized for dosimetry [31], [32]. In [31],
head models with smoothly changing conductivities within
the same tissue were directly constructed from T1-/T2-
weighted magnetic resonance images (MRIs) using a deep
learning network. Although it is nearly impossible to ver-
ify the process for the reconstructed dielectric properties
using deep learning methods in most cases, previous studies
have demonstrated some advantages, such as the following:
1) smooth transition of conductivity values is more rea-
sonable for biological media, reducing staircasing errors in
voxel-based computation of the induced fields; 2) it reflects
the internal changes in dielectric properties within a specific
tissue [9].

Research needs on the intercomparison and tissue conduc-
tivity assignment are listed in the research agenda published
by international standardization bodies [6], [7]. To resolve
these issues, the Subcommittee 6 of IEEE ICES Technical
Committee 95 launched a working group on a novel mod-
eling technique for LF dosimetry. One goal of the working
group is to conduct intercomparison studies using these novel
learning-based models to provide scientific data used for
deriving the exposure limits. Seven groups from organiza-
tions worldwide participated in this intercomparison study.
Five human head models were developed using CondNet [31]
and shared to all participants. Induced electric fields were
computed by each group using their own developed com-
putational codes. The averaged electric field in the skin,
gray matter (GM), and white matter (WM) was reported for
the comparison. To the best of our knowledge, this is the
first study that conducted an intercomparison using novel
learning-based head models for the assessment of LF mag-
netic field exposures. The findings of this study would be
useful for setting the exposure limits and reduction factors
in future revisions of the electromagnetic exposure standard.

II. MODELS AND METHODS
A. MODELS
MRIs of five subjects from the Brain Multimodality
Dataset [33] were used to develop voxel-based head models
with a resolution of 1mm× 1mm× 1mm.CondNet [31]was
used for the automatic generation of the nonuniform models.
CondNet is a deep learning convolutional neural network that
enables the estimation of voxel dielectric properties, such
as conductivity and permittivity, directly from MRI scans
without segmentation. The network is designed to map the
input anatomical images to conductivity maps of the human
head. The network is trained using a standard data processing
pipeline that considers the segmentation of several subjects
to generate a training dataset, and then new subjects can be
directly developed from MRI scans. In TABLE 1, the tissue
conductivities used for training the network are listed [8].
In addition, the skin, GM, and WM of the five models were
segmented using ForkNet [34] to identify the field inside each
tissue for result evaluation and comparison.
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Fig. 1 presents an axial cross-sectional slice of the con-
ductivity distributions of the five non-uniform head models
at 50 Hz and 10 kHz, where smooth transition across the
tissue interfaces can be observed. Fig. 2 presents the statis-
tic distributions of the conductivity of the WM of the five
learning-based nonuniform headmodels. As can be seen from
Fig. 2, within the sameWM tissue, the conductivity values are
different across the subjects, which is a result of the different
gray levels of the medical images of subjects, reflecting the
variability in the tissue conductivity values of subjects.

TABLE 1. The conductivities (s/m) of the major tissues used for training
condNet.

FIGURE 1. Distributions of the conductivity on the cross sections of five
non-uniform head models at (a) 50 Hz and (b) 10 kHz. Conductivity
plotted along a line for model no. 1, highlighting the nonuniformity and
smooth transitions (c).

B. EXPOSURE SCENARIO
Uniform magnetic fields of 200 µT at 50 Hz and 27 µT at
10 kHz were considered, corresponding to the reference lev-
els in the ICNIRP guidelines for the general public. The direc-
tion of the magnetic field was aligned with the TOP direction

FIGURE 2. Boxplots of the WM conductivities at (a) 50 Hz and (b) 10 kHz
for different head models.

(from top to bottom) due to the largest cross-sectional area
in the axial plane of the truncated heads. For this intercom-
parison study, the averaged induced electric fields in the skin,
GM, and WM were computed and reported.

C. LF ELECTROMAGNETIC COMPUTATIONAL METHODS
The induced electric fields in the voxel-based anatom-
ical models are numerically solved. At frequencies
below 10 MHz, the human body is assumed not to perturb
the external magnetic field [35]. In this frequency range, the
conduction current completely dominates the displacement
current σ ≫ ωϵ, and thus, Maxwell’s equations can be
simplifiedwith a quasistatic approximation [35], [36], [37] by
ignoring the displacement current. Thus, the tissue permittiv-
ity can be neglected for the LF electromagnetic computation.

The scalar potential finite difference (SPFD) method was
widely adopted to solve the quasistatic magnetic field expo-
sure problem. The SPFD method sets the branch current
instead of the loop current. The unknowns in this method
are the scalar potentials φ at the nodes (vertex) of the voxel.
The scalar potentials φ for an external magnetic field were
determined using the following equation:

∇ · [σ (−∇φ − jωA0)] = 0, (1)

where A0 and σ denote the magnetic vector potential of the
applied magnetic field and the tissue conductivity, respec-
tively, and ω denotes the angular frequency. The potential φ

was subsequently solved numerically. The electric field along
the side of the voxel is obtained as follows:

E = −∇φ − jωA0, (2)

In the case of scalar potential finite elementmethod (FEM),
Equation (1) is written in a weak form before being dis-
cretized [38]. Hence, the obtained linear system is different
from that obtained using the SPFD method.

The SPFDmethodwas employed by groups from theChina
Academy of Information and Communications Technology
(CAICT), Central Research Institute of Electric Power Indus-
try (CRIEPI), Nagoya Institute of Technology (NITech), and
South China Agricultural University (SCAU). Politecnico di
Torino (PoliTO) also adopted the SPFD, but the formulation
was based on algebraic framework [39], [40]. The FEM was

VOLUME 11, 2023 38741



Y. Diao et al.: Intercomparison of the Averaged Induced Electric Field in Learning-Based Human Head Models

used by groups from Aalto University and CNRS/University
of Perugia (Ampère). The scalar potential was discretized
on hexahedra corresponding to voxels by using classical tri-
linear nodal shape functions. The matrix equations for the
SPFD method at NITech and for the FEM at Aalto Uni-
versity were iteratively solved using the geometric multi-
grid method with successive over-relaxation smoothing [41].
The biconjugate gradient stabilized method was employed
by the CRIEPI, and the Jacobi iterative method with GPU
acceleration was adopted by the SCAU. The algebraic multi-
grid method combined with the induced dimension reduction
method was employed by the CAICT to solve the sparse lin-
ear system. The aggregation-based algebraic multigrid solver
AGMG [40] was used by PoliTO and Ampère. The stop
criterion of relative residual <10−6 or lower was used by all
groups.

D. SPATIAL AVERAGING OF THE INDUCED ELECTRIC
FIELDS
Both the ICNIRP guidelines and the IEEE standard use a
spatially averaged induced electric field as a metric to protect
humans from exposure to LF field. This is related to the
prevention of nerve stimulation in the peripheral and nervous
systems. The ICNIRP guidelines 2010 [3] used an averaging
volume of 8-mm3 (2 mm × 2 mm × 2 mm) cube together
with the 99th percentile for the induced electric field in a
targeted tissue as the relevant dosimetric quantity [3]. The
IEEE standard prescribed the induced electric field to be
averaged over a 5-mm line segment [1]. A previous study [42]
developed detailed schemes for these averaging methods and
demonstrated that both are comparable. This study used a
cubically averaged electric field as a metric for comparison.
As presented in Fig. 3 and (3), the volume-averaged electric
field, Ēi,j,k , for voxel at (i, j, k) was evaluated as the arith-
metic average of the vector electric field in the 8-mm3 cube.

Ēi,j,k =

∥∥∥∥∥∥
i+1∑

x=i−1

j+1∑
y=j−1

k+1∑
z=k−1

wx,y,zEx,y,z

∥∥∥∥∥∥ , (3)

where w denotes the weight for voxel at (x, y, z). The weights
of the voxels that intersected with the 8-mm3 cube were
determined based on the fraction of the intersected volume.

FIGURE 3. Demonstration of the cubic averaging method.

Two cubic averaging methods were considered depending
on the inclusion of nontarget tissues: in method 1, all types

TABLE 2. Summary of the models and parameters for inter comparison.

of tissues are allowed in the averaging cube, and averaging
is performed over all voxels in the cube. In method 2, only
the target tissue is allowed in the cube. If the averaging cube
contains voxels belonging to other tissues, the averaging will
not be performed, and these voxels are excluded from the
computations of the percentile values. In TABLE 2, the mod-
els and computational parameters adopted by seven groups
for the comparison of the results are presented.

For the intercomparison of the results, the relative differ-
ence (RD) in percentage between the reported results and a
reference value were calculated as follows:

RD =

∣∣∣∣Ai − Ar
Ar

∣∣∣∣ × 100, (4)

where Ai denotes the results obtained by the ith group, and Ar
denotes the reference value, which is the mean of the results
obtained by all seven research group.

III. RESULTS
A. ELECTRIC FIELD DISTRIBUTIONS IN THE HEAD
MODELS
The electric field distributions on the cross sections of head
model no. 1 computed by seven research groups are presented
in Fig. 4. The electric field distributions agree well with each
other. In Fig. 5, the electric field distributions on the cross
sections of the five head models are presented. Due to the
similarity, the data reported from one group are presented.
Figs. 5 (a) and (b) present the electric field distributions in
all tissues and those in the GM and WM of the head models.
In Fig. 5 (b), the GMs are masked by translucent shaders for
clarity. As can be seen, staircasing artifacts have been validly
suppressed in the nonuniform head models compared with
the previous results obtained using segmented head mod-
els [25], [43], [44], [45]. On the cross sections, the highest
electric field strength mostly appears in the gyruses of the
WM due to the higher conductivity of the outermost layers
of the GM voxels because of the effect of the neighboring
high-conductivity CSF for the learning-based models.

B. INTERCOMPARISON OF THE PERCENTILE VALUES
The means and RDs of the 100th percentile values of
the averaged electric fields from the seven groups using
methods 1 and 2 are presented in TABLES 3 and 4, respec-
tively. For method 1, the highest mean values of 100th per-
centile values at 50 Hz are 8.09 and 9.00 mV/m in GM and
WM, respectively. For method 2, the highest 100th percentile
values at 50 Hz are 6.88 and 8.67 mV/m in GM and WM,
respectively.
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FIGURE 4. Comparison of the electric field distributions for model no. 1 at (a) 50 Hz and (b) 10 kHz. From left to right are results computed
by groups from Aalto, Ampère, CAICT, CRIEPI, NITech, PoliTO, and SCAU.

FIGURE 5. Distributions of the electric field strengths in (a) all tissues and (b) GM and WM of the head models
at 50 Hz. The GMs in (b) are masked by translucent shaders.

For method 1, the highest mean values of 99th percentile
values are 4.20 and 5.03 mV/m in GM andWM, respectively,
as presented in TABLE 5. For method 2, the 99th percentile
values are 4.11 and 4.67 mV/m in GM andWM, respectively,
as presented in TABLE 6.

At 10 kHz, the highest mean values of 100th percentile
values are 191 and 207 mV/m in GM and WM for method 1,
respectively. Formethod 2, the highest 100th percentile values
are 160 and 197 mV/m in GM and WM, respectively. The
99th percentile values obtained using method 1 are 109 and
124 mV/m in GM and WM, respectively, and the 99th per-
centile values are 108 mV/m in GM and 112 mV/m in WM
for method 2.

The RD results show close agreement with the computa-
tional results across the seven groups. The highest RD is 23%
in the results obtained using FEM. Except for the results from
two groups, the RDs are below 1% in most cases. For the
100th percentile of the averaged electric field using method 1,
the maximum RDs are about 15%, 23%, and 5% for GM,

WM, and skin, respectively. For method 2, the highest RDs
are about 4%, 9%, and 14% for GM, WM, and skin, respec-
tively. This is attributable to the definition of method 2 that
excludes voxels where other nontarget tissues are included in
the averaging volume.

As expected, the RDs for the 99th percentile values of the
cubically averaged electric field strength are globally lower
than those for the 100th percentile values. For the electric field
averaged using method 1, the maximum RDs are 23% and
11% for the 100th and 99th percentile values, respectively.
For the electric field averaged using method 2, the maxi-
mum RDs are 14% and 7% for the 100th and 99th percentile
values, respectively. Except for the results from one group,
the highest RD in the 99th percentile values computed using
method 2 are generally below 1%. This may be attributable
to the different interpretation of the cubic averaging scheme.

The computed electric fields are in excellent agreement for
groups using the SPFD method with their individual solvers,
except for one group, whose RDs are well below 1%. Slightly
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TABLE 3. Inter-comparison of the 100th percentile (maximum) value of the electric field in five head models using method 1, the percent values are RD.

TABLE 4. Inter-comparison of the 100th percentile (maximum) value of the electric field in five head models using method 2.

38744 VOLUME 11, 2023
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TABLE 5. Inter-comparison of the 99th percentile value of the electric field in five head models using method 1.

TABLE 6. Inter-comparison of the 99.

VOLUME 11, 2023 38745
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FIGURE 6. Distributions of the averaged electric field in GM and WM of model no. 1 for (a) method 1 and (b) method 2 for various pmax at
50 Hz. The GMs are masked by translucent shaders.

FIGURE 7. Percentile values of averaged electric field strengths using (a) method 1 and (b) method 2 in WM for varying pmax values at 50 Hz.

higher RDs were observed in the electric field computed
between using the SPFD method and FEM. This is mainly
attributable to the differences in the nodal schemes. Higher
RDs are observed in GM and WM using method 1. For
method 2, as the number of excluded voxels is high, the RDs
are below 4%. Furthermore, the results computed using FEM
in this study usually exhibit higher electric field strengths than
the SPFD method [38].

C. EFFECT OF THE INCLUSION RATIO OF THE NONTARGET
TISSUE IN THE AVERAGING VOLUME
For method 1, as all tissues can be included in the averaging
volume, the averaged electric field is affected by the elec-
tric field strengths in neighboring nontarget tissues. While
for method 2, because only the target tissue is allowed in
the cube, the number of voxels where averaging is not per-
formed becomes larger. Here, we considered the effect of the
maximum permissible percentage of other tissues inside the

averaging cube on the averaged electric field, pmax, in the
averaged electric fields defined as follows:

Ēi,j,k =


∥∥∥∥∥∥

i+1∑
x=i−1

j+1∑
y=j−1

k+1∑
z=k−1

wx,y,zEx,y,z

∥∥∥∥∥∥ , if p ≤ pmax

0, otherwise

(5)

where p denotes the volume percentage of other nontarget
tissues inside the 8-mm3 cube, and pmax denotes the maxi-
mum permissible percentage of nontarget tissues in the cube.
If p > pmax, averaging will not be performed, and that voxel
will be excluded from the computation of percentile values.
Two averaging methods were considered. For method 1,
averaging was performed over all voxels in the cube. For
method 2, averaging was performed over the voxels of the
target tissue in the cube. The averaged electric fields were
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FIGURE 8. Percentile values of averaged electric field strengths using (a) method 1 and (b) method 2 in GM for varying pmax values at 50 Hz.

FIGURE 9. Locations of the top 1% to 0.01% of the averaged electric field strengths in WM for (a) method 1 and
(b) method 2, respectively.

evaluated for GM and WM. Due to the similarity in the
results, data from one group were reported. The results for
model no. 1 are presented in Figs. 6 (a) and (b) for the two
averaging methods. As can be seen, when pmax = 0%, due
to the thickness and complex anatomy of GM, a considerable
portion of the voxels of GM was excluded. The number of
excluded voxels gradually decreases as more nontarget tissue
is allowed in the cube.

The percentile values of the averaged electric field in the
WM of five nonuniform head models for different pmax are
presented in Fig. 7. When pmax> 20%, the percentile values
become stable for various values of pmax. At pmax = 40%, the
highest 99.99th percentile values among the five head modes
are 8.4 and 7.8 mV/m for methods 2 and 1, respectively; the
highest 99.9th percentile value among the fivemodels is about
6.5 mV/m for both methods.
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As can be seen from Fig. 7, the 99th to 99.99th per-
centile values in the WM are generally consistent for
methods 1 and 2. However, the tendencies for the 100th

percentile values are different. The percentage of other tissues
inside the cube does not significantly affect the averaged
electric field even for the 100th percentile values formethod 1.
While for method 2, the 100th percentile value increases
with pmax. This is because formethod 1, the averaging volume
includes the neighboring GM voxels, and the electric field
across the GM/WM interface does not significantly differ due
to the smooth transition of the conductivity. For method 2,
averaging is performed only with the target tissue; a higher
pmax indicates reduced averaging volume, hence higher aver-
aged 100th percentile values.
The percentile values for GM are presented in Figs. 8 (a)

and (b) for methods 1 and 2, respectively. Except for the 100th

percentile value, the 99th to 99.99th percentile values for the
five head models are generally consistent. Method 1 gener-
ally has higher 100th percentile values due to the inclusion
of higher electric field strengths in WM in the averaging
volume. The electric field strengths in GM are lower than
those in the WM, which is attributed to the conductivity of
the outermost layers of the GM voxels being affected by
the high-conductivity CSF for the learning-based models.
Similar tendencies were also observed at 10 kHz (results not
shown).

D. LOCATIONS OF THE TOP 1% ELECTRIC FIELD
STRENGTHS IN THE WM
Fig. 9 presents the locations of the top 1% averaged electric
field strengths on the headmodels for the two cubic averaging
methods at 50 Hz. The highest electric field strengths gener-
ally appear at voxels in the gyruses of the WM. Furthermore,
the locations of the top 1%–0.01% electric field strengths
illustrate the consistency of two cubic averaging methods for
electric fields in WM. Due to the low contrast in the conduc-
tivity between WM and GM, and the smooth conductivity
transition in the learning-based models, staircasing artifacts
are not significant for WM. Thus, as has been demonstrated
in several previous studies [27], [43], the 99th or higher
percentile values may exclude voxels with actual high electric
field strengths for head exposure to a uniform LF magnetic
field.

E. ELECTRIC FIELD IN THE SKIN
Fig. 10 presents the distributions of conductivity and resultant
electric field strength in the border skin voxels of model
no. 1. As can be seen from Fig. 10 (a), as mapped directly
from the medical images, the skin conductivities at the border
voxel reflect the volume fraction of the skin tissue within the
border voxel. A previous study demonstrated that consider-
ing the partial volume effect reduces staircasing errors [45].
Therefore, staircasing artifacts on boundary skin voxel were
suppressed, as can be seen from Fig. 10 (b). This is an
advantage of the use of learning-based nonuniform models
for dosimetry. However, the artifacts in some parts of the skin

FIGURE 10. Distributions of (a) conductivity and (b) electric field strength
on skin voxels for model no. 1 at 50 Hz.

voxels were not notably reduced due to the noise in medical
images attributed to the instrument signal-to-noise ratio and
the movement of the subject during the imaging process.

IV. DISCUSSION AND CONCLUDING REMARKS
The intercomparison of the electric field cubically averaged
over 8 mm3 (2 mm × 2 mm × 2 mm) in the head models
for exposure to an LF magnetic field was coordinated under
a working group of Subcommittee 6 of IEEE ICES Technical
Committee 95. This study aimed to derive an appropriate
reduction factor, which is needed to set the limit in exposure
guidelines and study. For this purpose, a novel learning-based
head model was used for the first time in the intercomparison
for the assessment of LF magnetic field exposures. The com-
putational conditions were harmonized as much as possible,
and a high degree of consistency across seven research groups
have been reported for both frequencies, being<1% for most
cases.

The highest RDwas found to be 23%between the use of the
SPFD method and FEM. A possible explanation for this fact
is that the employed FEM formulation is equivalent to a min-
imization problem for the total coenergy of the system, which
has to be numerically approximated. Due to the unavoidable
errors caused by discretization, the computed coenergy is
an approximation that overestimates the true coenergy [38].
Hence, one expects that in average, the electric field strength
numerically computed by using this formulation is higher
than the exact electric field. However, notice that this result
does not hold locally – that is, in a minority of points, the
numerically computed electric field can be lower than the
exact electric field, even if, in average, it is bound to be
higher. In [38], a different formulation was also reported,
which underestimates the energy, but it has not been used in
this work.

The RDs in the electric field computed using the SPFD
method with different solvers are generally below 1%, except
for one group. These RDs are generally lower compared
with the previous intercomparison studies: ∼200% in [28],
∼10% or higher reported in [29], and ∼5% in [30]. As can
be seen, the computational uncertainties caused by the codes
can be reduced for a clearly defined model and exposure
condition. Several main reasons contribute to the consistency:
1), nonuniform conductivity reduced the staircasing error,
which is the main source of the computational uncertainty;
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2) although different solvers were used, most groups used the
six-point scheme of the SPFD method, and all computations
met the same stop criterion; and 3) the head models used
here do not have skin-to-skin contact region, which may
emphasize the uncertainty [30].

The peak electric field strengths in theWM are higher than
that in the GM for the models used here. In [46], the electric
field in the WM was higher than that in the GM in 17% of
cases for TOP exposure. This is because for the learning-
based models, the conductivity values of several outermost
layers of voxels in the GMwere higher than the uniform con-
ductivity values of the GM of segmented models. Because the
conductivity contrast between the GM and WM is lower than
that between the GM and CSF, the induced electric field does
not significantly differ across the GM/WM interface. This is
the cause of the stable 100th percentile values of the electric
field averaged using method 1 in WM (Fig. 7) regardless of
the inclusion ratio of other tissues in the averaging volume.

The highest 99th and 100th percentile values in the
WM for method 1 are ∼5 and ∼9 mV/m, respectively,
for 200-µT external magnetic field at 50 Hz, corresponding
to ∼25 and ∼45 mV/m per mT. The 99th percentile electric
fields in the brain computed in [4] were 25.1 and 22.1 mV/m
per mT in the NAOMI and NORMAN models, respectively,
for the magnetic field in the TOP direction. The 99th per-
centile values in WM also agree with those in [47], which
were 22.9 and 20.1 mV/m per mT in the brains of the TARO
andHANAKOmodels, respectively. In the IEEE standard [1],
magnetic induction was computed using homogeneous ellip-
soidal models. For the exposure of the ellipsoid to a magnetic
field at 50 Hz, the induced electric field can be calculated
to be about 16.3 mV/m per mT. This value is lower than
the value in this study as only a homogeneous canonical
model was considered [48]. The 99th percentile values were
used to suppress the effect of staircasing representation of the
curved tissue boundaries. Some studies have suggested that a
percentile value of about 99.99th of the averaged electric field
strength can be used as a representative value of the actual
peak if the staircasing error has been reduced (..) [16], [27].
In our case, though not perfectly, the nonuniform model itself
suppressed the staircasing error to some degree based on the
inherent incorporation of the volume fraction of tissue within
the voxel, as directly mapped from the medical image gray
level (Fig. 10). Note that the 99th percentile is applied to the
body model, not in the head. In the body model, the induced
electric field becomes high around the armpit, inseam, etc.,
because of the modeling there, which is different from the
head model. Thus, a direct conclusion cannot be derived from
this study.

In conclusion, the uncertainty caused by the different
computational codes was much reduced by considering a
learning-based head model in which a smooth transition of
the conductivity is replicated. Even when the maximum value
of the spatially averaged electric field was considered, the
relative difference was 23%, which is much smaller than
the reduction factor of 3. This finding may help in setting

an appropriate reduction factor and the exposure limit in
future revisions of international guidelines and standards.
In future work, we will consider a learning method that
derives the anisotropic conductivity of tissues, such as the
nerves and muscles, improve the numerical method for the
estimation of the exposure dose in suchmodels, and assess the
effect of anisotropic conductivities on themaximum exposure
dose.

APPENDIX
The source code of CondNet is available in Mathe-
matica (https://github.com/erashed/CondNet) and Python
(https://github.com/rrwabina/condnet).
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